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Ultra-short-term wind speed forecasting
based on support vector machine with
combined kernel function and similar data
Jian He* and Jingle Xu

Abstract

The accuracy of wind power prediction is very important for the stable operation of a power system. Ultra-short-
term wind speed forecasting is an effective way to ensure real-time and accurate wind power prediction. In this
paper, a short-term wind speed forecasting method based on a support vector machine with a combined kernel
function and similar data is proposed. Similar training data are selected based on the wind tendency, and a
combination of two kinds of kernel functions is applied in forecasting using a support vector machine. The
forecasting results for a wind farm in Ningxia Province indicate that a combination of kernel functions with
complementary advantages outperforms each single function, and forecasting models based on grouped wind
data with a similar tendency could reduce the forecasting error. Furthermore, more accurate wind forecasting
results ensure better wind power prediction.

Keywords: Wind power, Ultra-short-term speed forecasting, Support vector machine, Compound kernel function,
Similar data

1 Introduction
As environmental issues have become more prominent,
wind power has been rapidly developing as a clean
renewable energy source [1–3]. In recent years, the
single-unit capacity of wind turbines and the total power
generation capacity of large-scale grid-connected wind
farms have grown rapidly, and the impact on power
systems is becoming increasingly obvious. In some cases,
the safety of conventional power systems may even be
compromised [2]. Accurate prediction of the power
generation of wind farms is a necessary means to
improve the operational stability of power systems. Since
the output power of a wind turbine is directly dependent
on the actual wind speed, a research hotspot is to realize
wind power prediction indirectly through wind speed
prediction [3–6].
Currently used wind speed prediction methods usually

include continuous methods [7], Kalman filters [8, 9],
random time series [10–13], neural network methods
[14–19], spatial correlation methods [20, 21], flow field

precalculation (CFD)-based methods [21], Adaboost-
based approaches [22], and support vector machines
[23–25]. The literature [26] proposed a multi-layer feed-
forward (BP) neural network wind speed prediction
method based on similarity curve samples. Although this
neural network method has good prediction effects
in many fields, it has the disadvantages of local
minimization and slow convergence. In [25], a support
vector machine based on a wavelet kernel function is
proposed and not only has the advantages of local analysis
and feature extraction for non-stationary signals but can
also approximate any non-linear function in the extended
space. Since each kind of kernel function has its own
advantages, increasing attention has been paid to combin-
ing two or more kinds of kernel functions to improve the
performance of the model [27, 28].
For the prediction of ultra-short-term wind speed, this

paper proposes a support vector machine prediction
model based on a combined kernel function and similar
data. In this model, the training samples are extracted
based on the trend of changes in wind speed, and a
training model is established. A combination of two
kinds of kernel functions is used to construct the
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support vector machine to realize the ultra-short-term
prediction of wind speed. The wind speed data predic-
tion based on a wind field in Ningxia shows that the
combination of a wavelet kernel function and polyno-
mial kernel function has higher prediction accuracy than
the single kernel functions. By predicting the training
data independently according to similarity, the predic-
tion is based on similarity. The prediction error is
further reduced. The wind turbine power calculated by
the wind speed predicted by this method is very close to
the actual output power of the wind turbine.

2 Wind speed prediction by support vector
machine based on combined kernel function and
similar data
2.1 Common support vector machine kernel functions
Support vector machine is a machine learning method
based on statistical theory. It maps the input sample
space to a high-dimensional linear feature space through
a non-linear kernel function and has a good ability to
deal with nonlinear regression problems. For an SVM
model, the choice of kernel function has an important
impact on the performance of the model. There are four
common SVM (support vector machine) kernel func-
tions. Equations (1), (2), and (3) are traditional kernel
functions, which are a linear kernel function, polynomial
kernel function, and radial basis kernel function. Equa-
tion (4) is a wavelet kernel function.
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2.2 Combined kernel function support vector machine
Since each kernel function has its application limitations,
combining two or more kernel functions to compensate
for the shortcomings of a single kernel function has been
considered [27, 28]. The kernel functions currently avail-
able for SVM fall into two broad categories: global
kernel functions and local kernel functions. A global
kernel function has global characteristics, which allows
data points that are far apart to affect the value of the
kernel function. A local kernel function has locality and
only allows data points that are close together to affect
the value of the kernel function.
Wavelet kernel functions based on wavelet function

construction have been widely used in support vector ma-
chine modeling. The generating function for constructing

the wavelet kernel function in this paper is shown in
Eq. (5).

h xð Þ ¼ cos k � x
a

� �
� exp −

x2

a2

� �
ð5Þ

a and k are two parameters of the wavelet generating
function, and k determines the shape of the wavelet
generating function. When k is 0, h(x) is an RBF kernel
function. When k is 1.5, h(x) is close to the Mexhat
kernel function in the range of [− 1, 1]. By adjusting
parameters a and k, the waveform of the wavelet kernel
function can change between the RBF and Mexhat
kernels, but the performance is superior to that of the
two kernel functions.
The wavelet kernel function has good signal approxi-

mation characteristics, but it is similar to the RBF ker-
nel function and is a local kernel function with good
interpolation ability. To establish a learning model
with better interpolation ability and better extrapola-
tion ability, based on the wavelet kernel function, a
polynomial kernel function with good extrapolation
ability is combined. According to the constitutional
conditions of the kernel function, the sum of the two
kernel functions is still a matching kernel function.
The expression of the combined kernel function in this
paper is shown in Eq. (6).
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Here, d is a parameter of the polynomial kernel func-
tion, k and a are parameters of the wavelet kernel func-
tion, and ρ1 and ρ2 are combinatorial coefficients of
combinatorial kernels, where ρ1 + ρ2 = 1.
Optimizing the parameters of the combined kernel

function can make the combined kernel function have
better prediction ability. In the regression effect analysis
of the SVM model, a cross-validation method is used to
verify the performance of the model.

2.3 Similar data-classification modeling
Similar data mean that the wind speed data of two sam-
ple points have similar variation regularity over a period
of time. The wind speed has strong randomness and has
a certain regularity in a short time range. Therefore, it is
effective to improve the prediction accuracy by selecting
the data from the historical wind speed data that have
similar laws to the wind speed being predicted.
The existing method of selecting similar data is based

on many data before the predicted point, and a similar
curve cluster is selected from the historical data and
used as a training sample to train the model. A short-
coming of this method is that each time a prediction is
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performed, the training sample selection needs to be re-
executed for model prediction, and therefore, it is diffi-
cult to realize online prediction of wind speed.
According to the trend of the wind speed, this paper

proposes a classification modeling method that divides
all training samples into three categories: rising, gradual,
and decreasing. For a section of the wind speed curve,
the method of selecting similar features is as follows:
compare the values of all points on the curve in order. If
the value of a point is larger or smaller than the values
of the two points before and after, record the value as a
pole of the curve and record the position of this value
point in the curve. Using this method, we can determine
the set Xm of all extreme points on the curve and the set
Ym of the corresponding extreme points.
For sets Xm and Ym, the slope Km of each linear seg-

ment and the proportion ωm of the points of each linear

segment among all points are calculated by using the
slope formula, and a piecewise linear representation of
similar characteristics of the wind speed curve is estab-
lished, as shown in formula (7).

I ¼
Xn

i¼1
KAiωAi ð7Þ

Setting the appropriate threshold τ, comparing the
value of I with that of τ, this curve can be divided into
three categories: I ≥ τ(upward trend), −τ < I < τ(gentle
trend) and I ≤ − τ(downward trend). The schematic
diagram of the classification curve is shown in Fig. 1.

2.4 Data normalization
After pre-processing the raw wind speed data to the real
values, the wind speed data need to be normalized. For
any sample xi in the training sample set, normalize as in

Fig. 1 A schematic diagram of the wind speed tendency

Fig. 2 Autocorrelation of the wind speed data

Table 1 The forecasting errors based on cross-validation

Polynomial kernel
function

Wavelet kernel
function

MAPE (%) MSE

1 0 8.0793 0.7848

0.1 0.9 7.1208 0.6269

0.2 0.8 7.0743 0.6238

0.3 0.7 7.0399 0.6208

0.4 0.6 7.0442 0.6203

0.5 0.5 7.0559 0.6208

0.6 0.4 7.0639 0.6208

0.7 0.3 7.0833 0.6218

0.8 0.2 7.0997 0.6229

0.9 0.1 7.1543 0.6291

Fig. 3 The forecasting results with the combined kernel and wavelet
kernel functions
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Eq. (8), and the normalization of the test set sample xi′
is the same as that of xi.

~xi ¼ N xi−xð ÞPN
i xi−xð Þ ð8Þ

Here, x is the average value of each component of the
sample, N is the number of training samples (or test sam-
ples), and xi is the normalized data. After normalization
by formula (8), the sample component values of the
training set and test set are between [0, 1].

3 Experimental modeling and analysis
Taking the wind speed data collected by a wind farm in
Ningxia in June 2012 as an example, experimental mod-
eling was carried out. The wind speed was sampled every
minute, and the speed data for 3 days were collected for
our experiment. Therefore, there are 4320 samples in
total. In the model construction, 70% of them were
randomly selected as training data, 30% as prediction
samples, and a cross-validation method was used to
achieve the model performance comparison.
In this paper, the mean absolute percentage error

(MAPE), mean square error (MSE), and maximum
permissible error (MPE) are used as criteria to measure
the error of the wind speed prediction results.

MAPE ¼ 1
N

XN
t¼1

vp tð Þ−vr tð Þ
μ

����
����� 100 ð9Þ

MSE ¼ 1
N

XN
t¼1

vp tð Þ−vr tð Þ� �2 ð10Þ

MPE ¼ max vp tð Þ−vr tð Þ�� ��	 

=vt � 100 ð11Þ

In the formulas, vp is the predicted wind speed, vr is
the real wind speed, μ is the average value of the
predicted samples, and N is the number of predicted

samples. The MAPE and MSE pay more attention to the
overall average performance of the prediction model,
while the MPE reflects the error control ability of the
prediction model for individuals.
Establishing the model mainly includes four steps:

feature selection, combined kernel function selection,
extraction of similar data and establishment of the
prediction model, and wind speed-power conversion.

3.1 Feature selection
Feature selection, with the purpose of extracting the
appropriate features from the raw data, is a key step in
determining the performance of the support vector ma-
chine model. Since the feature is historical wind speed
in this model, it is only necessary to select the number
of historical wind speeds. As a time series, wind speed
has a strong autocorrelation, so the feature selection is
guided by the autocorrelation of wind speed sequences.
The input sequence of the support vector machine
model is xt = [yt −D, yt −D + 1, …, yt − 1]. D is called the
embedding dimension, which is determined by the de-
gree of correlation among the data. The selection of D is
evaluated based on the model complexity and prediction
accuracy. The formula for calculating autocorrelation is
as follows (12):

rk ¼ 1
N−kð Þs2y

XN
i¼k

yi−μy
� �

yi−k−μy
� �

ð12Þ

In the formula, rk is the degree of autocorrelation,
and μy and sy are the mean and standard deviation of
the wind speed data, respectively. Figure 2 shows the
autocorrelation under different embedding dimensions.
The horizontal axis is the embedding dimension, and the
vertical axis is the autocorrelation. According to the
expected autocorrelation threshold, the corresponding
number of features can be obtained. In this paper, the

Table 2 A comparison of the prediction error between the wavelet kernel function and combined kernel function for 279 samples

Number of
samples

Number of
predicted points

Wavelet kernel
function

Combined kernel
function

MAPE (%) 190 89 20.25 16.31

MSE 190 89 1.04 0.70

MPE (%) 190 89 204.94 169.70

Table 3 A comparison of the prediction error between the wavelet kernel function and combined kernel function for 587 samples

Number of
samples

Number of
predicted points

Wavelet kernel
function

Combined kernel
function

MAPE (%) 411 176 10.00 8.25

MSE 411 176 0.66 0.54

MPE (%) 411 176 35.69 35.78
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autocorrelation threshold is 70%, and the corresponding
number of features in the autocorrelation graph is 2.

3.2 Selection of combined kernel functions
The parameter selection of the combined kernel func-
tion has two steps. The first step is to determine the
parameters of the single wavelet kernel function, and the
second step is to determine the combination coefficient
of the combined kernel function. According to the com-
bination of global and local kernel functions, we first
establish a model by using a single wavelet kernel func-
tion and a single polynomial kernel function and find
the optimal parameters through the grid method so that
the cross-validation prediction obtained by the support
vector machine model established by each kernel func-
tion is obtained. The error is minimal.
The combined coefficients of the polynomial kernel

function and the wavelet kernel function are also deter-
mined based on the error results of the cross-check of
the training samples. The specific idea is to adjust the
respective parameters of the polynomial kernel function
and the wavelet kernel function to the optimal state and
then set the combination coefficients of different polyno-
mial kernel functions and wavelet kernel functions to
generate a new combined kernel function, which is ap-
plied to the model. The trained model is cross-validated
to obtain two error results of MAPE and MSE and then
to select the set of combination coefficients with the
smallest error. The cross-validation results are shown in
Table 1. It can be concluded that when the coefficients
of the polynomial kernel function are 0.3 and 0.4 and
the coefficients of the wavelet kernel function are 0.7
and 0.6, the MAPE error and MSE error of the model
are the smallest. The coefficient combination selected in
this paper is 0.4 for the polynomial kernel function and
0.6 for the wavelet kernel function.
The wind speed data for all days in June are the ori-

ginal data, 70% of which are used as training data and
30% as forecast data. As shown in Fig. 3, the wind speed
prediction results are obtained by combining the kernel
function and training the model with a single wavelet
kernel function. It can be clearly seen that the wind
speed results predicted by the combined kernel function
are closer to the real wind speed data. Table 2 gives the
error data of the two models. The comparison shows that
the model obtained by the combined kernel function

reduces the mean error by 3.94%, the mean square error
by 0.34, and the maximum allowable error by 35.24%.
To verify the applicability of the combined kernel

function method, we randomly select another 587 wind
speed data from the historical wind speed data for a
period of time. The data set is completely independent
of the above data. The data set is divided into training
samples and prediction samples, and the model is built.
The wind speed prediction performance is listed in
Table 3.

3.3 Similar data extraction from training samples
In this paper, when selecting similarity data, the thresh-
old of τ is set to 0.5. According to three different trends
of wind speed, the models are trained separately. Then,
by classifying the trend of changes before the prediction
point, the corresponding models are selected to predict
this point, and the prediction results are obtained.
The method is applied to a field wind speed prediction

experiment of a wind farm in Ningxia. The error results
of wind speed prediction are shown in Table 4. For intu-
ition, the wind speed data from 1150 min to 1400 min
in the prediction results are shown in Fig. 4. After
adding similar data-classification modeling, the three
error indicators have been reduced; that is, the mean
error (visible from MAPE and MSE) can be reduced,
while the prediction error for a single point can be
further reduced (visible from MPE).

Table 4 A comparison of the prediction results with and without similar data

Number of
samples

Number of
predicted points

Combined kernel
function

Combined kernel
function and similar data

MAPE (%) 882 378 8.64 8.38

MSE 882 378 0.58 0.55

MPE (%) 882 378 41.71 40.23

Fig. 4. The forecasting results with and without similar data
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The results from the field experiments verify the ac-
curacy of the system. As the number of on-site samples
continues to accumulate, the method will periodically
update the training samples and retrain the models to
achieve higher prediction accuracy.

3.4 Wind speed-power conversion
When the predicted wind speed data are obtained, the
predicted wind speed can be converted into the pre-
dicted power value of a turbine through the correspond-
ing relationship between wind speed and power. Wind
turbines in wind farms operate mostly in the state of
unlimited power. In this state, when the wind speed is
constant, the ideal output curve can be obtained theoret-
ically. The formula of wind speed-power conversion is
shown in formula (13):

P
_

v
_� � ¼

0;
C v_
� �

P norm;

0

v
_
< vcut in

vcut in≤ v
_ ≤vnorm

vnorm≤ v
_ ≤vcut out

v
_
> vcut out

8>><
>>:

ð13Þ

In the formula, vcut _ in is the cut-in wind speed, vnorm
is the rated wind speed and vcut _ out is the cut-out wind
speed. The C(·) function is provided in the manuals of
wind turbine suppliers. In this study, the cut-in wind
speed of wind turbines is 3 m/s, the cut-out wind speed
is 25 m/s, and the rated wind speed is 10.7 m/s.
According to the predicted wind speed data and the

wind speed-power conversion formula (13), the pre-
dicted power can be obtained, as shown in Fig. 5. This
figure shows that the predicted power is very close to
the real power and that the tracking ability of the power
curve is strong

4 Conclusion
A wind speed prediction experiment based on a certain
wind farm in Ningxia shows that the proposed method
of combining a kernel function and similar data with a
support vector machine can effectively improve the
accuracy of wind speed prediction and then improve the
accuracy of wind power prediction. The conclusions are
as follows:
1) By combining the advantages of different types of

kernel functions for wind speed prediction, a higher
prediction performance than that of a single kernel
function can be obtained.
2) The wind speed historical data are independently

modeled and predicted according to the similarity of the
changing trend, which can effectively improve the wind
speed prediction accuracy.
3) The experimental results of this method at the wind

power site show that the method is feasible in engineering
applications.
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