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Abstract

Unmanned aerial vehicles (UAVs) in wireless communication have received significant interests recently due to its low
cost and flexibility in providing wireless connectivity in areas without infrastructure coverage. In this paper, we
optimize the location of UAVs to maximize their coverage areas. We propose a modified artificial bee colony (MABC)
incorporating bee number reallocation and a new search equation. In the proposed algorithm, a greater number of
bees in the population are assigned to execute local searches near food sources to enhance solution accuracy, and
the bees are guided by elite vectors to enable the algorithm to rapidly converge to a potentially globally optimal
position. The deployment of UAVs is thus obtained. The experimental results show that the proposed algorithm
achieves great improvements over the traditional algorithm.
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1 Introduction
Unmanned aerial vehicles (UAVs) have attracted
widespread attention over the past decade [1–3], involv-
ing applications such as surveillance [4, 5], aerospace
imaging [6, 7], and cargo transportation [8, 9]. Extensive
research is also devoted to the use of drones as different
types of wireless communication platforms, such as aero-
nautical mobile base stations (BS) [10–12], mobile relays
[13], and flight cloud computing [14]. In particular, the
use of UAVs as airborne BSs is envisioned as a promising
solution to enhance the performance of existing cellular
systems [15].
In a UAV-assisted network, UAVs are deployed to pro-

vide wireless connectivity to ground users. In practice,
UAVs can move freely in three-dimensional space for bet-
ter performance. Due to the high mobility of drones,
the deployment of drone-assisted communication sys-
tems is faster and more flexible, making them particularly
suitable for on-demand applications or accidents. Fur-
thermore, the UAV-ground link is more likely to have
a line-of-sight (LoS) channel than the ground-to-ground
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link in the terrestrial system [16–19], thus providing a
higher link capacity. In addition, UAV-assisted commu-
nication provides additional design freedom for perfor-
mance improvements by dynamically optimizing the UAV
position to best meet communication requirements. In
this paper, we have studied a general-purpose multi-UAV
wireless communication system in which multiple drones
are used to serve a group of users on the ground within a
given group of users.
Research on wireless networks supporting static drones

has focused on drone deployment/layout optimization,
which acts as a quasi-static BS in the air to support ter-
restrial users in specific areas [20]. In such a scene, the
deployment of UAVs is an important and fundamental
issue. The artificial bee colony (ABC) evolutionary algo-
rithm is known to be powerful, effective, and competitive
in the above problem. However, its success is hindered by
its slow convergence speed and poor local search capa-
bility [21–23]. In this paper, we reallocate the number
of employed and onlooker bees to generate a better bal-
ance between global and local search. The proportion of
employed bees is decreased while that of onlooker bees is
increased in the colony. In addition, a new search equation
to accelerate the algorithm’s convergence speed is also
proposed. The one-dimensional search strategy, which
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Fig. 1 Comparison of the population distributions of Eqs. (2) and (4) at generation =300, 500, and 800. a Population distributions observed at
generation = 300, 500, and 800 in Eq. (2). b Population distributions observed at generation = 300, 500, and 800 in Eq. (4)
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typically guarantees a global search [24], is retained in
this paper. Finally, a series of benchmark functions are
employed to test the proposed algorithm’s effectiveness on
both theoretical and applied problems.
The remainder of this paper is organized as follows:

Section 2 describes traditional artificial bee colonies, and
Section 3 presents a detailed description of the proposed
modified ABC algorithm. In Section 4, benchmarks and
parameter estimation problem are presented, and a suite
of experiments is conducted. Section 5 concludes the
paper.

2 Method
Firstly proposed by Karaboga in 2005, an artificial bee
colony simulates the foraging behavior of bees in a colony.
In the algorithm, three types of bees cooperatively work
with each other: employed bees are distributed to enable
the exploration of a food source’s position within the
entire search space, onlooker bees are assigned to enable
exploitation near the neighbor areas of food sources, and
scouts are designed to help the algorithm avoid local
optima.
In the traditional artificial bee colony algorithm, the

entire population is divided into employed bees and
onlooker bees. Thus, the number of employed bees and
onlooker bees are equivalent to both each other and
the number of food sources. To illustrate each part of

ABC algorithm in greater detail, we describe them in
succession.

2.1 Initialization
For a given optimization problem, let l and u denote the
lower and upper border of the parameters. Let NP denote
the population size, and let D denote the dimension of the
problem. Each food source can be initialized as

Fij = lij + rand
(
uij − lij

)
(1)

where i represents the ith food source, and j denotes the
jth dimension, i = 1, 2, ...,NP/2 , j = 1, 2, ...,D.

2.2 Employed bees
At each iteration, the employed bees search the entire
space. Thus, they are responsible for conducting a global
search. Each food source corresponds to an employed bee.
The search equation is

trialij = Fij + rand (−1, 1)
(
Frj − Fij

)
(2)

where Fr is a neighbor of food source Fi, and r is selected
within the range of [1,NP/2], r �= i.
In the traditional ABC algorithm, each newly generated

position is stored in a trial vector only if it improves upon
the current food source’s position, and the correspond-

Fig. 2MABC pseudo code
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Table 1 Detailed information on the 12 benchmarks

F Formula Range Optimal
value

f 1
n∑

i=1
xi2 [− 100, 100] 0

f 2 106 ∗ x12 +
n∑

i=2
xi2 [− 100, 100] 0

f 3
n∑

i=1
i ∗ xi2 [−100, 100] 0

f 4
n∑

i=1
�xi + 0.5�2 [−100, 100] 0

f 5
n∑

i=1
xi2 +

n∏

i=1
xi2 [− 100, 100] 0

f 6
n∑

i=1

[
xi2 − 10 cos(2πxi) + 10

]
[− 5.12, 5.12] 0

f 7 1
4000

n∑

i=1
xi2 −

n∏

i=1
cos( xi√

i ) + 1 [− 600, 600] 0

f 8
− 20 exp(−0.2

√√
√
√1

n

n∑

i=1
xi2)

+ exp(
1
n

n∑

i=1
cos(2πxi)) + 20 + e

[− 32, 32] 0

f 9

π

30

⎧
⎪⎪⎨

⎪⎪⎩

10 · sin [1 + 0.25(x1 + 1)2
]+

n−1∑

i=1

{
[0.25 (xi + 1)]2

[
1 + 10

(
sin (π (1 + 0.25 (xi+1 + 1)))2

)]

}

⎫
⎪⎪⎬

⎪⎪⎭

+
n∑

i=1
yi

yi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

100(xi − 10)4 xi > 10

0 −10 ≤ xi ≤ 10

100(−xi − 10)4 xi < −10

[− 50, 50] 0

f 10 0.1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

sin2(3πx1)+
n−1∑

i=1
(xi − 1)2[ 1 + sin2(3πxi+1)]

+(xn − 1)[ 1 + sin2(2πxn)]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+
n∑

i=1
yi

yi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

100(xi − 10)4 xi > 5

0 −5 ≤ xi ≤ 5

100(−xi − 10)4 xi < −5

[− 50, 50] 0

f 11
(1.5 − x1 + x1x2)2 + (

2.25 − x1 + x1x22
)2

+(2.625 − x1 + x1x23
)2 [− 4.5, 4.5] 0

f 12
(
x12 + x22

)0.25
〈{
sin

[
50
(
3x12 + x22

)0.1]}2 + 1
〉

[− 100, 1000] 0
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Table 2 Corresponding experimental settings

Dimension Maximum iteration number Maximum function evaluation number
(NP * maximum iteration number)

2 100 4000

10 1000 40,000

30 3000 120,000

50 5000 200,000

ing food source is updated, resulting in a so-called greedy
search.
The objective value, fi, and fitness value, Fi, are calcu-

lated for each food source, i. For minimum optimization
problems, the objective value is calculated by the prob-

lem’s mathematical expression, and the fitness value is
calculated as

Fi =
{

1/(1 + fi) if fi ≥ 0
1 + abs(fi) if fi < 0 (3)

Table 3 Comparison results (1), D = 10

F PSO DE ABC STOC-ABC

f 1
3.44E−25 1.67E−49 1.04E−16 1.45E−41

(8.09E−25) (2.46E−49) (3.47E−17) (3.51E−41)

f 2
5.82E−25 6.75E−49 1.38E−16 4.58E−38

(1.25E−24) (1.45E−48) (5.62E−17) (1.40E−37)

f 3
5.48E−24 5.58E−49 1.50E−16 2.14E−39

(2.05E−23) (8.20E−49) (6.35E−17) (8.34E−39)

f 4
0 0 0 0

(0) (0) (0) (0)

f 5
8.06E−23 1.61E−46 1.34E−16 3.42E−41

(3.29E−22) (2.22E−46) (5.67E−17) (1.27E−40)

f 6
2.74E+00 1.14E+01 0 5.33E−16

(1.53E+00) (2.87E+00) (0) (2.38E−15)

f 7
9.51E−02 8.43E−02 1.03E−02 9.04E−03

(4.65E−02) (6.87E−02) (3.19E−03) (1.64E−03)

f 8
3.07E−01 5.17E−01 9.77E−15 1.46E−14

(1.34E−01) (1.08E−01) (3.65E−15) (4.65E−15)

f 9
4.56E−29 1.57E−32 7.67E−17 1.57E−32

(8.96E−29) (8.21E−48) (1.80E−17) (2.81E−48)

f 10
6.69E−24 5.82E+00 1.18E−16 1.35E−32

(1.27E−23) (2.54E+01) (5.43E−17) (2.81E−48)
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Table 4 Comparison results (2), D = 10

F dABC distABC NSABC MABC

f 1
3.59E−52 4.12E−76 3.80E−80 1.38E−149

(6.72E−52) (1.19E−75) (1.13E−79) (6.14E−149)

f 2
7.34E−48 2.46E−74 9.29E−78 2.08E−147

(3.08E−47) (7.98E−74) (3.23E−77) (9.27E−147)

f 3
3.96E−50 2.47E−76 1.68E−79 5.83E−146

(9.25E−50) (5.11E−76) (7.17E−79) (2.58E−145)

f 4
0 0 0 0

(0) (0) (0) (0)

f 5
9.29E−51 8.43E−75 3.13E−80 4.88E−112

(3.32E−50) (3.45E−74) (8.33E−80) (2.18E−111)

f 6
0 0 0 0

(0) (0) (0) (0)

f 7
1.01E−02 9.79E−03 1.07E−02 9.70E−03

(2.64E−03) (2.03E−03) (4.08E−03) (2.74E−03)

f 8
9.95E−15 6.04E−15 4.44E−15 5.68E−15

(2.93E−15) (7.94E−16) (1.82E−15) (1.30E−15)

f 9
1.57E−32 1.57E−32 7.59E−17 1.57E−32

(2.81E−48) (2.81E−48) (1.61E−17) (2.81E−48)

f 10
1.35E−32 1.35E−32 1.35E−32 1.35E−32

(2.81E−48) (2.81E−48) (2.81E−48) (2.81E−48)

2.3 Onlooker bees
After the employed bees’ searches are completed, the
onlooker bees initiate local searches around the food
sources’ neighboring areas. In this phase, the onlookers
select food sources by roulette wheel selection to enable
exploitation. The search equation is identical to that of the
employed bees presented in Eq. (2).

2.4 Scouts
When a food source cannot be improved upon for a cer-
tain number of iterations, the corresponding employed
bee turns into a scout and reinitializes the corresponding
food source in the search space.

3 Modified Artificial Bee Colony (MABC)
The artificial bee colony algorithm is known for its strong
global search and poor local search capabilities; thus, we

aim to compensate for this insufficiency on the basis of
guaranteeing an advantage. With this purpose in mind,
two modifications are proposed.
The first modification reallocates the percentages of

employed bees and onlooker bees in the colony. As
discussed in Section 2, employed bees are responsible
for exploration, whereas onlooker bees are in charge of
exploitation. Thus, this modification decreases the pro-
portion of employed bees and increases that of onlooker
bees. More specifically, in the modified artificial bee
colony, the employed bees represent a quarter of the
colony, and the onlooker bees represent the remainder
of the colony. Under this circumstance, a greater num-
ber of bees are allocated for executing exploitation search;
thus, the solution accuracy is expected to be enhanced
and improved. Furthermore, the roulette wheel selection
mechanism is abandoned. The number of food sources
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Table 5 Comparison results (1), D = 30

F PSO DE ABC STOC-ABC

f 1
2.05E−17 1.88E−47 8.13E−16 4.93E−40

(5.06E−17) (4.89E−47) (1.34E−16) (6.07E−40)

f 2
5.15E−17 8.01E−48 8.98E−16 3.29E−38

(1.64E−16) (8.40E−48) (2.56E−16) (1.30E−37)

f 3
1.81E−16 8.23E−47 8.69E−16 1.10E−38

(2.49E−16) (1.27E−46) (1.61E−16) (2.68E−38)

f 4
0 0 0 0

(0) (0) (0) (0)

f 5
1.82E+02 1.46E−41 8.77E−16 1.13E−39

(7.95E+02) (6.23E−41) (1.78E−16) (1.58E−39)

f 6
2.94E+01 1.16E+02 6.17E−14 2.74E−14

(8.98E+00) (2.91E+01) (1.49E−13) (4.54E−14)

f 7
1 1 1 1

(3.41E−16) (2.22E−16) (3.46E−16) (3.39E−16)

f 8
7.72E−01 9.71E−01 1.20E−13 3.39E−13

(7.62E−02) (1.80E−01) (7.24E−14) (4.87E−13)

f 9
3.11E−02 1.58E−32 7.75E−16 5.80E−31

(5.77E−02) (2.81E−34) (1.56E−16) (2.50E−30)

f 10
2.85E+02 9.59E+01 8.54E−16 5.29E−32

(1.80E+02) (1.07E+02) (1.50E−16) (5.45E−32)

is equivalent to the number of employed bees, and each
food source corresponds to one employed bee and three
onlooker bees.
In the second modification, the search equation is

changed. In a traditional artificial bee colony, an employed
bee hunts for a food position depending on its memory of
its previous position and a randomly selected neighboring
food source; this hunting is blind and ineffective for local
searches [24]. Considering this drawback, we propose a
novel search equation to achieve a better balance between
exploration and exploitation. Its mathematical expression
is presented in Eq. (4).

trialij = Frj + rand (−1, 1)
(
Gj − Fij

)
(4)

where Fr is a neighbor of food source Fi, which is selected
in the same manner as that in Eq. (2).G is the current best
food source’s position. By introducing a best vector, bees
can fly to the potential global point more rapidly.

To demonstrate the effectiveness of Eq. (4), we con-
duct experiments on the sphere function (f1) presented
in Section 4. In this experiment, the population size is
set to 100. Because we are demonstrating the search
equation’s effectiveness, the comparison algorithms both
adopt employed and onlooker bees as representing half
of the colony. In this demonstration, we analyze the per-
formance of the proposed Eq. (4) and traditional Eq. (2).
Thus, the test dimension is selected to be 2 to allow for
plotting the population distribution figures of different
iterations. Figure 1 shows the results of the comparison.
As indicated in the figure, the population distribution

with Eq. (2) in the traditional artificial bee colony algo-
rithm reaches a stable precision at 10−8 after the 300th,
500th, and 800th generations, whereas the population dis-
tribution with MABC in Eq. (4) decreases rapidly with an
increasing number of iterations, achieving a stable preci-
sion at 10−41, 10−69, and 10−111 after the 300th, 500th,
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Table 6 Comparison results (2), D = 30

F dABC distABC NSABC MABC

f 1
2.11E−49 1.24E−71 2.82E−70 3.01E−95

(5.00E−49) (3.21E−71) (6.64E−70) (1.24E−94)

f 2
8.09E−47 1.22E−69 4.92E−69 1.42E−63

(1.45E−46) (2.65E−69) (1.81E−68) (6.35E−63)

f 3
1.05E−47 2.91E−70 3.14E−67 6.68E−141

(1.90E−47) (5.43E−70) (1.35E−66) (2.99E−140)

f 4
0 0 0 0

(0) (0) (0) (0)

f 5
1.74E−48 2.22E−70 2.52E−70 5.77E−70

(3.70E−48) (3.92E−70) (7.51E−70) (2.58E−69)

f 6
2.25E−14 0 1.78E−16 0

(7.36E−14) (0) (7.94E−16) (0)

f 7
1 1 1 1

(3.89E−16) (4.88E−16) (4.82E−16) (4.87E−16)

f 8
9.36E−14 4.48E−14 3.61E−03 3.53E−14

(4.43E−14) (5.79E−15) (1.61E−02) (4.09E−15)

f 9
1.66E−32 1.57E−32 4.93E−16 1.57E−32

(1.88E−33) (2.81E−48) (1.34E−16) (2.81E−48)

f 10
1.72E−32 1.35E−32 1.47E−29 1.35E−32

(8.10E−33) (2.81E−48) (2.19E−29) (2.81E−48)

and 800th generations, respectively. These experiments
demonstrate that the proposed search equation might
help bees converge to potentially global optima much
more rapidly.
To further demonstrate the twomodifications’ effective-

ness, Section 4 evaluates MABC’s optimization accuracy
on a series of benchmark experiments.
To illustrate the proposedMABC algorithmmuch more

specifically, Fig. 2 gives its pseudo-code.

4 Simulation results and discussions
In this subsection, integral and comprehensive exper-
iments are conducted to test MABC’s effectiveness.
Section 4.1 gives detailed information on the twelve
benchmarks of performance estimation criteria, and
Section 4.2 presents the results of the comparison
experiments using the proposed MABC and other state-

of-the-art algorithms. In Section 4.3, sub-experiments
demonstrate each MABC modification’s effectiveness,
and Section 4.4 describes a parameter estimation problem
for frequency-modulated sound waves and discusses the
MABC’s application performance.

4.1 Detailed benchmark information
In this subsection, twelve well-known benchmark
functions [25–27] that are widely used in the literature
function as the evaluation criteria for the evolutionary
algorithms tested. They include five unimodal func-
tions, signifying that there is only one global optimum
in the search space, five multimodal functions with
abundant global optima in the search space, and two
two-dimensional test functions. Detailed information,
including formulae, search ranges, and optimal values,
are presented in Table 1.
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Table 7 Comparison results (1), D = 50

F PSO DE ABC STOC-ABC

f 1
4.01E−13 1.82E−48 2.02E−15 1.10E−38

(4.99E−13) (3.67E−48) (4.37E−16) (3.59E−38)

f 2
6.11E−13 1.51E−48 3.85E−15 2.17E−37

(6.85E−13) (1.99E−48) (2.58E−15) (6.74E−37)

f 3
7.23E−12 3.53E−47 2.02E−15 5.36E−38

(1.41E−11) (4.84E−47) (7.81E−16) (9.72E−38)

f 4
5.00E−02 0 5.00E−02 1.50E−01

(2.18E−01) (0) (2.24E−01) (3.66E−01)

f 5
5.24E+04 1.03E−44 1.93E−15 4.12E−39

(8.21E+04) (2.78E−44) (4.77E−16) (4.52E−39)

f 6
7.29E+01 1.63E+02 9.86E−12 1.31E−12

(1.56E+01) (4.88E+01) (2.12E−11) (2.73E−12)

f 7
1 1 1 1

(1.76E−14) (1.99E−16) (8.35E−16) (5.04E−16)

f 8
1.13E+00 8.18E−01 1.14E−12 2.76E−12

(1.62E−01) (2.51E−01) (2.87E−12) (6.70E−12)

f 9
1.99E−01 5.18E−03 1.90E−15 5.69E−32

(6.76E−01) (2.26E−02) (5.33E−16) (2.57E−32)

f 10
1.37E+03 7.88E+02 2.11E−15 9.42E−31

(4.01E+02) (2.87E+02) (6.27E−16) (1.57E−30)

4.2 Comparison experiments
This subsection describes the comparison experiments
conducted to demonstrate the proposed MABC’s effec-
tiveness and competitiveness against other evolution-
ary algorithms. In this phase, the selected comparison
algorithms include traditional particle swarm optimiza-
tion (PSO), differential evolution (DE), and artificial bee
colony (ABC), as well as four ABC variants, includ-
ing STOC-ABC [21], dABC [22], distABC [23], and
NSABC [24].
In the experiments, the population size is set to 40.

For the first ten benchmarks presented in Table 1, all the
algorithms are tested on 10, 30, and 50 dimensions. For
the last two benchmarks, the comparison algorithms are
tested on two dimensions. The corresponding maximum
iteration and function evaluation numbers are presented
in Table 2. For the sake of fairness, all the trials are
repeated 50 times, and the corresponding mean fitness

values (first row) and standard deviations (second row)
are recorded, as presented in Tables 3, 4, 5, 6, 7, 8, 9,
and 10.
From the results, it can be easily observed that the

proposedMABC algorithm generally achieves strong per-
formance. For the multimodal functions, ABC exhibits
its strong global search ability, as demonstrated by the
ABC variants’ experimental results compared with those
achieved by PSO and DE. The proposedMABC algorithm
achieves a similarly improved outcome on multimodal
functions compared with the other ABC variants. For
the unimodal functions, MABC represents an obvious
improvement over the traditional ABC and achieves bet-
ter performance than the other comparison algorithms.
For the last two two-dimensional test functions, the
proposed MABC algorithm also attains the best solu-
tion accuracy. Taken together, the experimental results
demonstrate that the decreasing number of employed
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Table 8 Comparison results (2), D = 50

F dABC distABC NSABC MABC

f 1
9.05E−49 2.37E−70 1.72E−55 3.41E−83

(1.17E−48) (2.97E−70) (4.26E−55) (1.53E−82)

f 2
3.08E−43 3.42E−68 7.01E−55 3.30E−69

(1.36E−42) (8.43E−68) (1.57E−54) (1.47E−68)

f 3
3.37E−46 1.51E−67 2.08E−53 1.23E−72

(3.84E−46) (3.23E−67) (6.81E−53) (5.48E−72)

f 4
0 0 0 0

(0) (0) (0) (0)

f 5
3.16E−47 6.83E−68 2.41E−56 2.99E−68

(6.12E−47) (1.23E−67) (4.49E−56) (1.34E−67)

f 6
1.12E−12 1.60E−15 4.97E−02 4.71E−15

(2.07E−12) (5.31E−15) (2.22E−01) (1.94E−14)

f 7
1 1 1 1

(2.33E−16) (4.26E−16) (3.10E−16) (2.93E−16)

f 8
1.06E−12 1.25E−13 3.61E−14 8.12E−14

(3.03E−12) (1.26E−13) (6.25E−15) (1.27E−14)

f 9
7.10E−32 1.57E−32 9.06E−16 1.57E−32

(1.30E−31) (2.81E−48) (1.28E−16) (2.81E−48)

f 10
7.51E−32 1.35E−32 1.99E−26 1.35E−32

(7.44E−32) (2.81E−48) (5.21E−26) (2.81E−48)

Table 9 Comparison results (1), D = 2

F PSO DE ABC STOC-ABC

f 11
2.77E−11 4.31E−26 1.27E−15 8.26E−14

(3.67E−11) (1.03E−25) (2.61E−15) (3.22E−13)

f 12
8.05E−10 6.92E−24 1.12E−17 2.09E−20

(1.51E−09) (2.10E−23) (1.17E−17) (5.91E−20)

Table 10 Comparison results (2), D = 2

F dABC distABC NSABC MABC

f 11
8.47E−16 8.22E−09 2.80E−25 9.59E−33

(1.80E−15) (3.67E−08) (8.60E−25) (2.54E−32)

f 12
1.37E−25 1.40E−49 2.08E−26 6.00E−76

(5.38E−25) (2.72E−49) (8.35E−26) (1.80E−75)



Hu et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:269 Page 11 of 15

Fig. 3 Convergence curves

bees does not cripple their exploration ability, and
increasing the number of onlooker bees improves their
exploitation capability. In addition, the proposed MABC
algorithm’s successful performance on low dimensional
functions demonstrates that it is unlimited by a problem’s
dimension. For the unimodal functions, with the excep-
tion of the solution accuracy presented in the results table,
convergence speed is another important evaluation crite-
rion. Thus, we plot the convergence curves of f 1 and f 4
in Fig. 3. f 1 is the sphere function, which is also the most
representative unimodal function, and f 4 is the unimodal
function for which most of the algorithms obtain
global optima. Thus, convergence speed functions as the
main evaluation criterion for the evolution algorithms’
performance.

4.3 Effectiveness of the twomodifications
Whereas the previous subsection presented an integral
demonstration of MABC’s performance, the present sub-
section covers the experiments to test the effectiveness
of each MABC modification, which are conducted in two
groups.
1) Adjustment of the number of different bees

For this group of experiments, we design another
ABC variant named ABC1, wherein employed bees
occupy one-fourth of the colony, and onlooker bees
constitute the remainder of the colony. The other
parts of ABC1 remain identical to the traditional ABC
algorithm. Thus, a comparison between ABC and
ABC1 demonstrates the first modification of MABC’s
effectiveness.
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Fig. 4 Demonstration of the first modification’s effectiveness

Fig. 5 Demonstration of the second modification’s effectiveness
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Table 11 Comparison results for ABC, ABC1, ABC2, and MABC

ABC ABC1 ABC2 MABC

f 1
1.04E−16 3.08E−92 1.77E−73 1.38E−149

(3.47E−17) (1.27E−91) (3.31E−73) (6.14E−149)

f 2
1.45E−16 3.45E−91 2.44E−69 5.97E−138

(6.96E−17) (1.29E−90) (6.70E−69) (2.67E−137)

f 3
1.30E−16 9.24E−92 1.62E−71 1.05E−148

(6.02E−17) (3.41E−91) (3.13E−71) (4.11E−148)

f 4
0 0 0 0

(0) (0) (0) (0)

f 5
1.20E−16 1.98E−93 1.21E−71 7.91E−144

(5.58E−17) (7.88E−93) (2.99E−71) (2.13E−143)

f 6
0 0 0 0

(0) (0) (0) (0)

f 7
1.07E−02 1.12E−02 8.63E−03 9.62E−03

(3.96E−03) (4.47E−03) (9.24E−04) (2.08E−03)

f 8
2.27E−13 1.12E−14 7.11E−15 5.86E−15

(9.66E−13) (4.06E−15) (1.95E−15) (1.09E−15)

f 9
1.01E−16 1.57E−32 1.57E−32 1.57E−32

(4.37E−17) (2.81E−48) (2.81E−48) (2.81E−48)

f 10
1.30E−16 1.35E−32 1.35E−32 1.35E−32

(4.78E−17) (2.81E−48) (2.81E−48) (2.81E−48)

2) New search equation
The second group of experiments tests the proposed
search equation’s competitiveness. Thus, we design
ABC2, whose search equation adopts Eq. (4). The
remaining parts of the algorithm remain consistent
with the traditional ABC algorithm.

In this subsection, the test dimension is set to 10, and
the other settings are identical to those in Section 4.4.
Figures 4 and 5 show the comparison results for the
two experimental groups on several representative
benchmarks. The figures show that each modification
greatly improves upon the traditional ABC. The

Table 12 Experimental results on parameter estimation for frequency-modulated sound waves

PSO DE ABC STOC-ABC

Mean 29.9601 29.9601 27.7173 46.2575

SD 0.2161 0.2161 3.7348 20.9301

dABC distABC NSABC MABC

Mean 27.8124 26.0923 36.3419 25.5948

SD 2.2445 2.8351 5.7414 0.6103
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detailed accuracy and standard deviation data for the
first ten benchmarks are presented in Table 11, which
also demonstrates each modification of MABC’s
effectiveness.

4.4 Parameter estimation problem for
frequency-modulated sound waves

The synthesis of frequency-modulated sound waves [28]
plays a significant role in modern music systems [29–32].
In this process, parameter estimation consists of a six-
dimensional optimization problem. The goal is to generate
a sound, A, that is very similar to a certain sound, B. Let
X = {x1, x2, x3, x4, x5, x6} represent the six parameters to
be optimized. The mathematical expressions of sound A
wave can then be formulated as follows:

wavesA (t) = x1 sin

⎛

⎜
⎝

2π
100

x2t + x3 sin

⎛

⎜
⎝

2π
100

x4t+

x5 sin
(
2π
100

x6t
)

⎞

⎟
⎠

⎞

⎟
⎠

(5)

wavesB (t)=sin
(
2π
100

5t−1.5 sin
(
2π
100

4.8t+2 sin
(
2π
100

4.9t
)))

(6)

The objective function of this problem is the summation
of the squared errors between sound waves A and B, as
presented in Eq. (6):

f =
100∑

t=0
(wavesA (t) − wavesB (t))2 (7)

This is a minimization problem with complex local
optima. For all six parameters, the lower bound is - 6.4,
and the maximum bound is 6.35. In our experiment, the
population size is set to 40, and the maximum function
evaluation number is set to 30,000. When the maximum
function evaluation number is satisfied, the correspond-
ing trial terminates. The experimental results for the
eight algorithms employed in Section 4.4 are presented
in Table 12, which demonstrate the proposed MABC
algorithm’s competitiveness on a real-world application
problem.

5 Conclusion
In this paper, we studied the problem about the placement
of UAVs in UAV-aided wireless communications. We first
exploit the controllable channel variation induced by dif-
ferent locations of base stations, the coverage areas of
UAVs are maximized via optimizing their locations. Then,
we formulate the original problem and try to solve it by
artificial bee colony algorithm. Instead of using traditional
algorithms, we propose amodified artificial bee colony. By
reallocating the number of employed and onlooker bees

and improving the search equation, convergence speed
and enhancing local search capability are both acceler-
ated. Furthermore, it generates a better balance between
global and local search. Experimental results show that
the new approach of placement problem improves the
performance of UAV communication systems.
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