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Abstract

In the radar array signal processing direction of arrival (DOA), the estimation of weak non-stationary signal is an
important and difficult problem when both strong and weak signals are coexisting particularly because the weak
non-stationary signals are often submerged in noise. In this paper, we proposed a novelty method to estimate the
direction of arrival (DOA) of weak non-stationary signal in scenario for strong non-stationary interference signals
and Gaussian white noise. The method utilizes spatial time-frequency distribution (STFD) of cross terms rather than
suppressing cross terms in time-frequency analysis. The STFD of cross terms are introduced as an alternative matrix,
which is similar to data covariance matrix in multiple signal classification (MUSIC), for the DOA estimation of a weak
non-stationary signal. The cross-term amplitude of the strong and weak signals is usually above the noise and is
easier to use than the auto-term of the weak signal. In the cross term, the information of the weak signal is
included, and the auto-term of these weak signals is difficult to extract directly. The ability to incorporate the STFD
of cross terms empowers information about a weak non-stationary signal for DOA estimation, leading to improved
signal estimates for direction finding. The method based on the STFD of cross terms for DOA estimation of the
weak non-stationary signal is revealed to outperform the time-frequency MUSIC and traditional MUSIC algorithm by
simulation, respectively. This method has the advantages of the time-frequency direction finding method and also

deals with the situation of weak signals. When the strong and weak signals exist at the same time and the two
angles are similar, the cross-terms can be used to perform DOA estimation on the weak signal.
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1 Introduction

Among numerous non-stationary signals that arise in
many radars [1] and communication [2, 3], instantaneous
frequency (IF) signals, for instance, linear frequency mod-
ulated (LFM) signals, have obvious time-frequency charac-
teristics which are continuous and decided the location.
Similar to the time-frequency signatures, the spatial signa-
ture of the signal source also includes significant informa-
tion about the signal source [4]. It ensures signal source
identification due to the respective angle position received
from a receiver antenna array, which is the directions-of-
arrival. The characterization of DOA is viewed as steering
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vectors in which the source signal demonstrates a differ-
ence of the signal phase over every sensor antennas when
electromagnetic wave covers the receiver antenna array
[5]. Time-frequency (T-F) analysis plays important roles
in the DOA estimation of the non-stationary signal [6].
Time-frequency analysis enables to process non-
stationary signals overlying in both frequency and time
domains in which windowing- and filtrating-based
means cannot separate the different signal source com-
ponents [7, 8]. For analyzing the non-stationary signals,
such as LFM signals, time-frequency signal representa-
tions and analyses are necessary [9]. We engage in the
class of signals where the instantaneous frequency par-
ticularly or basically determines the time-frequency
signatures of the signal source. A successful application
of time-frequency distribution desires prior knowledge
for the signal source in order that the most advisable
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distribution is preferred [10]. In this article, Wigner-
Ville distribution (WVD) is considered as the time-
frequency distribution representation since it provides
the most energy concentration in time-frequency do-
mains, displays the non-stationary properties of the sig-
nal, and satisfies the marginal conditions [11].
Combining the time-frequency and spatial characteristic
is accomplished into a framework named STFDs in
time-frequency MUSIC (TE-MUSIC) [12]. This structure
applies the signal location characteristic and energy con-
centration for increasing signal-to-noise ratio (SNR) and
source signal identification before achieving the high-
resolution direction-of-arrival estimation [13]. The
framework desires the calculations of the WVD from the
data obtained at each sensor, for instance, auto-terms of
WVD and the cross terms of WVD between sensor
antennas.

When the analyzed signal includes more than one
signal source component, WVD performs signal auto-
terms as positive magnitudes at their instantaneous
frequency areas and the cross terms as oscillatory
magnitudes along the geometrical middle point of auto-
terms [14]. The cross-term problem of the WVD was
first indicated in [15]. The suppression of cross terms is
the core problem of bilinear time-frequency transform-
ation. The references are abundant studies to suppress
the cross terms and increase the time-frequency
resolution. A method combined of the Hough transform
(HT) and the Wigner-Ville distribution (WVD) performs
cross term suppression [14, 16]. Another study researched
the blind source separation approach based on the use of
time-frequency analysis to eliminate cross terms in WVD
[17]. The main purpose of research in [18] is to accom-
plish the high-resolution and the maximal cross-term
contraction with the desirable diagonal or off-diagonal pe-
culiarity of time-frequency distribution matrices in blind
source separation applications. Researchers proposed a
method named standardization of the pseud-quadratic
form to suppress the cross terms in [19]. In order to
suppress the cross term, Zuo et al. further propose a
smoothed high-resolution time-frequency rate representa-
tion (SHR-TERR) via utilizing an FR window to the high-
resolution-time frequency rate representation, which is
expressed in the convolution form [20, 21]. A pure idea is
offered by Aiordachioaie and Popescu, as starting initial
point to compose an approach to suppress the cross terms
and to attain an exact image of WVD, including only the
auto-terms [22]. A new method is offered by Wu and Li
to suppress cross terms in the WVD of linear frequency
modulation signals with multicomponent [23].

The existence of cross terms is difficult to be avoided.
There are some researches in the references that take
full use of cross terms in WVD in different research
fields. Bird song syllable classification is realized using
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cross terms of Wigner-Ville ambiguity function in [24].
The Wigner distribution achieves artifacts well known
as cross terms that are contemplated and undesirable in
some situations; nevertheless, it can be utilized to as-
certain the existence of greatly little signal source
terms, in this case, VLPs terms [25]. Using the ambigu-
ity domain interpretation, Jeong and Williams explored
the theory of the cross terms (or interferences) in spec-
trograms [26]. A blind source separation technology
applying both cross terms and auto-terms in the time-
frequency distributions of the source signals was con-
sidered by Belouchrani et al. in [27]. As an application,
Fadaili et al. showed that the source separation can be
accomplished via exploiting one of these algorithms to
a set of spatial quadratic time-frequency distribution
matrices corresponding merely to the named cross
terms and/or to the named auto-terms [28]. When the
cross term is considered from different perspectives,
the cross term accurately reflects the relationship be-
tween multiple signal components [29]. When the en-
ergy difference between non-stationary signals is large,
specifically in the situation of low signal-to-noise ratio,
a weak non-stationary signal may be buried in the
noise. At this point, the weak non-stationary signal is
the desired signal. It is difficult or almost impossible to
extract the auto-term of the weak non-stationary signal.
The cross-term amplitude of strong and weak non-
stationary signal did not decrease significantly. In gen-
eral, the cross terms contain sufficient information of
weak non-stationary signal for its DOA estimation.
Therefore, in the case that both strong and weak non-
stationary signals existing simultaneously, the cross
terms of STFDs are used to obtain DOA of the desired
weak non-stationary signal in this paper.

This paper includes some sections. Section 2 reviews
spatial time-frequency distribution in TF-MUSIC. In
Section 3, cross-term selection procedures of STFDs are
introduced. The analytical results are used in this section
in order to examine the proposed method performance.
Several simulations are offered in Section 4. Section 5
gives conclusions.

2 Related works
In narrowband signal array processing, because # source
signals access on a m-element uniform linear array, the
received data formula

x(¢) = y() + n(2) = A(0)d(¢) + n(z) (1)
is frequently presumed, where the m x n spatial matrix
A(0) = [a(6y), a(By), ..., a(d,)] implies the steering matrix.
In the direction-of-arrival estimate situations, we expect

A to be a well-known characteristic, and each column of
matrix A associated with a single signal direction drives
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a distinct orientation. The analytical operation in this
article does not rely upon any special matrix A structure
characteristic. Because of the synthesis of the source
signals at every antenna, the parts of the m x 1 data vec-
tor x(¢) are multi-component source signals; neverthe-
less, every source signal d() of the source signal vector
d(?) is often a single signal component. n(¢) is an addi-
tive zero-mean white complex noise vector in which
elements are presumed as temporal and spatial station-
ary random processes which are independent from the
source signals.

In (1), it is presumed that the quantity m of sensors is
more than the quantity # of source signals. Furthermore,
matrix A has a column full rank because it involves that
the steering vectors associated with # different directions
of arrival have linear independence relationship. We fur-
thermore presumed that the data covariance matrix

Ry = E[x(£)x(2)] 2)

is not singular and that the processing duration includes
N snapshots (N > m), where superscript H implies conju-
gate transpose, and E(-) implies the statistical expectation
operator. From the above presumptions, the data correl-
ation matrix is provided by

Ry = E[x(£)x"(£)] = ARgaA™ + 0’1 (3)

where Ryq = E[d(8)d"(?)] is the signal correlation matrix,
o” is the noise power at every sensor antenna, and I im-
plies the identity matrix. Let A >Ay>...> N\, >\,
1=Mis2=-.. =\, =0 imply the characteristic values of
R.. The \;, i=1, ..., n are individual. The eigenvectors
corresponding to Ay, ..., A, make up the columns of the
matrix S = [sy, ..., S,,], and those associated with \,,, 4, ...,
M\, constitute the matrix G = (g, ..., g, - ,.]. Because the
column vectors of A and S constitute their subspace,
A"G=o0.

In effect, R, is not known and could be approximated
via the applicable data snapshots x(i), i=1, ..., N. The
approximated data covariance matrix is provided from

Rew = = > X9 (4)

Let {81,...,84,8;,.--,8,,_,} imply the unit-norm eigen-
vectors of Ryy that are arranged according to a descend-
ing order of the corresponding eigenvalues and make S
and G imply the matrices determined by the set of vec-
tors {8;} and {g;}, severally. We retrospect that the
DOAs can be evaluated by the traditional MUSIC ap-
proach via resolving the n values of 6 for which the sub-
sequent spatial spectrum is performed by maximization
operation [30]:
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1

———h (5)
aH(0)GG a(0)

fMU(G) =

where a(6) is the steering vector associated with 6.

We then survey the concept and fundamental peculi-
arities of the STFDs. In this article, we straightforwardly
examine a kind of Cohen’s class, specially, the Wigner-
Ville distribution (WVD) as well as its characteristic.
The discrete formula of WVD of a signal source x(t), via
an odd length L rectangular window, is given by

(L-1)/2

>

ke=—(L-1)/2

Dxx(kz, kf) = x(kt + kr)x*(kt_kr)eszmkfk,

(6)

where * implies complex conjugate. The integral of the
product of the conjugate of the signal reflects the energy
distribution of the signal in the time and frequency di-
mensions. Formula (6) reflects the details of the signal
energy distribution. The spatial WVD matrix is attained
via changing x(£) by the data snapshot vector x(z)

(L-1)/2

D (kiks) = Y

x(k; + kr)xH(kt—k,)e"/“”kfk’.

(7)

Replacing (1) into (7), we attain

D (ke, ky) = Dyy (ki ky) + Dyn (ks k)
+Dny(ktakf) +Dnn(kt’kf)- (8)

We note that Dy, (k,kp), Dy, (ksky), Dpy (kpkp, and
Dy (kyky) are matrices of m x m dimension. Due to the
uncorrelated noise and signal presumption and the zero-
mean noise property, the mathematic expectation of the
cross-term STFD matrices between the noise and signal
vectors equal to zero, such as E[Dy,(k; k)] =0 and
E[Dyy (ks k9] = 0, and it pursues that

E[Dyx (ki 7)) = E[Dyy (ki k)] + E [Dan (ki K1)
= AE[Dgq k¢, k7) JA™ + 0”1
)

where the signal source time-frequency distribution
matrix

(L-1)/2
S dke+ ke)d (kK )e
ky=—(L-1)/2

Dga (ks kf) =

(10)

is of n x n dimension matrix. For signal array processing
researches, the hybrid matrix A includes the azimuth
and projects the auto-terms and cross terms in time-
frequency distributions of the source signals to the auto-
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terms and cross terms in time-frequency distributions of
the received data.

Formula (9) is comparable to the other formula that has
been generally utilized for direction finding problems, in-
volving the source signal covariance matrix to the data
spatial covariance matrix. From the above production, the
covariance matrices are reestablished via the STFD matri-
ces. The reestablished formulas for traditional array signal
processing could be used, and core problems for various
situations of array processing, especially those addressing
non-stationary signal situations, can be addressed by bilin-
ear transformations. It is prominent that (9) suits for every
point. For reducing the noise influence and ensure the col-
umn full rank character for the involved matrix, many
time-frequency points are used, contrary to a single one.
Joint diagonalization [31] and the time-frequency averaging
approach become the two key technologies that have been
utilized for the objective [7, 13]. In this article, we merely
use averaging operation for many time-frequency points.

The time-frequency distribution transforms the one-
dimensional time domain source signals into the two-
dimensional time-frequency domain source signals. The
time-frequency distribution characteristic of accumulat-
ing the incoming signal while widening the noise to the
integrated time-frequency domain enhances the efficient
SNR. Next, we calculate the signal subspace and noise
subspace projection through a finite snapshot quantity
of data. In the situation where the STFD matrices are av-
eraged for the time-frequency signatures, we consider
those N-L +1 time-frequency distribution points. The
result is provided via

1 N-L+1
NITD > Dyiv, if).

i=1

D= (11)

. . . qtf
The unit-norm eigenvectors corresponding to A,,...,

itfo are implied by the columns of 8" = 8%, ...,8%], and

7 <8y,

otf N
those associated with 1, .,/lin are implied by the col-

PISSERE

~tf ~tf

ot
umns of G = (81, 8n_n, |- The superscript tf implies

that the associated term is inferred from the matrix D.
Parallelly, for time-frequency MUSIC with 7, source sig-
nals considered, the DOAs are confirmed via confirming
the ny peaks of the spatial spectrum which are deter-
mined from the signals’ time-frequency domain:

1

~tf A~ tfH

R, JR S—
all(0)G G a(0)

(12)

3 Method
The virtues of time-frequency-based DOA estimation
approach may merely be realized when suitable time-
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frequency points are considered in the STFD matri-
ces. The key point of this kind of method is how to
choose the suitable time-frequency points. The pur-
pose of this paper is to estimate the DOA of weak
non-stationary source signals based on cross terms of
spatial time-frequency distribution in the presence of
strong non-stationary signal interference. In the STFD
framework, the source signal time-frequency charac-
teristics should not be highly overlapping. The source

STFD matrix is
Ddd kt kf Ddd k; kf
Daa (ks kr) = [ Pats (ke N ANE
dd( t f) (Dd2d1 Ektka Dd2d2 kt’kf

(13)

The two source signals, dy(k;) and dy(k,), are LFM
signals. The following four types of time-frequency
points are discussed. The first-type time-frequency
points are associated with signal auto-terms merely.
For those points, the source signal time-frequency
distribution matrix has a rank-one diagonal mathem-
atics structure. The second-type time-frequency points
are associated with source signal cross-terms merely.
For the points, the signal time-frequency distribution
matrix is off-diagonal matrix. That is that the matrix
is considered to be off-diagonal because their diagonal
elements equal to zeros. The third-type time-
frequency points are associated with both source sig-
nal auto-terms and cross terms. For the points, the
signal time-frequency distribution matrix has no obvi-
ous algebraic specific structure which can be immedi-
ately used. The source signal cross terms and source
signal auto-terms are inexistence in the fourth time-
frequency points.

The diagonal and off-diagonal mathematics structures
of the first- and second-type T-F points are frequently
destroyed when the source signals are mixed. The first-,
second-, and third-type T-F points are significant to the
DOA estimation problem. The fourth should be aban-
doned because they do not have any effect in this situ-
ation. In this paper, we exploit cross terms of spatial
time-frequency distribution to perform DOA estimation
of weak non-stationary signals when there are both
strong and weak non-stationary signals.

Because of the fact that in the first-type time-
frequency points, Dgaq(k, k) have a high outstanding
algebraic structure which is a rank-one diagonal
matrix, an outstanding mean to solve the direction-
of-arrival estimation problem will become to utilize
matrix decomposition technology, which is a trad-
itional technology for DOA estimation. Yet, the
procedure of the automatic time-frequency point’s
selection, in the general situation, is difficult.
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Complicated time-frequency point selection technolo-
gies will be wusually needed, as studied in the
following.

Under the above condition, the STFDs have the struc-
ture as follows:

Dxx(kt,kf) :ADdd(kt,kf)AH—f—Dnn(kt,kf), (14)

Consider an #nxm matrix W, named a whitening
matrix, in order that WA implies a unitary matrix and
implies U. It is

(WA)(WA)! = uut =1, (15)

Pre- and post-multiplying Dy (k; k) by W results in
the whitened matrix, defined as

Do (ke, kp) = WDy (ke k) WH
= UDyq (k, k7)) U

+ WD (ke, k)W, (16)
where the second equation results from the W concept
and (14). Distinctly, the whitening process results in a
linear model in which a unitary mixed matrix is struc-
tured. In a whitened situation, some technologies use
trace invariance in the matrix for unitary transform, tak-
ing it likely to judge the existence of signal cross terms.
One technology [27] introduces that for the second-type
T-F points, consider matrices that verify
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trace{ Dy (k;, kf) }
| Dxx (ke  k7) ||

where trace {} implies matrix mathematics trace, |||
implies mathematics Frobenius norm, and ¢ is a user-
determined positive small value. For a noise condition,
the selection procedure of time-frequency points of peak
power (the first- and second-type time-frequency points)
may develop a severe problem when the source signals
are nearly submerged in noise. This is achieved by aver-
aging the STEDs of cross terms to solve this problem.

<e (17)

4 Results and discussion

Assume an eight-sensor uniform linear array with a half
wavelength separation between each element and an
observation duration of 512 samples. The two linear fre-
quency modulation signal components are transmitted
from two source signals located at angles 8; and 6,. The
initiated and finished normalized frequencies of the
source signal from 6;=30° are f; =0 and f,;=0.3,
whereas the homologous second frequencies for another
source from 6, =40are f; =0.2 and f;; = 0.5, severally.
WVD is utilized to calculate the time-frequency distribu-
tion, and time-frequency averaging is utilized to build
the noise subspace. The input SNR of 8, is 5 dB, whereas
the incoming SNR of 6, is —5dB. Figure 1 shows the
time-frequency spectrum of two LFM signals. From
Fig. 1, the auto-term of the weak signal cannot be
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obtained on the time-frequency spectrum because of
the submergence in noise. However, the cross terms
in time-frequency plane can observe the normalized
frequencies of which is approximately from 0.1 to
0.4. As shown in Fig. 2, the cross terms are

extracted by the method mentioned above for the
DOA estimation of the weak non-stationary signal.
The DOA of strong and weak signals is estimated by
cross terms in Fig. 3, which are approximately 30°
and 40°, respectively.
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Fig. 3 The estimated spatial spectrum
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If the SNR difference of the strong and weak signals
increases further, the DOA of the weak signal cannot be
directly obtained from the cross terms. The input SNR
of 6, is 10 dB, whereas the input SNR of 8, is — 10 dB.
The cross term is utilized from another perspective.
Firstly, the position of the auto-terms of the strong
signal and cross terms in the time-frequency domain is
estimated. Then the position of the auto-terms of the
weak signal is fitted according to the two positions in

order to improve the SNR of the weak non-stationary
signals. The spatial time-frequency distribution matrixes
are extracted from the position of the weak signal for
the DOA estimation. Figure 4 shows the T-F-spectrum
of two linear frequency modulation signal components.
Although the cross terms are no longer obvious on the
time-frequency plane, they can also be extracted accord-
ing to the characteristics of the matrix. In Fig. 5, the
auto-terms of the weak non-stationary signal are fitted
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Fig. 7 The RMSE of DOA estimation versus input SNR of weak signal
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by the method mentioned above for the DOA estima-
tion. The DOA of the strong and weak signals is simul-
taneously estimated in Fig. 6, which are approximately
30° and 40°, respectively. The time-frequency-MUSIC
technology is realized respectively for two sets of time-
frequency points, each one from one source signal.
When the incoming SNR of 8, is 5dB, the input SNR of
6, is from - 8dB to 0dB. The results were calculated via
averaging 100 Monte Carlo runs. Figure 7 shows the DOA

estimation root-mean-square error with SNR for traditional
MUSIC and time-frequency-MUSIC based on cross-terms.
The RMSE of TE-MUSIC based on cross terms is less than
that of the conventional MUSIC overall. The advantages of
TE-MUSIC based on cross terms in poor SNR conditions
become obvious from the figure.

Next, the influence of snapshots on the algorithm is
analyzed. With the other simulation conditions men-
tioned above unchanged, the number of snapshot is 256,
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512, and 1024, respectively. From Fig. 8, the increase in
the number of snapshots reduces the RMSE of DOA es-
timation. Then, the increase in that will also increase the
calculation time. The impact of a small user-defined
positive scalar ¢ on RMSE is also simulated. With the
512 snapshots, € is 0.3, 0.5, and 0.7, respectively. From

Fig. 9, different values of the same order have little influ-
ence on RMSE.

Figures 10 and 11 show the estimated spatial spectrum
of TE-MUSIC based on cross terms and the traditional
MUSIC where the direction separation is close (6; = 30°,
0, =33°). It is obvious that the source signals can be
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Fig. 11 The spatial spectra of MUSIC
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separated via the time-frequency-MUSIC based on
cross terms whereas the conventional MUSIC fails.
This is attributed to the combination of time-
frequency analysis method and MUSIC algorithm. In
the time-frequency MUSIC algorithm, for each signal
energy distribution, the MUSIC algorithm is calcu-
lated separately, and only a single signal is included
in the data covariance matrix. Therefore, two curves
are generated and the target with an angle ap-
proaching can be distinguished.

5 Conclusions

When the desired weak non-stationary signal may be
buried in noise, especially in the condition of low signal-
to-noise ratio, it is difficult or almost impossible to ex-
tract the auto-term of the weak non-stationary signal.
However, the cross terms of the strong and weak non-
stationary signal did not decrease significantly, which
contain sufficient information of weak non-stationary
signal for its DOA estimation. Therefore, in the case that
both strong and weak non-stationary signals exist, mean-
while, the cross terms of STFDs are used to obtain DOA
of the desired weak non-stationary signal in this paper.
The DOA estimation root-mean-square error of TF-
MUSIC based on cross terms is less than that of conven-
tional MUSIC. The DOA of two closely spaced signals is
resolved by the TE-MUSIC based on cross terms.
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