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Abstract

Identifying important nodes is very crucial to design efficient communication networks or contain the spreading of
information such as diseases and rumors. The problem is formulated as follows: given a network, which nodes are
the more important? Most current studies did not incorporate the structure change as well as application features
of a network. Aiming at the node importance evaluation in wireless sensor networks, a new method which ranks
nodes according to their structural importance and performance impact is proposed. Namely, this method
considers two aspects of the network, network structural characteristics and application requirements. This method
integrates four indicators which reflect the node importance, namely, node degree, number of spanning trees,
delay, and network energy consumption. Firstly, the changes in the four indicators are analyzed using the node
deletion method. Then, the TOPSIS multi-attribute decision-making method is applied to merge these four
evaluation indicators. On this basis, a more comprehensive evaluation method (MADME) for node importance is
obtained. Theory study reveals MADME method saves computational time. And the simulation results show the
superiority of the MADME method over various algorithms such as the N-Burt method, betweenness method, DEL-
Node method, and IE-Matrix method. The accuracy of the evaluation can be improved, and the key nodes
determined by the MADME method have a more obvious effect on the network performance. Our method can
provide guidance on influential node identification in the network.

Keywords: Wireless sensor networks, Node importance, Multi-attribute decision-making, Node deletion, Structural
importance, Application performance

1 Introduction
Wireless sensor networks are composed of a large number
of sensors equipped with radio communication capabilities
[1]. Owing to their simple deployment and flexible and fast
distribution, they have been widely applied in intelligent
home, agricultural production, and other fields. Wireless
sensor networks have the capability of self-organizing,
where a large number of nodes are used to make up multi-
hop ad-hoc networks for information transmission by
means of initial communications and negotiation [2]. The
failure of some nodes in the network usually causes changes
to the network structure and performance. Especially, the

failure of the key nodes [3] in the network often leads to
the collapse of the whole network. Therefore, in the dy-
namic and complex network environment, current wireless
sensor network research must urgently address methods of
determining the key node quickly and accurately and pro-
vide targeted protection, thus ensuring the reliability and
stability of the network [4].
The problem of node importance evaluation [5] origi-

nates from the complex network, and the problem of node
importance evaluation is mainly studied in terms of the
structural characteristics and application requirements of
the network. For example, previous researches [6, 7] used
the structural characteristic indicators such as the degree
and the K-shell, respectively, to quantify the importance of
a node. Furthermore, the application requirement indica-
tors such as the network transmission efficiency and the
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load flow, respectively, were also used to assess the import-
ance of nodes in a complex network [8, 9].
However, for the actual wireless sensor network, the

performance indicator of the network application require-
ments is the direct target of the network optimization. In
terms of indicators of the network structure importance,
there are some limitations when analyzing the actual ap-
plication requirements for network timeliness or network
lifetime. But at the same time, network performance is es-
sentially information transfer processes along nodes or
links. Thus, network topology plays an important role.
The local and global structure characteristics of a node
directly reflect the efficiency of information transmission
and the energy loss in the network. If we only consider
the performance indicators of the network application re-
quirements, and the influence of structural importance on
network performance is ignored, it would lead to a weak
robustness of the network topology. From the above dis-
cussion, we can easily find that node importance evalu-
ation in a network is a result of the structural importance
and performance impact jointly. Therefore, the node im-
portance in wireless sensor networks cannot be evaluated
with only a single indicator and requires a combination of
the structural characteristics and application requirements
as the two aspects for comprehensive evaluation.
Our main contributions are summarized as follows.

1. In terms of the structural characteristics of the
network, consider the change in the sum of the
node degree and the change in the number of
spanning trees before and after removing nodes as
evaluation indicators.

2. With regard to the application requirements of the
network, consider the amount of delay changes and
the amount of energy consumption changes when a
node is removed as evaluation indicators.

3. The TOPSIS multi-attribute decision-making model
is constructed, which combines the above four indi-
cators. A novel method for node importance evalu-
ation in wireless sensor network is proposed based
on the model.

4. Through the simulation analysis, the method is
more comprehensive and accurate than other
methods based on a single indicator, and some key
nodes with small differences can be discovered. In
addition, it is also verified that this method can
improve the evaluation validity and is significant for
deliberate attacks.

The rest of the paper is organized as follows. Section 2
describes the key design methods of MADME and the
experiments. Section 3 describes the related works. Sec-
tion 4 introduces the attributes determination of the de-
cision model and respectively takes two evaluation

indicators from the structural characteristics and the ap-
plication requirements as the attributes. Section 5
mainly introduces the construction process of the TOP-
SIS multi-attribute decision-making model and the steps
of the node importance evaluation method based on this
decision model. Section 6 presents the experiment re-
sults and discussion. Finally, Section 7 concludes the
paper.

2 Methods/experimental
The aim of this paper is to identify the key nodes in
wireless sensor networks. To solve this problem, an
evaluation model for node importance based on multi-
attribute decision-making is proposed. This model incor-
porates the structural features as well as the application
requirements of a node in wireless sensor networks. In
addition, based on information entropy method, this
model analyzes the weight influence of the evaluation in-
dicators. Finally, a comprehensive evaluation method
MADME, which jointly considers node degree, the num-
ber of spanning trees, delay, and energy consumption, is
designed to reflect the node importance. To analyze the
performance of MADME, extensive simulations are car-
ried out. The simulations consider two aspects, accuracy
and validity. Simulation results confirm that MADME
can distinguish the important nodes with slight differ-
ence, and according to the key nodes obtained by the
MADME method to deliberately attack the network, the
network is quickly disintegrated.

3 Related works
The structural characteristics and application require-
ments are the two main aspects of the network. Here-
with, we present previous research on the node
importance evaluation from these two aspects.
Based on the structural characteristics of the network,

Wang [10] considers the node degree and proposes a
method for evaluating the importance based on the local
characteristic of a node. This method states that the
greater the degree of both nodes and neighbor nodes,
the more important the node, which is simple and ef-
fective. In reference [11], considering the relationship
between the betweenness [12] and the node degree, a
new indicator for node importance is defined, the
greater the value of the indicator, the more important
the node. Although the method is more accurate than
that of the single indicator (e.g., betweenness and node
degree), the time complexity is high. In reference [13],
the node importance is quantified by the global influ-
ence of a node. On the basis of node deletion method,
the number of spanning trees is proposed. The most im-
portant node is defined that the number of spanning
trees is the smallest after being removed, but the time
complexity is not reduced. In reference [14], the graph
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Fourier transform centrality (GFT-C) is introduced to
quantify how important a particular node is to other
nodes in a network. GFT-C utilizes not only the local
properties, but also the global properties of a network
topology. However, the time complexity is still higher.
To lower the time complexity, reference [15] introduces
the least square support vector machine (LS-SVM)
method to establish the evaluation model. LS-SVM
method selects four complicated importance indicators
and finds the relationship of simple attributes from local
properties and node importance obtained from global at-
tributes. The computational complexity is decreased
significantly.
Based on the application requirements of the network,

reference [16] evaluates node importance from the per-
spective of delay. It shows that removing the most im-
portant node always results in a maximum increase in
the shortest distance from the source node to the sink
node and has the largest transmission delay of network.
Reference [17] proposes an approach based on an energy
field model which evaluates the node importance by
analyzing the status of data transmission among associ-
ated nodes. In reference [18], a weighted minimum path
tree is used as the metric. It determines whether the
node is important based on the weighted path tree func-
tion. The method extends the life of the network to a
certain extent, but each node has to rebuild the shortest
path tree of the whole network after removing nodes,
resulting in a waste of energy. To solve this problem,
reference [19] comprehensively considers the remaining
lifetime of nodes and the increase in energy consump-
tion caused by removing a node. And a method is pro-
posed based on an energy indicator. It can find the key
nodes with faster energy consumption and important
position in the network, which is of great significance to
enhance the invulnerability and prolong the life of the
network. On the basis of a “no return” node deletion
method, reference [20] uses the network efficiency, lar-
gest component size, and network flow as the indicators
of network performance. Evaluating node importance is
done by comparing the change of network overall per-
formance before and after deleting nodes.
In the research of node importance evaluation, the

concepts of “structural characteristics” and “application
requirements” have been well studied, but these research
results mentioned for node importance evaluation only
consider the impacts of structural characteristics or ap-
plication requirements, which ignore the compositive in-
fluence of both aspects. In recent years, considering
there is a relation between the location of a node in the
network and its influence in network performance, some
scholars have also considered comprehensively both as-
pects of the evaluation method. In reference [21], some-
one believes that the important node in road traffic

network is related to the traffic flow through the node
and the location of the node. And a method based on
node contraction is obtained by combining two indica-
tors. Reference [22] gives a new centrality called density
centrality to identify and rank the node importance. The
density centrality is computed by considering the degree
and the distance between two nodes. Reference [23] uses
the node efficiency and the node degree to evaluate the
node importance. Reference [24] studies the bi-objective
critical node detection problem and finds a set of solutions
which minimize the pairwise connectivity of the induced
graph and the cost of removing these critical nodes at the
same time. These methods improve the comprehensive-
ness of critical node judgment, but ignore the weight
problem of the various indicators, which makes the ob-
tained important nodes far from reality. The accuracy of
their evaluation requires improvement. Therefore, to re-
search the node importance evaluation, the evaluation
model should switch from the unilateral indicators to
combined indicators, and the weight of the various indica-
tors on the node importance should be considered.
Taking into account the above description, in this

paper, we propose a multi-attribute decision-making
model to evaluate the node importance from both these
two perspectives. There are two goals need to be
reached, one is to improve the evaluation comprehen-
siveness, and the other is to increase the evaluation ac-
curacy. This study takes the node degree and the
number of spanning trees as the structural characteris-
tics, and takes the delay and energy consumption as the
application requirements, and the information entropy
method is adopted to obtain the weight of each indica-
tor. Then, we integrate the contribution degree of the
four indicators to the node importance and construct
the multi-attribute decision-making model. Finally, a
more comprehensive method for node importance
evaluation is proposed. This method not only overcomes
the limitations of using a unilateral evaluation, but also
takes into account the weight influence of the evaluation
indicators, which makes the node importance evaluation
more comprehensive and accurate.

4 Attribute determination of the decision model
Aiming at the node importance evaluation, the evalu-
ation indicators are divided into two aspects: structural
characteristics and application requirements. Usually,
the structural characteristics of a network have a node
degree, betweenness, spanning tree, and so on. Network
application requirements include throughput, delay, en-
ergy consumption, and others. This study combines the
structural characteristics and application requirements
of a node. In order to quantify the node importance, the
changes in indicators of both the structural characteris-
tics and application requirements before and after
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removing nodes are analyzed. And four indicators are
used as the attributes of a decision model.

4.1 Structural characteristic indicators of the network
The structural characteristics of the network affect the
robustness of the network topology. By analyzing the re-
lationship between the node itself and the location infor-
mation in the network, the local and global indicators
are obtained. This study takes the node degree and the
number of spanning tree as the evaluation indicators of
the structural characteristics. The changes in the node
degree and the number of spanning trees are calculated
when a node is removed, and are chosen as the attri-
butes in the decision model.

4.1.1 Node degree
The node degree refers to the local attribute of the
structural characteristics, which indicates the number of
neighbor nodes. By analyzing the relationship between
the nodes, it can reflect the direct influence of a node on
other nodes in the network.
Set up a network G = (V, E), where V = {v1, v2,…, vn}

corresponds to the set of nodes and E = {e1, e2,…, em}
corresponds to the collection of edges. It has a total of n
nodes and m edges and is a non-looped non-connected
map.
Its total node fully associative matrix is defined as Ac =

[aij]n ×m, where n corresponds to the number of nodes
and m corresponds to the number of edges in the graph.
The elements aij can be expressed as [25]

aij ¼ 1 node i is associated with edge j
0 node i is not associated with edge j

�
ð1Þ

The node degree of node i is calculated as

k ið Þ ¼
X
j∈m

aij ð2Þ

where the change in node degree for the entire network
before and after removing node i depends on the sum of
the changes both the node i and its neighbor nodes.

Ki ¼ 2k ið Þ ð3Þ

4.1.2 Number of spanning trees
The number of the spanning tree is considered to be the
global attribute of the structural characteristics. This
means that some edges of the connected graph are re-
moved, the nodes in the graph can be connected, and
the whole graph does not appear in the ring structure.
By analyzing the number of spanning trees after remov-
ing nodes and related edges, the node importance based
on network topology is reflected.

According to the matrix theory of the Binet-Cauchy
theorem [13], the formula for the number of spanning
trees can be obtained. Set G as an undirected graph and
τ is the number of spanning trees for graph G. For the
associative matrix Ac, each row corresponds to a node
and each column corresponds to an edge. Arbitrarily re-
moving the i row of Ac (node i is used as the reference
node) will obtain the matrix A. The number of spanning
trees is

τ Gð Þ ¼ det AAT
� � ð4Þ

Begin to delete the node in the matrix Ac, for the ith
node, removing the ith row and the columns where the
element is not zero in ith row. A new matrix Bc is
formed. Matrix B is obtained by removing any row from
the matrix Bc as a reference node. The number of span-
ning trees can be expressed as

τ G−við Þ ¼ det BBT
� � ð5Þ

Thus, the change in the number of spanning trees of
the network is

τi ¼ τ Gð Þ−τ G−við Þ ð6Þ

4.2 Application requirements indicators of the network
The application requirements of the network are mainly
based on the actual network performance. The analysis
shows that the performance changes of the nodes in the
network information transmission process affect the net-
work performance. Therefore, this study selects the
delay and energy consumption of the two performance
indicators to quantify the node importance. We calculate
the amount of network delay and network energy con-
sumption based on a node deletion method. And we use
them as attributes in the decision model.

4.2.1 Delay
The delay can effectively reflect the transmission timeli-
ness of the actual network. It depends on the transmis-
sion rate and transmission distance of the nodes in the
network. After the deletion of a node, the delay is in-
creased mainly owing to the increase in the shortest path
distance of each node in the network. It leads to a larger
information transmission distance. Therefore, the
change in the network delay before and after removing
nodes can be reflected by the change in the shortest path
distance. After deleting a node, the greater the amount
of delay changes, the greater the node importance.
In the undirected graph G = (V, E), the weight of each

edge is known, and the shortest path distance among
nodes is found according to the Floyd algorithm [12].
Before removing the node i, calculate the sum of the
shortest path distance among n node pairs, and record
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each as di, where the ith should not contain the sum of
the shortest path distance from node i to the remaining
nodes. After removing the node i, recalculate the sum of

the shortest path distance d
0
i , so the amount of change

in the shortest path distance when node i is removed
(that is, the amount of delay changes) is

Di ¼ di−d
0
i ð7Þ

4.2.2 Energy consumption
For energy-constrained wireless sensor networks, energy
consumption affects the lifetime of the network. The en-
ergy consumption of the network includes the energy
consumption of the receiving data and transmitting data.
Generally, the node is in an important position in the
network, where the greater the receiving and transmit-
ting data, the larger the energy consumed. Thus, the
amount of the energy consumption changes, to a certain
extent, can reflect the node importance.
To quantify the energy consumption of the network,

the nodes are stratified according to the number of
minimum hops form the node to the sink node (located
in the center of the monitoring area). This is shown in
Fig. 1, where numbers 1–24 represent the nodes, the
dotted circles represent the network layers, from the
inner to the outer for the first to the third layer. The

node away from the sink is the sub-node, and the node
near the sink is the parent node.
When node i is removed, the path from the sub-node

of node i to the sink node (where the path is the mini-
mum number of hops from sub-node to the sink node)
becomes longer, resulting in the increased energy con-
sumption. The energy consumed (time t) before remov-
ing node i is denoted by Et(i), and the energy consumed
(time t + 1) after removing node i is denoted by Et + 1(i).
We will have the increased energy consumption EADD

EADDi ¼ Etþ1 ið Þ−Et ið Þ ð8Þ
The energy consumption adopts the first-order radio

model [26], where Et(i) is the energy consumption of all
sub-nodes for node i; these sub-nodes transmit data by
the node with the same layer at t time. The energy con-
sumption at time t is

Et ið Þ ¼
Xj

s¼1

PtvE sð Þ 2Eelec þ εampd
2� � ð9Þ

where Eelec is the RF transmission coefficient, εamp is
the amplification factor of the transmitting device, d is
the data transmission distance between nodes, j is the
number of sub-nodes that need transmit data through
the same layer node, Pt is the normalized probability that
the sub-node s of node i transmits the data through the
same layer node at time t, and vE(s) is the energy

Fig. 1 Schematic diagram of network structure. An example of a network model, where 1–24 represent the nodes, the center is the sink node,
and the dotted circles represent the network layers from the inner to the outer for the first to the third layer
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consumption rate of node s. The energy consumption at
t + 1 (after removing node i) can be given by Et + 1(i)

Etþ1 ið Þ ¼
Xj

s¼1

Ptþ1vE sð Þ 2Eelec þ εampd
2� � ð10Þ

Substituting Eq. (9) and Eq. (10) into Eq. (8), we can
derive the following result

EADDi ¼
Xj

s¼1

Ptþ1vE sð Þ 2Eelec þ εampd
2� �

−
Xj

s¼1

PtvE sð Þ 2Eelec þ εampd
2� �

ð11Þ
Finally,

EADDi ¼
Xj

s¼1

Ptþ1−Ptð ÞvE sð Þ 2Eelec þ εampd
2� � ð12Þ

Equation (12) shows that when (Pt + 1 − Pt) is not zero,
the sub-node s has the same layer node for data trans-
mission. That is, the removal of node i increases the en-
ergy consumption of the network owing to the increased
energy consumption of node s.
As shown in Fig. 1, we calculate the increased energy

consumption of the network when node 10 is removed.
The added value depends on the increased energy con-
sumption of the sub-node 11 during the data transmis-
sion. Since the number of the shortest path from node
14 (which is also node 10’s sub-node) to the sink node
does not change, the energy consumption of node 14
does not increase because of the removal of node 10.

5 Evaluation method for node importance based
on the multi-attribute decision model
Multi-attribute decision-making is generally the use of
existing decision-making information in a certain man-
ner to sort a set of limited options and merit. Based on
the structural characteristics and application require-
ments of the network, this study analyzes synthetically
the changes in node degree, spanning tree, delay, and
energy consumption, and evaluates the node importance
for the network. Thus, the node importance evaluation
is a multi-attribute decision-making problem.
This study uses a common multi-attribute decision-

making method—TOPSIS method [27]. TOPSIS is the
sorting method of approximating the ideal solution,
which sorts the schemes by the ideal solution and the
negative solution of the multiple attributes. The idea of
node importance evaluation method based on TOPSIS is
that every node is regarded as a scheme and the evalu-
ation indicators are regarded as the attributes of each

scheme, and evaluating the importance of each scheme
is the criteria [28] for decision-making.
The following section lists the multi-attribute decision

model and the steps of the node importance evaluation
method based on this decision model.

5.1 The construction of the multi-attribute decision-
making model
Assuming that there are m nodes in the network, the
corresponding set of decision schemes can be expressed
as A = {a1, a2,…, am}. In this paper, when the node i is
removed, there are four indicators to evaluate its import-
ance, including the amount of change in the node de-
grees Ki, the amount of change in the number of
spanning trees τi, the amount of change in the delay Di,
and the amount of change in the energy consumption
EADDi. Its matrix is X = (xij)m × 4, where xij is the jth indi-
cator of the ith node, and i = 1,2,...,m, j = 1,2,3,4.

X ¼
x11 x12 x13 x14
x21 x22 x23 x24
⋮ ⋮ ⋮ ⋮

xm1 xm2 xm3 xm4

2
664

3
775 ¼ Ki; τi;Di;EADDið Þm�4

ð13Þ
There are intricate relationships between the indica-

tors that can be divided into interest attributes (the lar-
ger the value is, the more important the node is) and
cost attributes (the smaller the value is, the more im-
portant the node is). According to the analysis of the at-
tributes, we can see that the four indicators (e.g., Ki, τi,
Di, EADDi) are all interest attributes. As the dimension of
each indicator is different, for the sake of comparison,
the original decision matrix X = (xij)m × 4 is processed to
obtain the dimensionless decision matrix Y = (yij)m × 4.
The interest attributes are standardized as below

yij ¼
xij− min

i
xij

max
i

xij− min
i

xij
ð14Þ

The weight vector of the four indicators Ki, τi, Di,
EADDi is recorded as w = (w1,w2,w3,w4)

T and conforms

to
P
j¼1

4
wj ¼ 1 , which constitutes a weighted normalized

matrix Z = (zik)m × 4

zik ¼ wkyik ; i ¼ 1; 2;…;m; k ¼ 1; 2; 3; 4 ð15Þ
The information entropy method [29] belongs to the

objective weighting method. It is used to calculate the
weight vector w = (w1,w2,w3,w4)

T. The closer the value
of each attribute in different schemes, the greater the en-
tropy, thus the weight of the indicator is more objective.
First, the matrix Y is normalized to obtain a normal-

ized matrix H = {hij}m × 4
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hij ¼ yij=
Xm
i¼1

yij ð16Þ

Then, the information entropy of the indicator is given
by

E j ¼ −
1
lnm

Xm
i¼1

hij lnhij; j ¼ 1; 2; 3; 4 ð17Þ

And the weight vector of the four indicators is

wj ¼ 1−E jX4
k¼1

1−Ekð Þ
ð18Þ

Furthermore, the positive and negative ideal solutions
of the decision scheme (n nodes) are determined accord-
ing to the matrix Z, we will have

Aþ
k ¼ max zikð Þ

i
¼ zmax

1 ; zmax
2 ;…; zmax

n

� � ð19Þ

A−
k ¼ min zikð Þ

i
¼ zmin

1 ; zmin
2 ;…; zmin

n

� � ð20Þ

And then the translation matrix T = (tik)m × 4 is used to
translate the matrix Z, we obtain tik

tik ¼ zik−Aþ
k ð21Þ

By translating, the positive ideal solution becomes {0,0,

..., 0}, and the negative ideal solution becomes A
0−
k ¼ tlk ,

that |tlk| ≥ |tik|, 1 ≤ l ≤m.
Now, we will calculate the vertical distance VDi. VDi

reflects the degree that the scheme approaches the ideal
solution. The smaller the value of VDi, the better the
scheme. We will have

VDi ¼ A
0
k
− � Tki

�� �� ¼ X4
k¼1

A
0
k
− � tik

� 	
ð22Þ

Finally, obtain the reciprocal of the vertical distance
VDi and do the normalization process, VDDi will be
given by

VDDi ¼ 1=VDi

max 1=VDif g ð23Þ

VDDi is used for evaluating the node importance. Sort
the node importance according to the order from large
to small, and ultimately the evaluation of node import-
ance based on multi-attributes will be realized.

5.2 The node importance evaluation method MADME
On the basis of the TOPSIS multi-attribute decision
model, the steps of the node importance evaluation
method (named MADME method) are given below
(Fig. 2):

From the above method, it can be seen that the time
complexity of the method depends on the calculation of
the amount of change in the node degree T = (tik)n × 4,
the amount of change in the number of spanning trees
VDi, the amount of change in the delay VDi, and the
amount of change in the energy consumption EADDi.
Calculating the amount of change in the node degree
needs to consider the degree of each node in the net-
work, and time complexity is O(n). Calculating the
amount of change in the number of spanning trees re-
quires n cycles of the fully associative matrix AC, and its
time complexity is O(n3). Calculating the amount of
delay needs to calculate the shortest path distance be-
tween nodes by using the Floyd algorithm, then the time
complexity is O(n3). Calculating the amount of energy
consumption based on the CNDBE algorithm, the time
complexity is O(n2). Therefore, the time complexity of
MADME method is O(n3).

6 Results and discussion
We use Matlab to implement our simulations. In the
simulations, the sensor nodes are randomly deployed in
the simulation area. For the purpose of demonstrating
the efficiency of the method proposed, the BA (m0 = 3,
m = 2) scale-free network commonly used in wireless
sensor networks is generated as a test bed. The network
is inherently robust and efficient [30], and it has good
fault tolerance and survivability against random node
failure.

6.1 Accuracy verification of the method
First, we consider the accuracy of the method; the fol-
lowing is analyzed from the two aspects of both the
method itself and comparison with other methods.

6.1.1 Analysis of the method itself
In this section, we analyze the accuracy of the method
itself. This study uses the following simulation environ-
ment. The nodes are distributed in a square area of
1000 m × 1000m, the initial energy of each node is 2 J,
and the number of nodes is 100. The specific parameters
of the experiment are shown in Table 1.
We use the simulation environment in Table 1 to ob-

tain a BA scale-free network (as shown in Fig. 3). Then,
we use the MADME method to calculate the node im-
portance. The result is shown in Fig. 4.
It is easy to see from Fig. 4 that the node numbers 42,

97, and 100 have a greater node importance. The net-
work topology (see Fig. 3) shows that the connectivity
among these three nodes and other nodes is relatively
large. Obviously, these three nodes are the key nodes for
the network.
Then, we analyze the changes to the four indicators of

the node, and the influence of the different indicator
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value on the node importance. The nodes are sorted ac-
cording to the importance from low to high, and the
corresponding four indicators of each node follow the
node importance from high to low. The corresponding
results can be obtained (as shown in Fig. 5).
Figure 5 shows that the four indicators decrease with

the decrease in node importance. This is consistent with
the obtained conclusions that the four indicators belong
to the interest indicators. On the other hand, Fig. 5 also
shows that the four indicators of individual node do not
conform to the overall trend of change. It means that
the importance of various indicators for individual node
is different. Each indicator weight value reflects the in-
fluence of the indicator on the node importance. Thus,
the result also indicates that the node importance is re-
lated to the weight of the four indicators.
To clarify the advantages of the MADME method, the

first 20% key nodes are refined in the overall network.
Table 2 gives the importance of the first 20% key nodes
and the corresponding indicator values.

From Table 2, the structural characteristics and appli-
cation requirements of nodes have different values for
each indicator, which affects the node importance. For
example, the increase in network delay and energy con-
sumption when node V42 is removed is littler than that
of V65. The change in node degree and number of span-
ning trees is considerably greater after deleting node
V42 than V65, and node V42 is more important than
node V65. It means that node V42 is more important in
the network structure than node V65. As another ex-
ample, after removing node V88 and V98, respectively,
the increase in the sum of node degree and the increase
in delay are not large. Although the change in the num-
ber of spanning trees after removing node V98 is greater
than that of node V88, the change in the energy con-
sumption is littler, and node V88 is more important than
node V98. It means that node V88 is more important
than node V98 in the network application. As we ex-
plained above, various indicators identify different nodes
as the important nodes. Our MADME, on the contrary,

Fig. 2 The proceeding of the MADME method. The pseudo code of the MADME method that is an evaluation method for node importance
based on a multi-attribute decision-making model
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takes care of both structural characteristics and applica-
tion requirements of all nodes and identifies nodes V42,
V65, V88, and V98 as the important nodes. These results
demonstrate the reasonableness of the MADME
method.

6.1.2 Comparison with other algorithms
To further evaluate the accuracy of the MADME
method, the comparing methods include the N-Burt
method [31], betweenness method [12], DEL-Node
method [13], and the IE-Matrix method [23]. The N-
Burt method improves the structural holes indicator
from the perspective of local importance. It can find the
important nodes with both the degree attribute and the
bridging attribute in the network. The betweenness
method analyzes the node position from the perspective
of global importance and measures the node importance.
The DEL-Node method evaluates the node importance
based on the number of spanning trees after deleting a
particular node. It can quantify the important nodes
within the global network from the perspective of net-
work structure. The IE-Matrix method integrates the

node degree and efficiency and comprehensively evalu-
ates the importance from the perspective of both the
structure and the performance of a node. The compar-
ing results are listed in Table 3.
By analyzing the network topology (see Fig. 3) and the

node importance evaluation results (see Table 3), it can
be observed that the connection degree of node V100 is
the largest, whereas the connection degree of nodes V97
and V92 is 27. Obviously, their importance is different.
Thus, it can be seen that if we take the ranking of node
degree as the result, it is likely to ignore the difference
of each node. So the node importance cannot be accur-
ately evaluated only by the node degree.
The N-Burt method is used to quantify the key node,

and the structural hole indicator is improved by analyz-
ing the node degree and its neighborhood structure. As
shown in the network topology (see Fig. 3), although
node V89 has more structural holes than node V92, the
connection degree of node V92 is greater than that of
node V89. In addition, the delay and energy consump-
tion of node V89 are smaller than those of node V92. It
is obvious that the node importance is inaccurate by

Table 1 Experimental parameters

Parameter Value Parameter Value Parameter Value

Node distribution area A 1000 m × 1000 m Node initial energy 2 J Node maximum transmission
radius R

300m

Number of nodes 100 Transmission rate 20 kbps The amplification factor of
transmitting device

100 pJ/bit/m2

Sink node coordinates (500,500) Radio frequency transmission coefficient 50 nJ/bit The node itself generates
data L

4000 bits
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Fig. 3 Topology of the network. BA scale-free network topology, where 100 nodes are distributed in a square area of 1000m × 1000m
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considering the network structure only. As shown in
Table 3, our MADME method recognizes the import-
ance of nodes V92 and V89 (in descending order) by
taking care of both the structural importance and per-
formance impact of all nodes, which overcomes the de-
fect of the N-Burt method.
The betweenness method reflects the node importance

well in the process of information transmission. How-
ever, some nodes with the similar importance position,
such as nodes V78 and V98, still need to be further
quantified by combining with the application indicators.
In the DEL-Node method, after deleting the nodes
V100, V97, V42, V76, and V99, the network is divided
into different areas. The number of spanning trees is
zero, and the corresponding node importance is one.
We also need to further distinguish the importance of
these nodes. As shown in Table 3, our MADME method
takes care of both local and global influences of all nodes
and distinguishes the differences of nodes V78 and V98
and nodes V100, V97, V42, V76, and V99, and over-
comes the shortcomings of the betweenness and DEL-
Node methods.
The IE-Matrix method considers the structure indica-

tors and performance indicators simultaneously. How-
ever, because the weight of these indicators is unknown,
IE-Matrix fails to estimate influential nodes. For

example, from the network performance consideration,
node V99 is more important than node V97. But the
weight of the structural characteristics is greater than
that of the application requirements. From the two per-
spectives, node V97 is more important than node V99.
As shown in Table 3, our MADME method takes into
account the weight difference of the indicators, detects
nodes V97 and V99 (in descending order) as the most
influential nodes, and overcomes the weakness of the IE-
Matrix method.
These comparison results show the superiority of our

MADME method over other methods. By incorporating
network structural characteristics and the application re-
quirements, and taking into account the weight value of
various indicators, the accuracy of the node importance
evaluation can be further improved. And the importance
of the special nodes with slight difference can be further
distinguished remarkably than the existing methods.

6.2 Validity verification of the method
Next, we consider the validity of the MADME method;
this study attempts to purposefully remove the import-
ant nodes in the network, which simulates the
intentional attack. We use the maximum number of
connected branch nodes as the performance measure.
The effect of intentional attack based on node import-
ance on the robustness of the network is analyzed. First,
in the 100-node network, the top ten nodes with the
highest importance evaluated by each method are re-
moved, as shown in Fig. 6.
From Fig. 6, we observe that compared with other

methods, the number of the maximum connected
branch nodes based on the MADME method decreases
most greatly. When the first six key nodes are removed
according to the ranking of the MADME method, the
number of maximum connected branch nodes is less
than 50, while according to the rankings of other four
methods, the performance is more than 50. It is obvious
that the overall performance of the MADME method
declined much quicker than that of the four other
methods, which tells us that the key nodes discovered by
the MADME method are more crucial to the network.
This is because the MADME method takes care of both
structure role and application features of all nodes. That
is to say, if the key node obtained by the MADME
method is under attack, the network will collapse rap-
idly, which verifies the validity of the MADME method.
Furthermore, we also investigated the network with

different sizes. After removing the first 10% of the key
nodes identified by the above methods, the proportions
of the maximum connected branch node accounts for
the all nodes in the network are shown in Fig. 7.
By analyzing the curves in Fig. 7, for different network

sizes, when removing the first 10% of the key nodes

Table 2 Calculation results of each indicator for the first 20%
key nodes in the network

Node number VDDi Ki τi Di EADDi

V100 1 54 1.9978e+ 41 6,367,736 7.0150

V97 0.4993 38 1.9978e+ 41 92,853 0

V42 0.4953 38 1.9978e+ 41 72,759 0

V76 0.3607 34 1.9977e+ 41 323,705 3.9294

V99 0.2998 28 1.9977e+ 41 99,352 2.4558

V92 0.2555 20 1.9975e+ 41 136,308 1.1236

V88 0.2435 20 1.9948e+ 41 71,560 0.4788

V89 0.2398 18 1.9955e+ 41 76,375 0

V98 0.2374 16 1.9973e+ 41 74,538 0

V65 0.2322 16 1.9959e+ 41 118,073 0.0543

V91 0.2268 16 1.9955e+ 41 22,348 0

V73 0.1897 12 1.9900e+ 41 26,618 0

V50 0.1693 12 1.9825e+ 41 144,279 0.5175

V69 0.1640 12 1.9806e+ 41 13,175 0

V61 0.1473 14 1.9743e+ 41 175,905 3.3506

V85 0.1439 12 1.9708e+ 41 8831 0

V72 0.1406 12 1.9686e+ 41 56,043 0.1041

V86 0.1383 10 1.9693e+ 41 62,593 0

V74 0.0883 8 1.9246e+ 41 5171 0

V94 0.0825 8 1.9153e+ 41 23,628 0
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Table 3 Evaluation results of node importance

Node
ranking

MADME N-Burt IE-Matrix Betweenness DEL-Node

Node
number

Importance
value

Node
number

Importance
value

Node
number

Importance
value

Node
number

Importance
value

Node
number

Importance
value

1 V100 1 V100 0.3564 V100 0.5534 V100 0.4236 V100 1

2 V97 0.4993 V76 0.2703 V61 0.5231 V23 0.2749 V97 1

3 V42 0.4953 V89 0.2672 V99 0.4757 V61 0.2669 V42 1

4 V76 0.3607 V92 0.2411 V97 0.4585 V50 0.2665 V76 1

5 V99 0.2998 V73 0.2179 V30 0.4478 V76 0.2523 V99 1

6 V92 0.2555 V50 0.2013 V76 0.4352 V97 0.2309 V92 0.9999

7 V88 0.2435 V88 0.1947 V74 0.3871 V92 0.1402 V98 0.9998

8 V89 0.2398 V61 0.1892 V42 0.3586 V99 0.1299 V65 0.9991

9 V98 0.2374 V42 0.1828 V10 0.3253 V65 0.1089 V91 0.9989

10 V65 0.2322 V65 0.1810 V53 0.3147 V72 0.1042 V89 0.9989

11 V91 0.2268 V85 0.1791 V68 0.3090 V74 0.0970 V88 0.9985

12 V73 0.1897 V99 0.1731 V21 0.3083 V42 0.0931 V73 0.9961

13 V50 0.1693 V97 0.1691 V41 0.3059 V88 0.0915 V50 0.9923

14 V69 0.1640 V98 0.1670 V65 0.2790 V4 0.0871 V69 0.9914

15 V61 0.1473 V23 0.1667 V87 0.2560 V78 0.0859 V61 0.9883

16 V85 0.1439 V72 0.1651 V47 0.2334 V98 0.0859 V85 0.9865

17 V72 0.1406 V91 0.1647 V12 0.2285 V67 0.0796 V86 0.9858

18 V86 0.1383 V64 0.1630 V24 0.2127 V89 0.0792 V72 0.9854

19 V74 0.0883 V67 0.1624 V22 0.2032 V94 0.0620 V74 0.9634

20 V94 0.0825 V94 0.1564 V35 0.1926 V86 0.0545 V94 0.9587
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identified by the MADME method, the proportion of the
maximum connected branch of the network is always
less than that of the betweenness and IE-Matrix
methods. This is mainly because the advantage of the
MADME method is that it considers not only the node
attributes from both structure importance and perform-
ance impact, but also the attributes’ weight; it is more
objective when applied to the evaluation of node import-
ance. This result also indicates that the key nodes ob-
tained by our MADME method have a greater impact
on the robustness of the network. In addition, although
the impact of the MADME method is closer than that of
the N-Burt and DEL-Node methods, the MADME
method is better in small-scale networks (such as a less
than 150-node network). This is because MADME can
recognize the potential key nodes more quickly; the
ranking of MADME method is quite different from that
of other methods in small-scale networks. But with in-
creasing nodes, although the orders are different, the key
nodes are almost the same.
From the above analysis, the impact on the robustness

of the network by deliberately attacking the key nodes
according to the MADME method is greatest, and even
the whole network is paralyzed. This means that accord-
ing to the MADME method to provide more targeted
protection for the key nodes, the deliberate attack on the
network can be effectively resisted. The experiment re-
sults further verify the validity of the MADME method.
The node importance evaluation method MADME

based on structural characteristics and application

requirements shows its accuracy and validity; thus, the
evaluating efficiency can be improved.

7 Conclusions
In this article, we introduce a multi-attribute decision-
making function to integrate the four indicators including
the structural characteristics and application requirements
of a network. In the meantime, we also take into account
the weight of these indicators. Then, the MADME method
for evaluating the node importance is proposed. The main
feature of the MADME method is that the application re-
quirement indicator is consistent with reality and the
structural characteristic indicator reflects the robustness
of the structure, which improves the evaluating efficiency.
Theoretical analysis indicates that the MADME method
saves computational time. The simulation results show
that the MADME method is reasonable from the two as-
pects, structure and performance, which overcomes the
shortcomings of the N-Burt, betweenness, and DEL-Node
methods only in terms of the network structure. In
addition, it takes into account the weight of the four indi-
cators and overcomes the weakness of the IE-Matrix
method which combined the two aspects structure and
performance. Moreover, compared with various methods
such as N-Burt, betweenness, DEL-Node, and IE-Matrix,
according to the key nodes obtained by the MADME
method to deliberately attack the network, the network is
quickly disintegrated. The result shows that the MADME
method is more effective for the node importance evalu-
ation. The key nodes discovered by the MADME method
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have a more obvious impact on the network performance.
Therefore, using the MADME method to quantify the key
nodes, designing a network protection strategy, the net-
works’ invulnerability will be improved. The proposed
model and method are expected to be applied to the ana-
lysis and design of wireless sensor networks and to dis-
cover some potential key nodes quickly and accurately.
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