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Abstract

To improve the deficient tracking ability of fully-convolutional Siamese networks (SiamFC) in complex scenes,
an object tracking framework with Siamese network and re-detection mechanism (Siam-RM) is proposed. The
mechanism adopts the Siamese instance search tracker (SINT) as the re-detection network. When multiple peaks
appear on the response map of SiamFC, a more accurate re-detection network can re-determine the location of the
object. Meanwhile, for the sake of adapting to various changes in appearance of the object, this paper employs a
generative model to construct the templates of SiamFC. Furthermore, a method of template updating with high
confidence is also used to prevent the template from being contaminated. Objective evaluation on the popular
online tracking benchmark (OTB) shows that the tracking accuracy and the success rate of the proposed framework
can reach 79.8% and 63.8%, respectively. Compared to SiamFC, the results of several representative video
sequences demonstrate that our framework has higher accuracy and robustness in scenes with fast motion,
occlusion, background clutter, and illumination variations.
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1 Introduction
Object tracking is a critical issue in the field of computer
vision, which exits in a wide area of applications includ-
ing video surveillance, human-computer interaction, in-
telligent traffic monitoring, and the military, to name a
few. After the arbitrary object in the first frame of the
video sequence is given, how to precisely locate its pos-
ition in the subsequent frames is the central problem of
object tracking. Although many researchers have made
great efforts to improve the tracking algorithm [1–5],
the problem is still very challenging in many tracking
tasks due to the factors such as occlusion, illumination
variations, scale change, motion blur, and deformation.
Therefore, designing an accurate and robust framework
for object tracking has important value in theory and
practice.
In traditional tracking frameworks, object features are

manually defined or combined [6–11]. Most frameworks
for object tracking can be divided into generative
methods [12–15] and discriminative methods [16–25].

Although these hand-crafted features show satisfactory
results, they are designed for specialized scenes and can-
not perform well in some challenging conditions. For in-
stance, generating features by pixel comparisons [25]
may become inaccurate when the illumination of the
background or the scale of the object changes, which re-
quires adaptive learning methods that can capture effect-
ive changes in object appearance over time.
Recently, convolutional neural networks (CNNs) have

obtained great attention as a result of their achievements
on automatic feature extraction. They can learn to ex-
tract features from substantial annotated image data and
a great deal of object classes. These features are rich in
high-level semantic information and are adept in distin-
guishing different categories of objects. Motivated by
this progress, several trackers (e.g., ECO [26], C-COT
[27], DeepSRDCF [28], and HDT [29]) integrate CNN
deep features into the conventional tracking frameworks
and benefit a lot from their expressive power. Some
others (e.g., BranchOut [30], TCNN [31], MDNet [32],
and STCT [33]) utilize CNNs directly as a classifier and
make the best of the end-to-end training. Most trackers
use online training to improve the tracking performance.
However, due to the great quantity of deep features and
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the complexity of deep neural networks, the computa-
tional cost of online training is high. Accordingly, most
CNN-based trackers run much slower than the real-time
trackers.
Several recent trackers differ from the single network

structure in that they utilize a Siamese network structure
as the core of the framework. This method focuses on
combining two CNN-based real-time trackers, which
completely avoids online training and achieves high
tracking speed. GOTURN [34] utilizes Siamese network
as the feature extractor and the fully connected layers
are adopted as the fusion tensor. SiamFC [35] removes
the fully connected layer to reduce the amount of com-
putation, and only five fully convolutional layers are
applied to train an end-to-end Siamese network for
learning a similarity function. Moreover, the function is
directly used for online tracking without any complex
fine-tuning tactics. The fully convolutional structure al-
lows SiamFC to take full advantage of the offline training
data and make itself more discriminative. Recently, there
are also many following-up studies of SiamFC [36–39].
However, since the target marked with the first frame is
used as a template for tracking, it is difficult to track the
target accurately when the target changes. If the target
changes greatly, the tracker based on Siamese network
will not be able to effectively identify the target. More-
over, due to the lack of re-detection mechanism, com-
plex background interference will cause a significant
decline in tracking accuracy. Thus, there is still a gap be-
tween SiamFC and the best online tracker in tracking
performance.
To achieve long-term tracking, the re-detection mech-

anism is often used to identify a reliable result when
interference appears in the tracking process. In addition,
the re-detection mechanism receives more and more at-
tention and is closely related to the practical applica-
tions, such as multi-object tracking [40–42] and person
re-identification [43, 44]. In [45], a re-detection mechan-
ism with self-paced learning scheme is utilized to avoid
contaminating the training set. The mechanism can
select trustworthy frames to learn the appearance of the
object. In [46], a re-detection approach is proposed to
handle the problems of severe occlusion and changes in
motion. The approach can deduce occlusion and
changes in motion. Thus, the tracking effect can be im-
proved to a certain extent. The multi-store tracker
(MUSTer) [23] adopts a short-term method to detect
the interference and a long-term method to control the
output. In [47], a re-detection module is utilized to
achieve long-term tracking. The module can re-detect
the potential contaminated results of the classifier and
decide whether to replace the original target template.
Although the above methods improve the tracking ef-
fect, the re-detection mechanism needs to evaluate the

output in every frame while the features in the mechan-
ism are hand-crafted.
Motivated by the above observations, this paper aims

to improve the deficient tracking ability of SiamFC in
complex scenes with fast motion and similar interfer-
ence. A re-detection mechanism is utilized and it adopts
the Siamese instance search tracker (SINT) [36] as the
re-detection network. When multiple peaks appear on
the response map of SiamFC, a more accurate re-
detection network can re-determine the position of the
target. Meanwhile, for the sake of adapting to various
changes in the appearance of the object, this paper em-
ploys a generative model based on Gaussian mixture
model to construct the template of SiamFC. Further-
more, a method of template updating with high confi-
dence is also used to prevent the template from being
contaminated.
To summarize, the main contributions of this paper

are listed as follows:

1. A re-detection mechanism based on Siamese
network structure is proposed to improve the track-
ing performance. This enables us to gain a very
accurate and robust result while multiple peaks
appearing on the tracking response map.

2. A generative model based on Gaussian mixture
model (GMM) is exploited for construction of the
template, instead of a unique and fixed template in
the first frame. Thus, a reliable tracking process can
be achieved while tracking in complex scenes.

3. The strategy of template updating with high
confidence is utilized to promote the quality of the
template. This makes the framework more adaptive
to various changes in appearance and similar
interference.

4. The evaluation on the widely used object tracking
benchmark (OTB) demonstrates that our
framework has strong accuracy and robustness in
complex scenes with fast motion, severe occlusion,
background clutter, and illumination variations. In
addition, the framework can still maintain a
relatively faster tracking speed, and the running
frame rate on GPU can reach 21 frames per second
(fps).

The rest of the paper is organized as follows: In
Section 2, we introduce the related works in details
and show the flowchart in Fig. 1. The SiamFC net-
work with re-detection mechanism as well as the con-
struction and the updating of templates are presented
in Section 3. In Section 4, the experimental details
and the objective evaluation of our framework will be
discussed. In Section 5, we reach the conclusions of
the paper.
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2 Related works
2.1 Traditional tracking frameworks
Most traditional tracking frameworks can be divided
into generative methods and discriminative methods.
Generative methods can depict the appearance of the
object by utilizing generative models. The region which
best matches the generative models will be regarded as
the target region. In prior tracking frameworks, various
generative methods have been proposed including incre-
mental subspace learning [12, 13], sparse representation
[14], density estimation [15], etc. The famous algorithm
for incremental visual tracking (IVT) is proposed in [12].
The algorithm adopts the particle filter as the motion
model and the incremental subspace to depict the ap-
pearance of the object. In [13], 2D principal component
analysis has been integrated into the generative models.
The sparse representation is first proposed in [14]. In
this method, a set of trivial templates and a particle filter
are utilized to overcome the challenging issues. At the
same time, the sparsity can be obtained by solving an l1-
regularized least squares problem.
In contrast, the discriminative methods mainly learn

classifiers which can distinguish the object from the
complex background. Various discriminative methods
have been proposed based on multiple instance learn-
ing [16, 17], online boosting [18, 19], correlation filters
[20–23], etc. In [16], multiple instance learning is
adopted as a learning strategy which can replace the
traditional supervised learning to filter weak classifiers.
In [18], online boosting is used to select features and
make the visual tracking more robust. AdaBoost is pro-
posed in [19], which combines sets of weak classifiers

into a stronger one. In recent years, discriminative
methods based on correlation filters have gained great
attention. In [20], the minimum output sum of squared
error (MOSSE) has been added into a correlation filer,
which can run in hundreds of frames per second. A
kernelized correlation filter (KCF) is proposed in [21].
In KCF, the circulant matrices and multi-channel fea-
tures in a Fourier domain are used to improve the
tracking effect. At the same time, several subsequent
research works of KCF have been investigated. DSST
[22] trains some separate correlation filters to over-
come scaling or translation in the tracking process.
MUSTer [23] adopts a short-term method to detect the
interference and a long-term method to control the
output. In order to weaken the response of the filter
near the edge of the image and increase the response of
the filter at the center of the image, SRDCF [24] intro-
duces a spatial regularization component to the learn-
ing process.
Although these approaches show satisfactory results

by using hand-crafted features, they are designed for
specialized scenes and cannot perform well in some
challenging conditions.

2.2 CNNs-based tracking frameworks
Recently, convolutional neural networks (CNNs) have
obtained great attention as a result of their achievements
in automatic feature extraction. They can learn to ex-
tract features from substantial annotated image data and
a great deal of object classes. These features are rich in
high-level semantic information and are adept in distin-
guishing different categories of objects. Similar with the

Fig. 1 The logical flowchart of the object tracking. The logical flowchart is used to clearly introduce the development of the object
tracking mechanism
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object tracking algorithms based on hand-crafted fea-
tures, the CNNs-based tracking frameworks can also be
divided into discriminative methods and generative
methods.

2.2.1 Discriminative methods
To develop a discriminative method, a common way is
to extract the deep features by using CNNs model and
replace the hand-crafted features in traditional tracking
framework, such as correlation filter [26–28]. In [26],
deep features are combined with the hand-crafted fea-
tures so that the redundancy of the algorithm can be re-
duced. In [27], the framework takes a joint learning
strategy to fuse the deep features from different layers of
the spatial pyramids. Thus, the precision of the frame-
work can be greatly improved. In [28], the hand-crafted
features in SRDCF [24] are replaced by the deep fea-
tures, and the framework also suggests that the features
from the first layer provide more accurate tracking
performance.
In addition, CNNs can also be utilized as a classifier

[30–32]. In [30], the framework combines convolutional
layers with multiple branches of fully connected layers,
and randomly selects a subset of branches as the
regularization. In [31], the framework adopts offline pre-
training to reduce the computational cost and combines
the layers with a tree structure to get a robust classifier.
Thus, the tracking performance can be improved. In
[32], the method utilizes a large number of tracking
datasets with ground truths to pre-train the CNNs
model. The model which is constructed by the shared
layers and the domain-specific layers can generate a gen-
eric representation of the object. Thus, the framework
can effectively distinguish the object from the complex
background by using the CNNs model.
Although these discriminative methods can greatly im-

prove the tracking performance, the great quantity of
deep features and the complex online fine-tuning make
the framework time-consuming. Accordingly, most dis-
criminative methods run much slower than real-time
trackers.

2.2.2 Generative methods
Visual object tracking can be treated as the process of
learning a similarity function. By comparing the tem-
plate patch with the candidates in the search region, the
object can be tracked to the position with the highest
similarity score. A significant advantage of the generative
method is that it requires no or little online training.
Therefore, it is easy to achieve real-time tracking.
A Siamese structure can be utilized to learn a robust

similarity function based on deep CNNs. As a representa-
tive of pioneering algorithms, SiamFC adopts fully convo-
lutional layers to train an end-to-end Siamese network for

learning a similarity function. The fully convolutional
structure can provide a larger search image and use the
image as an input to the network, rather than a candidate
patch of the same size as the template patch. The struc-
ture will calculate the similarity of all sub-windows on the
dense grid in one evaluation. Moreover, each sub-window
can availably represent a useful sample at training time
without too much additional cost.
Recently, there are many following-up studies of

SiamFC [36–39]. SINT [36] adopts Siamese network
to extract hierarchical convolutional features of the
template patch and the search patch, respectively.
Candidates are randomly cropped from the search
patch, each of which is selected and compared with
the search patch to acquire the best one. Optical
flow is also utilized to achieve the better perform-
ance and the higher accuracy. However, because of
the extensive computation of the SINT, the running
speed is only 4 fps. The tracker takes no appropriate
mechanism to re-detect the target and exclude the
interference while tracking in scenes with occlusion
or similar interference. The EAST [37] utilizes the
Siamese network to efficiently extract the deep fea-
tures. If the low-level features are useful enough, the
tracker will attempt to stop the feature being ex-
tracted ahead of time in order to speed up. The key
to this decision-making behavior is to train an agent
by using reinforcement learning. Although the adap-
tive mechanism can decrease the computational
complexity of the algorithm, the tracking effects in
complex scenes have not been improved much. By
online updating the embeddings of the tracked tar-
get, DSiam [38] achieves better tracking performance
without too much speed loss. Moreover, this method
proposes a dynamic Siamese network and utilizes the
previous frames to learn the changes in appearance
of the target. However, the similar interference, oc-
clusion, and fast motion are still the key issues af-
fecting the tracking performance of this tracker.
CFNet [39] integrates the correlation filters into the
template branch, which makes the Siamese network
shallower and more efficient. This not only improves
the tracking performance of the network while using
the shallow structure, but also combines the deep
features with the correlation filter perfectly. Never-
theless, without rational strategy of model updating,
the tracker cannot achieve satisfactory effects in
some complex scenes.
Inspired by the above research works, this paper inherits

the network structure from SiamFC. A fully-convolutional
Siamese network is leveraged as the main tracking algo-
rithm. Meanwhile, a re-detection mechanism as well as the
construction and the updating of templates are also added
to improve the tracking performance of our framework.
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2.3 Template-based tracking
In order to improve the tracking accuracy of the tracker in
complex scenes, some trackers introduce template match-
ing into the framework. The tracker based on template
matching directly compares the template patch with the
object patches sampled from the current frame. Normal-
ized cross-correlation (NCC) is a classical method that is
often used in matching algorithm. It can calculate the cor-
relation between two sets of sample data and the range of
the values is between − 1 and 1. The whole image or the
region of interest can be regarded as a set of sample data
(search region) in object tracking. The higher the correl-
ation between a subset (template image) and the sample
data is, the closer the result is to 1. Instead, the closer the
result is to − 1. The result can be obtained from the fol-
lowing formula.

R i; jð Þ ¼

XM
a¼1

XM
b¼1

S a; bð Þ � T a; bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
a¼1

XM
b¼1

S a; bð Þ½ �2
vuut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
a¼1

XM
b¼1

T a; bð Þ½ �2
vuut

ð1Þ

Here, T(a, b) is the template image, S(a, b) is the
search region of the target, M is the height and the
width of the data. Because of its simplicity for imple-
mentation, NCC has been utilized in some recent
trackers such as TLD [25]. However, when the illumin-
ation of the image has changed or the target has deform-
ation, NCC usually has low sensitivity and the similarity
between the target and the template will decrease. Oron
et al. [48] proposes another representative template-
based tracker, which improves the Lucas-Kanade track-
ing framework, and unites the pixel-wise segregation of
background/object with the template matching to con-
struct a unified Bayesian framework. Bertinetto et al.
[35] and Tao et al. [36] focus on using CNN model to
learn a robust and accurate similarity function, which
can efficiently match the certain template within a
search region.
Since the appearance of objects always suffers challen-

ging situations, the template should be updated online.
Online template updating is first proposed in [49], where
three factors, namely, the noise, the stability and the
transient factor, are exploited to represent the object.
Other instances of such tracking method are listed in
[12, 50]. For maintaining the robustness of the appear-
ance model, [50] proposes a novel strategy of template
updating. While [12] tries to update the appearance-
based subspace online through incremental PCA learn-
ing. Recently, incremental 2DPCA representation has
been introduced to target objects [13]. Because of the
nature of the 2D image, this kind of method shows a
promising tracking performance. In fact, by continuous

or intermittent online updating, these methods can ob-
tain a compact representation of the object. However,
they are prone to drift since the templates are contami-
nated. Moreover, the templates always have limited
modeling abilities because they only represent a single
appearance of the object. When the appearance of the
object changes greatly, the tracker will fail to track it.
Inspired by the previous research works, a generative

model has been used in our tracking framework to cope
with the variations in appearance, and a strategy of tem-
plate updating with high confidence is utilized to avoid
the drift of the bounding box in the tracking process.

3 Methods
In this section, we will introduce the proposed tracking
framework in detail, which is abbreviated into Siam-RM.
We first introduce the SiamFC network, which is im-
proved by the re-detection mechanism. Secondly, the
generative model for constructing templates will be de-
scribed. Finally, a strategy of template updating with
high confidence will be introduced. Figure 2 presents a
detailed flow chart of the Siam-RM framework.

3.1 Improved SiamFC
3.1.1 Fully-convolutional Siamese networks
Fully convolutional Siamese networks (SiamFC) adopt
fully convolutional layers to train an end-to-end
Siamese network for learning a similarity function.
The network is shown in Fig. 3 and it uses a template
patch (T) and a larger search region (S) as inputs.
The embedding function of the Siamese network is a
feature extractorFφ, which extracts the features of the
template and the search region at the same time.
Then, the network feeds the extracted features into
the cross-correlation function:

gφ T ; Sð Þ ¼ Fφ Tð Þ�Fφ Sð Þ þ b ð2Þ

The maximum value in final response map (left-hand
side of Eq. 2) corresponds to the location of the target.
Generally, in order to preserve the real-time performance

of the framework, the embedding function Fφ usually adopts
simple network structure (e.g., AlexNet in [51]). However,
the size of the response map is relatively small and is not
suitable for precise positioning. In order to obtain a larger
response map, we apply Baseline-conv5 model as the em-
bedding function. The architecture is shown in Table 1.
The model is an improved version of SiamFC which is

first introduced in [52]. Firstly, the model utilizes fewer
steps (4 strides in total, not 8 strides) in the network to
obtain a larger feature map. The feature map is benefi-
cial to pinpoint and re-detect the location of the object.
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Secondly, the last layer has 32 rather than 128 output
channels for maintaining the high processing speed.

3.1.2 SiamFC with re-detection mechanism
During the tracking process, SiamFC usually obtains a
response map by comparing the similarity between the

template patch and the search region. Ideally, the pos-
ition with the largest response is the location of the
object. However, due to the complex scenes and the
similar interference, the object may appear at the loca-
tion with non-maximum response value. To prevent this
problem, the cosine window is used to suppress the edge

Fig. 2 The flow chart of the Siam-RM framework. The fully-convolutional Siamese network is utilized to get the response map. If the secondary
peak in the response map is 0.75 times larger than the main peak in the map, the re-detection network will be initiated. The APCE and the GMM
model achieve the goals to construct robust templates and update them adaptively

Fig. 3 The structure of SiamFC network. The network utilizes a template patch (T) and a larger search region (S) as inputs. The embedding
function of the Siamese network is a feature extractorFφ, which extracts the features of the template and the search region at the same time.
Then, the network feeds the extracted features into the cross-correlation function and gets the final response map
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response in SiamFC. The closer the peak value is to the
center of the response map, the higher the weight is. Al-
though this strategy greatly improves the stability of the
algorithm, it also brings risks. When the object moves
faster, the tracker with this strategy is easy to lose track
of the object. Therefore, when more secondary peaks
occur, a re-detection network is used to replace the co-
sine window.
The re-detection network mainly utilizes the SINT

[36] framework, it trains the convolution network offline
to get the matching function. According to the matching
function, the candidate region which best matches the

object in the initial frame is selected as the tracking
result.

ŜT ¼ argS j;T¼t
maxF ST¼0; S j;T¼t

� � ð3Þ

where Sj, T = t are candidate boxes in frame t, F is the
matching function learned by the Siamese network, ST =

0 is the object in the first frame, F(x, y) = F(x)TF(y). By re-
ducing the use of maximum pooling layer, the accuracy
of SINT is much higher than that of SiamFC. At the
same time, the framework employs a region-of-interest
(ROI) pooling for fast processing multiple overlapping
regions. This can not only greatly reduce the amount of
computation, but also settle the problem of fixed patch
size. The further understanding of the SINT tracker can
be learned in [36].
The sketch map of the re-detection mechanism is

shown in Fig. 4. Figure 4a is the response map of
SiamFC with two distinct peaks. One of the peaks repre-
sents the response value of the real object, correspond-
ing to the red box region in Fig. 4b. The other peak
represents the response value of the interference, corre-
sponding to the yellow box region in Fig. 4b. In such
condition, the response intensity of the interference ex-
ceeds the intensity of the real object. In this paper, when

Table 1 Architecture of the Baseline-conv5 model

Layer Kernel
Size

Stride Action Size Chans.

For exemplar For search

127 × 127 255 × 255 3

Conv1 11 × 11 2 59 × 59 123 × 123 96

Pool1 3 × 3 2 29 × 29 61 × 61 96

Conv2 5 × 5 1 25 × 25 57 × 57 256

Pool2 3 × 3 1 23 × 23 55 × 55 256

Conv3 3 × 3 1 21 × 21 53 × 53 384

Conv4 3 × 3 1 19 × 19 51 × 51 384

Conv5 3 × 3 1 17 × 17 49 × 49 32

Fig. 4 The sketch map of the re-detection mechanism. a The response map of SiamFC with two distinct peaks. b The red box region is the real
object and the yellow box region is the interference. c Candidates near the position of the peak value in the response map. d The tracking result
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a secondary peak is 0.75 times larger than the main
peak, the re-detection network will be initiated.
In order to make full use of the information of the re-

sponse map, we randomly sample the candidates near
the position of the main peak, as shown in Fig. 4c. Fi-
nally, these candidates will be detected by the SINT net-
work to determine the exact location of the object. The
result is shown in Fig. 4d.

3.2 Generative model for constructing templates
In most template-based trackers, templates always have
limited modeling abilities since they only represent a sin-
gle appearance of the object. When the appearance of
the object changes greatly, the tracker will fail to track
it. To solve this problem, a generative model based on
Gaussian mixture model (GMM) is exploited for con-
struction of the templates, instead of a unique and fixed
template in the first frame. The probability distribution
of template T is:

P Tð Þ ¼
XK

k¼1
πkN T ; μk ; I

� � ð4Þ

Here, K is the number of Gaussian components N(T;
μk; I), πk is the prior weight of the component k, μk is
the mean of the component k. For avoiding costly infer-
ence in high-dimensional space, the covariance matrix in
each component is set as an identity matrix I. The final
template Tn will be constructed as:

Tn ¼ 1−ηð Þ�T g þ η�
XK

k¼1
p Tkð ÞTk ð5Þ

where η is the learning rate, Tk is the feature of the
component k, Tg is the feature of the new component g,

p(Tk) is the probability of the new template correspond-
ing to the existing component k. This probability can be
calculated by the probability distribution of the GMM
model. The illustration of the GMM model for con-
structing templates is shown in Fig. 5.
For effectively updating the GMM model, a simplified

version of the online updating algorithm [53] is utilized.
When a new template is available, we will first regard it
as a new component g with πg = η and μg = eg. If the
number of Gaussian components is less than K, the new
template will be placed into the empty slot. If the num-
ber of components exceeds K, there are three possible
cases to consider:

1. One of the components is outdated. In this case, we
define the minimum weight of the template as
Wmin. If the weight of the component is lower than
Wmin, the template with the minimum weight will
be replaced by a new one.

2. The minimum distance between the new
component and the existing components is shorter
than that between any two existing components. In
this case, the new component will be merged with
the nearest existing component.

3. The minimum distance between the new
component and the existing components is longer
than that between any two existing components. In
this case, the two closest existing components are
merged and the new component is placed in the
free slot.

In above cases, the method of merging two closest
components x and y can be modeled as:

Fig. 5 The illustration of the GMM model for constructing templates. The GMM model utilizes the new template and the probability distribution
corresponding to the existing component to construct templates

Li et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:261 Page 8 of 14



πn ¼ πx þ πy ð6Þ
μn ¼

πxμx þ πyμy
πx þ πy

ð7Þ

And the distance between two components is com-
puted by using Euclidean distance.

3.3 Template updating
The standard approach in most template-based trackers is
to update the template in each frame or utilize an evaluat-
ing mechanism [12, 25, 49, 50]. The former may have a se-
vere impact on the computational load and the real-time
performance will decline. The latter with low confidence
will bring the noise of the template into the framework,
which can severely affect the tracking accuracy.
Instead of updating the template in every frame or in a

fixed interval, a strategy of template updating with high
confidence is utilized to promote the quality of the tem-
plate. In our framework, the level of the confidence de-
pends on the quality of the response map. Inspired from
[54], we adopt average peak-to-correlation energy (APCE)
to measure the quality of the response map.

APCE ¼ Mmax−Mminj j2

mean
X
w;h

Mw;h−Mmin
� �2 ! ð8Þ

Here, Mmax means the maximum value in the response
map M, Mmin means the minimum value in the response
map M, and Mw, h means the value of row w and col-
umn h in the response map M.
APCE can indicate the fluctuation degree and the con-

fidence level of the response map. If there is a higher
peak value and a smaller noise in the map, a larger
APCE value will be obtained. Conversely, if there is an
occlusion or similar interference, the APCE value will
drop significantly. When the APCE value is larger than a
certain thresholdThAPCE, we update the template by
using the GMM model to prevent the template from be-
ing contaminated to a certain extent.

4 Experimental
4.1 Implementation details
4.1.1 Experimental environment
The proposed framework is implemented by using
Matlab-R2016a with MatConvNet [55] and MatCaffe
[56] toolbox. We perform the experiments on a PC with
Intel i7-6850k CPU (3.60 GH), 64 GB RAM, and a single
NVDIA GeForce GTX Titan X GPU. The average test-
ing speed is 21fps.

4.1.2 Network structure
In SiamFC, we apply Baseline-conv5 model as the em-
bedding functionFφ. The architecture is shown in Table

1. Max-pooling layer is used to dispose the first two con-
volutional layers. Rectified linear unit (ReLU) follows
each convolutional layer except the final layer conv5.
The final strides of the network are 4 and the output
channels in the final layer are 32. In re-detection net-
work (SINT), we employ the AlexNet-like [51] network
as the basic network. The detailed settings of the param-
eters in the network can refer to [36].

4.1.3 Training
The SiamFC and the SINT network are separately
trained offline without online fine-tuning. In the process
of training SiamFC, we use the ILSVRC-2015 [57] data-
sets to train the network. The initial values of the pa-
rameters in each layer follow a Gaussian distribution.
Stochastic gradient descent method (SGD) with a weight
decay of 0.0005 is used to optimize the network training.
Both branches in SiamFC are trained for 50 epochs at a
learning rate of 0.001. After each epoch, the learning
rate is multiplied by a fixed factor until reaching 0.00001
in the final epoch. The momentum is 0.9 and the size of
mini-batch is 32. For training SINT, we use the ALOV
[58] dataset which covers many types of variations. We
exclude 12 sequences that overlap with the online object
tracking benchmark (OTB) [59]. To avoid training the
Siamese network from scratch, we utilize the network
pre-trained for ImageNet classification as the baseline.
The learning rate of the network is 0.0001, the param-
eter of weight decay is 0.0005 and momentum is 0.9.

4.1.4 Other settings
For the generative model, which is presented in Section
3.2, we set the learning rate toη = 0.011. The number of
components is set toK = 30 and the minimum weight of
the template is set to Wmin = 0.0036. For the APCE
which is used in Section 3.3, we set the certain threshold
to ThAPCE = 8.

4.2 Results and discussion
4.2.1 Quantitative comparison
For quantitatively evaluating the performance of our
framework, we adopt the widely used OTB [59] se-
quences to implement the comparison. Two metrics are
mainly employed for evaluation: center position error of
the bounding box and overlap rate in the one-pass
evaluation (OPE). Moreover, we use the precision plots
and the success plots to show the results of the evalu-
ation. The score in the precision plots is defined as the
percentage of the frames in which the center position er-
rors are smaller than the predefined threshold. The
score in the success plots indicates the percentage of the
frames in which the overlap rate of the tracking area and
the boundary frame is larger than the threshold.
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At the same time, we compare our tracker Siam-RM
with nine state-of-the-art trackers, including SiamFC
[35], SINT [36], CFNet [39], DCFNet [60], LCT [61]
(long-term tracking algorithm with detection mechan-
ism), LMCF [54], and real-time algorithms based on cor-
relation filters (Staple [62], KCF [21], DSST [22]).
The results of the precision plots and the success plots

are shown in Fig. 6. As can be seen from the figure,
Siam-RM has great improvements compared with
SiamFC. The tracking accuracy and the success rate of
the proposed framework can reach 79.8% and 63.8%, re-
spectively. Moreover, compared with SINT, the frame-
work not only guarantees the real-time performance, but
also improves the tracking precision.
The OTB sequences also present many challenging prob-

lems, including illumination variation (IV), out-of-plane
rotation (OPR), scale variation (SV), occlusion (OCC),
deformation (DEF), motion blur (MB), fast motion (FM),
in-plane rotation (IPR), out-of-view (OV), background clut-
tered (BC), and low resolution (LR). For a detailed analysis,
we also provide the precision plots (for clarity) of the attri-
butes on the OTB sequences. Figure 7 demonstrates that
Siam-RM ranks first in 8 attributes, especially in attribute
LR which is far superior to other trackers.
In the attribute DEF, Siam-RM ranks second only after

SINT. Though Siam-RM ranks third in attribute OV, it has
a slight improvement over SiamFC. Compared with SiamFC,
the proposed framework improves the precision of 11 attri-
butes by 10.6% (BC), 7.7% (FM), 7.7% (IPR), 12.1% (IV),
16.3% (LR), 8.9% (MB), 5.9% (OCC), 7.4% (OPR), 4.9% (SV),
14.5% (DEF), and 0.2% (OV), respectively.

4.2.2 Qualitative comparison
To better analyze the performance of the tracking algo-
rithm, we choose some challenging video sequences in
Fig. 8 for further comparison. These video sequences

represent different complex scenes. In order to show the
results more clearly, six tracking algorithms are selected
for comparison in this part. In each image, the boxes
with different colors represent the corresponding track-
ing positions of different trackers. The legend shows the
relationship between the different colors and the corre-
sponding trackers.

4.2.2.1 FM For capturing the object when it moves fast,
the small search area should not be used in the tracking
algorithm. However, a large search area may increase
the risk of introducing similar interference. The algo-
rithms based on correlation filters have weak ability to
distinguish the distant objects because the cosine win-
dows are added in the training phase.
In Deer and Liquor sequence, the moving speed of the

target is fast. The target blends with the background and
changes abruptly. Some trackers have positioning errors
(LCT, KCF) or stay in the previous position (KCF, LCT,
CFNet), but Siam-RM can track stably throughout the
entire process.
In Jumping sequence, the object jumps up from

frame 33. In frame 39, LCT, Staple, and KCF lose the
object first. Staple relocates the object in frame 41,
but fails to track in frame 146. Because of the
addition of the cosine window into the response map,
SiamFC suppresses the response of the object at the
edge of the search area. However, two frames are
often required in subsequent frames to keep up with
the fast-moving object. Siam-RM removes the cosine
window and a re-detection network is used to detect
the multiple peaks. This not only enables the tracker
to resist similar interference even in a large search
area, but also ensures the tracking accuracy of the
framework.

Fig. 6 The precision plots and the success plots of OPE for top 10 trackers. Each tracker is ranked by the score of tracking performance. For
precision plots, the results at the error threshold of 20 are used for ranking. For success plots, the area under the curve (AUC) is used to rank
the trackers
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4.2.2.2 OCC Occlusion is a major challenge in target
tracking. If the object is occluded without a valid tem-
plate strategy, the tracker will mistake the occlusion as
the object.
In Freeman4 sequence, the target is almost completely

occluded from frame 157. When the target reappears in
frame 161, Siam-RM and SiamFC first locate the target.
SiamFC does not update the template and loses the tar-
get in frame 202. Siam-RM utilizes a strategy of template
updating strategy with high confidence to avoid the tem-
plates being contaminated. KCF and Staple confirm the
occlusion region as the target and lose the real target.
In Soccer sequence, starting from frame 95, the target

has been severely occluded. All the trackers are in a ran-
dom state. In frame 120, the target reappears in the field
of view and CFNet first locates the object. In frame 144,
Siam-RM also locates the target by adopting the tem-
plate with high confidence and the re-detection mechan-
ism. Other trackers fail to track until the end.
In Football sequence, the target is severely occluded

from frame 115. In frame 310, KCF and Staple track the
similar interference next to the target. By utilizing the
GMM model and a high-confidence updating strategy to
construct the template, Siam-RM achieves a more accur-
ate performance than other trackers.

4.2.2.3 BC and IV Background clutter means that the
color or the texture of the background near the target
is similar to that of the target, which requires a
tracker with high discriminating ability. By adopting
CNN features, Siam-RM, SiamFC, and CFNet perform
better than other trackers in discriminating similarity.
The illumination variation is easier to overcome than
the background clutter in some uncomplicated scenes,
but when combined with the background clutter, the
tracking results will easily drift to the similar interfer-
ence near the target.
In Ironman, Matrix, Shaking, and CarDark se-

quences, IV and BC are both included. As can be seen
from the results in Fig. 7, trackers with correlation
filters (LCT, Staple, and KCF) cannot track accurately.
They often fail to track when the illumination changes
greatly or the background clutter is large. By contrast,
the trackers with CNN features (Siam-RM, SiamFC,
CFNet) have better tracking performance. These
trackers can not only effectively distinguish the target
from the background, but also prevent the influence of
illumination variation on feature vectors. However,
due to the lack of effective re-detection mechanism
and reliable template strategy, the bounding boxes of
SiamFC and CFNet often drift to the background.
Siam-RM utilizes the GMM model to solve the prob-
lem of changes in appearance which is caused by
illumination variations. This model uses all reliable

Fig. 7 Precision plots of OPE in 11 attributes. The OTB sequences
can be divided into 11 attributes, including illumination variation
(IV), out-of-plane rotation (OPR), scale variation (SV), occlusion (OCC),
deformation (DEF), motion blur (MB), fast motion (FM), in-plane
rotation (IPR), out-of-view (OV), background cluttered (BC), and low
resolution (LR). The precision plots of each attribute represent the
performance in the current attribute
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templates to construct a new information-rich tem-
plate. A strategy of template updating with high confi-
dence is also adopted to avoid the templates being
contaminated. Moreover, a more precise re-detection
mechanism can effectively prevent the interference of
background clutter. Thus, the tracking performance
can remain stable and accurate.

4.2.3 Computing latency
The proposed tracker (Siam-RM) can be regarded as an it-
erative mechanism and the average testing speed is 21 fps.
Unlike other conventional CNN-based trackers, Siam-RM
removes the fully connected layer to reduce the amount of
computation. Moreover, only five fully convolutional
layers are applied to train an end-to-end Siamese network

for learning a similarity function. The function is directly
used for online tracking without any complex fine-tuning
tactics. Thus, the computing latency of Siam-RM can be
effectively decreased. However, compared with the com-
puting latency of SiamFC which is the baseline of the pro-
posed tracker, the computing latency of Siam-RM
increases significantly due to the introduction of the feed-
back loop, and the processing speed decreases from 65 fps
to 21 fps. In Siam-RM, the re-detection mechanism will be
activated when the secondary peak is 0.75 times larger
than the main peak. Meanwhile, the GMM model and
APCE strategy achieve the goals to construct robust
templates and update them adaptively. Although these
proposed methods improve the tracking performance of
Siam-RM based on SiamFC, the computing latency

Fig. 8 Tracking results of the sequences. For a further clear comparison, some challenging video sequences are selected from all OTB sequences.
These video sequences represent different complex scenes. In order to show the results more clearly, six tracking algorithms are selected for
comparison in this part. In each image, the boxes with different colors represent the corresponding tracking positions of different trackers. The
legend shows the relationship between the different colors and the corresponding trackers
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increases as well. Therefore, in future studies, we will fur-
ther reduce the latency while ensuring the tracking per-
formance of the tracker.

5 Conclusion
In this paper, we aim at improving the deficient tracking
ability of SiamFC in complex scenes with fast motion and
similar interference. When multiple peaks appear on the
response map of SiamFC, a more accurate re-detection
network can re-determine the location of the object.
Meanwhile, for adapting to various changes in appearance
of the object, we employ the GMM model to construct
the template. Furthermore, a strategy of template updating
with high confidence is also used to prevent the template
being contaminated. The objective evaluation on the OTB
sequences shows that the tracking accuracy and the suc-
cess rate of the proposed framework can reach 79.8% and
63.8%, respectively. Compared to SiamFC and other state-
of-the-art trackers, the results of several representative
video sequences demonstrate that our framework has
higher accuracy and robustness in scenes with fast motion,
occlusion, background clutter, and illumination variations.
The next step of our work is to improve the re-detection
network and the real-time performance of the framework,
so as to achieve the application of CNNs-based trackers in
practical engineering.
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