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Abstract

The indoor scene has the characteristics of complexity and Non-Line of Sight (NLOS). Therefore, in the application
of cellular network positioning, the layout of the base station has a significant influence on the positioning accuracy. In
three-dimensional indoor positioning, the layout of the base station only focuses on the network capacity and the quality
of positioning signal. At present, the influence of the coverage and positioning accuracy has not been considered.
Therefore, a network element layout optimization algorithm based on improved Adaptive Simulated Annealing and
Genetic Algorithm (ASA-GA) is proposed in this paper. Firstly, a three-dimensional positioning signal coverage model and
a base station layout model are established. Then, the ASA-GA algorithm is proposed for optimizing the base station
layout scheme. Experimental results show that the proposed ASA-GA algorithm has a faster convergence speed, which is
16.7% higher than the AG-AC (Adaptive Genetic Combining Ant Colony) algorithm. It takes about 25 generations to
achieve full coverage. At the same time, the proposed algorithm has better coverage capability. After optimization of the
layout of the network element, the effective coverage rate is increased from 89.77 to 100% and the average location error
decreased from 2.874 to 0.983 m, which is about 16% lower than the AG-AC algorithm and 22% lower than the AGA
(Adaptive Genetic Algorithm) algorithm.
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1 Introduction
Statistics show that about 80% of people’s living and
working environment is indoors. The location service in
the indoor environment plays an extremely important
role in the control of objects in industrial production
lines, location and navigation in public places, the care
of young and old people, and intelligent entertainment
[1, 2]. In order to improve the effective coverage of the
indoor positioning signal and the indoor positioning ac-
curacy, a reasonable base station layout is particularly
important, which can improve the positioning accuracy
while reducing the deployment cost.
Due to the NLOS of the indoor environment and the

complexity of the indoor structure, the Global Position-
ing System (GPS) is not available for indoor positioning.
Because indoor environment is complex, all sorts of
electromagnetic wave can produce the change of signal
characteristic because of reflex, refraction, and diffraction.

We can use this kind of characteristic change to realize
indoor communication, indoor position, etc. Electro-
magnetic (EM) waves with helical wave front carry or-
bital angular momentum (OAM), which is associated
with the azimuthal phase of the complex electric field.
OAM is a new degree of freedom in EM waves and is
promising for channel multiplexing in the communica-
tion system [3, 4]. Currently, positioning technologies
based on Bluetooth, WiFi [5], and UWB [6] can achieve
good positioning effects, but lack a unified wide-area
positioning network. In the coming 5G era, the integra-
tion of communication and navigation networks of het-
erogeneous cellular networks is an important trend in
indoor positioning [7, 8], which can provide communi-
cation and positioning services at the same time avoid-
ing additional resource overhead.
However, the complex of the indoor environment

structure leads to signal loss, reflection, refraction, and
diffraction and even the positioning terminal cannot be
covered by multiple base stations at the same time,
resulting in an increasement in positioning error or fail-
ure to provide positioning requirements. In the 3D
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positioning, the positioning terminal must ensure that
the coverage of at least four base stations is received at
the same time to satisfy the positioning condition. By
properly arranging the layout of the base station, the
number of the first path received by the terminal can be
effectively improved, thereby improving the positioning
accuracy.
The main contributions of this paper are:

� Presents an indoor positioning base station layout
optimization method based on ASA-GA, which
taking the two factors—positioning signal coverage
ratio and positioning accuracy—into consideration
to optimize the base station layout scheme.

� Takes the improved adaptive genetic algorithm as
the main body of the algorithm, and integrates the
improved simulated annealing mechanism to further
adjust and optimize the population, so can improve
the convergence speed and optimization quality of
the algorithm.

The rest of this paper is organized as follows. Re-
lated work is presented in Section 2. Section 3 de-
scribes network element optimization layout model
and ASA-GA algorithm. In Section 4, the simulation
scenes are described. In Section 5, the performance
evaluation of the ASA-GA algorithms in terms of sig-
nal coverage, positioning error, and iteration number
is given. Finally, Section 6 gives conclusions and out-
lines the future work.

2 Related works
The positioning accuracy can be improved from two
aspects. The first one is to place the base station so
that each point of the positioning area is covered by
at least 4 base stations at the same time. The second
is to reduce the GDoP (Geometric Dilution of Preci-
sion), thereby reducing the average positioning error
of the space [9]. The location selection of base station
in space is always regarded as NP-hard problem [10].
Finding the best base station layout scheme is still
challenging, even if the search space is roughly repre-
sented, the enumeration search is invalid [9]. There-
fore, this type of problem only solves approximate or
suboptimal solutions [11]. Heuristic algorithm can im-
prove the search speed [12]. The existing base station
layout algorithm can be divided into two base station
layout optimization methods based on random geom-
etry and heuristic search.
In terms of random geometry, Bais et al. [9] laid out

indoor base stations in a square shape, which solved the
problem of signal coverage and improved the positioning
error. However, the irregularity of buildings makes all
base stations have a square layout difficulty. In literatures

[13–16], many existing methods consider the localization
performance of one or several specific points. Andrews
et al. [17] model the layout of a cellular network using a
homogeneous Poisson point process. The scenario model-
ing of the base station location in the cellular network
means that the deployed base stations are completely in-
dependent of each other. The work of Zhou et al. [18] is
an extension of these methods. They studied placing four
base stations in a rectangular area, and research on posi-
tioning performance and effect. A solution based on
Monte Carlo simulation is proposed for the difficulty of
problem analysis. It is also confirmed by Chen et al. [19]
that the optimal placement of the four base stations is
rectangular.
Base station layout intelligent algorithm based on

heuristic search is more adaptable and easily to model
[20]. Zhang et al. [21] proposed a solution based on Sim-
ulated Annealing (SA) algorithm, but the initial value of
“temperature” and the rate of decline in the simulated
annealing algorithm need to be repeated several times to
determine. Pereira et al. [22] used the particle swarm
optimization algorithm based on the idea of group intel-
ligent optimization to apply to the base station
optimization problem, which is easy to modify the ob-
jective function, and can be implemented in parallel with
good scalability. However, because the population loses
more diversity information in the search space, it is easy
to fall into the local optimal solution. Meng et al. [23]
proposed the introduction of the Pareto optimal domain
based on the traditional genetic algorithm (GA) layout
scheme, and proposed a high-performance NSGA-II al-
gorithm. This algorithm is a heuristic search algorithm
and is also easily rewritten as a parallel processing
version.
The single algorithm has its own performance defects,

which leads to unsatisfactory optimization results.
Therefore, domestic and foreign scholars put forward
the improved fusion optimization algorithm strategy.
Literature [24] also proposed the base station
optimization scheme based on Genetic Algorithm. How-
ever, all of them have the characteristics of weak global
search ability and easy to fall into the local optimal solu-
tion. Wang et al. [25] optimized the base station layout
using adaptive genetic algorithm and ant colony algo-
rithm (AG-AC). Firstly, the cross and mutation probabil-
ities in the traditional genetic algorithm are adjusted to
make them constantly change with the iteration of the
algorithm, so can achieve the purpose of self-adaptation
and generate the primary network element layout. Then,
adaptive ant colony algorithm is applied on the primary
network element layout to change the pheromone of
traditional ant colony algorithm into a variable that
changes constantly with the iteration of the algorithm,
so as to reduce the risk of ant colony algorithm falling
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into local optimal solution and then generate the final
network element layout. The average error after two
steps’ optimization is significantly improved compared
with that before fusion. But this approach is simply a
splicing of two algorithms, and the convergence speed
of the algorithm is not significantly improved. Ghar-
ghan et al. [26] proposed hybrid Particle Swarm
Optimization-Artificial Neural Network (PSO-ANN).
This algorithm adopts the feedforward neural network
model and uses the Levenberg-marquardt training al-
gorithm to estimate the distance between the moving
node and the anchor node. Although the positioning
accuracy is improved, the training of feedforward
neural network needs a lot of samples; otherwise, it
cannot converge to the global minimum or the local
minimum with good enough. In terms of continuous
optimization, Ying Gao et al. [27] first introduced the
idea of annealing particle swarm optimization. This
algorithm combines the advantages of PSO algorithm,
such as global optimization ability, fast calculation
speed and simple implementation, and the simulated
annealing algorithm’s ability to jump out of local op-
timal solution. It avoids the disadvantage of PSO fall-
ing into local extremum and improves the
convergence speed of PSO at the later stage of evolu-
tion. Zhang et al. [28] proposed a hybrid simulated
annealing genetic optimization algorithm in order to
improve the convergence speed of the genetic algo-
rithm. In the early stage, the standard genetic algo-
rithm was adopted for optimization, and the
optimized results of the genetic algorithm were
annealed. Although the algorithm improved the posi-
tioning accuracy, it cannot converge to the extreme
point in the later stage, which makes the algorithm
unstable.

3 Method
According to the needs of positioning, this paper opti-
mizes the location of multiple network elements in space
to ensure the coverage of positioning signals and im-
prove the positioning stability and accuracy of terminals.
Firstly, the optimization model of the network element
is established, and the optimization problem of the net-
work element layout is transformed into simple discrete
optimization problem. Then, according to the model
and the disadvantages and advantages of the single algo-
rithm, an improved adaptive genetic annealing fusion
optimization algorithm is proposed. This algorithm takes
the improved AGA as the main body of the algorithm,
and integrates the improved simulated annealing mech-
anism to further adjust and optimize the population, so
can improve the convergence speed and optimization
quality of the algorithm.

3.1 Network element optimization layout model
Signal coverage in indoor location is an important indi-
cator. In the three-dimensional (3D) indoor positioning,
the to-be-positioned point receives at least four network
element transmission signals, which can be regarded as
effective coverage. The 3D indoor space is modeled
using the probing model and K-coverage [11, 29], and
the spatial positioning signal coverage is finally calcu-
lated. The Euclidean distance is used to solve the posi-
tioning error of each terminal, and the minimum
positioning error is taken as the objective function of
optimization.

3.1.1 3D coverage rate model

� Detecting Model

There are N network elements, and the coordinates of
the ith network element are set to Ai(xi, yi, zi), i = (1, 2,
...,N). Set the detection radius of the network element
Ai(xi, yi, zi) as ri. Then, the detection area of the network
element is the spherical area with the radius ri, where
the location of the network element Ai is located at (xi,
yi, zi).

V i : x−xið Þ2 þ y−yið Þ2 þ z−zið Þ2≤ri2 ð1Þ
Vi is the coverage detection region of the network

element Ai, that is, the effective region is denoted as Vei.
The region other than Vi is the undetectable region of
the network element Ai. Set the target 3D space region
as V, then the effective region Vei = Vi ∩V.
Let network element layout is S, then S = (A1,A2,A3,

..., AN). The detection area of each network element is
Vi, i = (1, 2, ...,N), and the total detection area of N net-
work elements is ∪Ni¼1 V i . The effective detection area of
each network element is set to Vei, i = (1, 2, ...,N), then
Vei = Vi ∩V. Set the effective total detection region of N
network element as ∪Ni¼1 Vei.

� K-coverage method

The ranging-based 3D positioning algorithm receives
at least four network element signals at the same time.
In this case, K-coverage effective positioning point is
used, that is, K ≥ 4 is the effective coverage; otherwise,
there is coverage vulnerability. For the irregularities of
complex and diverse indoor space shapes, this paper
uses the cube segmentation method to segment the loca-
tion region.
Set the indoor positioning space area as V and the side

length of the cube is l.The region V is divided into M
small cube regions, i.e., M ¼ V

l3
. Set the body centered

coordinates of each small cube region asBj(xj, yj, zj),
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j = (1, 2, ...,M), and replace the small cube area with the
cube center. Therefore, the coverage of the network
element for each small cube can be approximated as the
coverage of the cube center Bj(xj, yj, zj). S is used for a
network element layout, S = (A1, A2,A3, ..., AN) and the
network element coordinates are Ai(xi, yi, zi), i = (1, 2, ...,
N).When (xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 ≤ ri
2, Bj is consid-

ered to be covered by network element Ai. Let the vari-
able Kij denote the case where Bj is covered by the
network element Ai, where j = (1, 2, ...,M), i = (1, 2, ...,N).
Then, the expression Kij is shown in (2):

Kij ¼ f
1 xi−x j

� �2 þ yi−y j
� �2

þ zi−z j
� �2

≤ri
2

0 xi−x j
� �2 þ yi−y j

� �2
þ zi−z j
� �2

> ri
2

ð2Þ
According to the definition of K-coverage, the cover-

age number of the target node Bj is Kj, and the target
node Bj is overwritten by the network element Kj. The
expression of Kj is as shown in Formula (3):

K j ¼
XM

i¼1

Kij ð3Þ

In indoor positioning, each node to be located should
be covered by at least four network elements. Let, the
variable Ej indicate whether point Bj is effectively cov-
ered. While the value of Ej is equal to 1, that means the
point Bj is effectively covered, vice versa. The expression
of Ej is shown in (4):

E j ¼ f 1 K j≥4
0 K j < 4

ð4Þ

The area coverage expression under the network elem-
ent layout S is shown in formula (5):

f c Sð Þ ¼

Xn3

j¼1

E j

n3
ð5Þ

3.1.2 Network element layout
In the network element layout process, Ai(xi, yi, zi) is
used for the coordinates of the ith network element,
where i = 1, 2, ..., N. M nodes are collected to represent
the users in the indoor environment, the coordinate of
the jth user is Bj(xj, yj, zj) and the measurement coordin-

ate of the jth user is Bj
∧ðx j

∧
; y j
∧
; z j
∧ Þ. It is assumed that the

positioning probability of each positioning node is the
same. DefineS″, P, and P̂ as (A1, A2,A3, ..., AN),(B1, B2, ...,
BM), and ðB̂1; B̂2; :::; B̂MÞ. S represents the layout scheme
of N network elements, P denotes the position of all

points of M users in the indoor environment while P̂ is
the measurement position.
In the case of network element layout S, the average

positioning error of M users in the indoor environment
is:

f Sð Þ ¼ 1
M

XM

j¼1

Erro j Sð Þ ð6Þ

f(S) is used for the average positioning error. In the
indoor positioning, it is determined whether each
positioning point receives signals of at least 4 network
elements at the same time by determining whether
the value of E that corresponds to each user is 1.
When the user’s E value is 1, the positioning accuracy
is maximized, where Erroj(S) is used for the
positioning error of the jth user [22].

By measuring the distance between the network elem-
ent and the user, the positioning accuracy is calculated,
and the layout of the network element is evaluated, fi-
nally obtain the optimized layout results.

3.2 ASA-GA algorithm design
3.2.1 Design of the adaptive simulated annealing (ASA)
algorithm
Simulated annealing algorithm is a common heuristic al-
gorithm whose performance largely depends on its com-
ponents and parameters. It mainly includes the methods
of generating new states, the design of cooling control
function, and the termination conditions of the algo-
rithm [30]. The traditional simulated annealing algo-
rithm is used in the open-loop control mode, so the
neighborhood search results have no feedback effect on
the annealing process. This paper presents a fast adap-
tive simulated annealing algorithm, which adopts closed-
loop feedback control to combine the neighborhood
search and temperature control by selecting appropriate
methods and algorithm termination conditions for gen-
erating new states. The algorithm can dynamically deter-
mine the temperature parameters and the changes in the
number of different neighborhood searches. The specific
process after improvement is as follows:
In space V, the base station layout S represents a feas-

ible solution, and the energy function is the average
error of the positioning, also called the objective func-
tion of the algorithm optimization. As shown in Eq. (6),
the minimization of the objective function is the optimal
solution of the layout. As for the cooling progress func-
tion, this paper uses the exponential cooling strategy to
control, expressed as:
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T kð Þ ¼ T 0αk
1=2 ð7Þ

where T0 is the initial temperature, and k is the
temperature drop coefficient.
Let P be the state transition probability, indicating the

probability of going from one base station S to another
base station layout S′, related to the current temperature
parameter Ti, where Ti representing the temperature of
the ith iteration, expressed as:

P ¼ f 1; f S0ð Þ≤ f Sð Þ
exp f Sð Þ− f S0ð Þ=Ti½ �; f S0ð Þ > f Sð Þ ð8Þ

Since using the simulated annealing algorithm solves
the new solution in the neighborhood area of the
current solution, to ensure that the individual of the new
solution does not exceed the boundary, the boundary
station number q' in the new solution is converted as
follows:

q0 ¼ f q þ qright−q
� �

δ Tið Þε; U 0; 1ð Þ ¼ 0

q− q−qleftð Þδ Tið Þε; U 0; 1ð Þ ¼ 1
ð9Þ

where qleft and qright are respectively the minimum
and maximum of the base station number, ε is the
random number between (0, 1). U(0, 1) is the control
value of randomly selecting 0 or 1, δ(Ti) is the dis-
turbance quantity, which decreases with the decrease
of Ti, and finally with δ(Ti)→ 0 the algorithm
converges.

3.2.2 Design of the adaptive genetic algorithm with
annealing thought

� Fitness function

The goal of the network element optimization layout
is to improve the positioning accuracy, that is, the posi-
tioning error of the point to be located is the smallest.
Therefore, the population fitness function can be
expressed as Eq. (6).

� Selecting operation

In the optimization of network element layout based
on adaptive genetic algorithm, the selection operation
is to select a good individual from the population,
where the probability of individuals being selected is
expressed as:

Pk ¼ 1−
f k

Xn

i¼1

f i

ð10Þ

In which, Pk is the probability that the population indi-
vidual Sk is selected, and fi is the fitness function of
population individual Sk.

� Adaptive selection of crossover operators

This paper makes the following adaptive improve-
ments for crossover probabilities:

pc ¼ f k1 �
f
0
− f min

f avg− f min
; f

0
≤ f avg

k2 ; f
0
> f avg

ð11Þ

where favg represents the average fitness value of all indi-
viduals in the population, and fmin represents the mini-
mum fitness value of individuals in the population, that
is, the minimum positioning error under the network
element layout. f′ is used for the fitness value of the
current network element layout, that is, the average po-
sitioning error under the current network element lay-
out. It can be seen from formula (11) that the smaller
the value of favg − fmin is, the closer favg is to fmin, and the
more the layout of network elements is to the optimal
solution. According to the network element optimization
scenario, network element layout individuals with lower
fitness are assigned lower pc, is conducive to the preser-
vation of good individuals. On the contrary, network
element layout individuals with higher fitness are
assigned larger pc. The crossover probability of individ-
uals is not only determined by favg − fmin, the closer favg
is to fmin, the smaller the error caused by network elem-
ent layout. As shown in algorithm 1. The variable pop
represents population, pop_size represents population
size, chromo represents chromosome while chromo_size
represents chromosome length.
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� Adaptive selection of mutation operators

According to the adaptability of the current network
element layout and the average fitness of the entire
population, the adaptive mutation probability is selected.
If the current layout fitness is greater than the average
fitness, the mutation probability is smaller. On the con-
trary, the mutation probability is larger. The adaptive
mutation probability formula is as follows:

pm ¼ f k3
f
0
− f min

f avg− f min
; f

0
≤ f avg

k4 ; f
0
> f avg

ð12Þ

Similar as Formula (11), when the fitness of the
individual obtained by the variation is greater than
the fitness of the current individual layout, the vari-
ation result is accepted. What is different is that
annealing steps are added into the adaptive muta-
tion operation here. When the individual mutates,
the same as formula (8), the mutation operation is
accepted with a probability exp[(f″ − f′) × (1/G)],
where f″ is used for the fitness value of the individ-
ual after the variation, that is the average position-
ing error. G is used for the number of current
generations.
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The purpose of improving the adaptive genetic algo-
rithm is to prevent GA from falling into the local optimal
solution. The algorithm uses the network element layout
below the average fitness to find the optimal solution in
the indoor positioning space. The network elements lay-
out in this situation needs to be completely disrupted, so
the value of k4 is set as 0.5, similarly, the value of k3 is also
set as 0.5. Set k1 = k2 = 1.0 at the same time.

3.2.3 ASA-GA algorithm
The genetic algorithm can find an optimal solution from
the whole, but it may fall into a local optimum, which can
be avoided by the simulated annealing algorithm. In view of
the shortcomings of slow convergence and poor quality of
single intelligent optimization algorithm, a network layout
ASA-GA optimization algorithm is proposed. The algo-
rithm firstly adaptively improves the simulated annealing
algorithm and the genetic algorithm. Secondly, the adaptive
genetic algorithm is used as the optimization body of the
ASA-GA algorithm. In addition, annealing mechanism is
added into the adaptive mutation operation. The specific
steps of ASA-GA algorithm fusion are as follows:

� Set the initial value of the algorithm’s parameters,
including population size n, the number of
reproductive generations G, crossover probability pc
and mutation probability pm, and the T0 and k value
of simulated annealing algorithm, and set an
generation number Tg.

� Calculate the fitness of the individuals in the
generated population, and record the optimal
individuals, select the paired individuals
according to Eq. (10) Perform the adaptive
crossover and mutation operations on the
individuals using Eqs. (11) and (12). The fitness
of each individual in the newly generated
population was calculated, and the individual
with high fitness value was selected for the
transfer step III to conduct annealing
optimization gene operation.

� Let us make the cycle counter of simulated
annealing algorithm t, the simulated annealing
operation is performed on the individuals with high
fitness in the new population and optimize
individual genes. Calculate the disturbance value
according to (8). The probability is accepted
according to the formula (9). If accepted, t = t + 1,
otherwise, t remains unchanged. The individuals
with the least fitness in the population were replaced
with the layout results after annealing.

� If the reproductive generation number Tg is less
than G, then Tg = Tg + 1, return II, otherwise, end
the optimization process and output the result of
base station layout.

4 Simulation experiment
In the simulation experiment of network element layout,
the experimental scene was set as a “double L” region,
with a total length of 24.1 m and a width of 17.8 m. Ac-
cording to the actual situation, for the sake of simplicity,
in the layout of the network element, select 3 m from the
ground height to divide the 1m × 1m grid. Due to the
large number of multipath generated in the deployment of
ceiling elements, the positioning error is greatly reduced.
Therefore, the paper select a location near the wall as the
deployment of base station, a total of 102 locations for
network deployment. The selected position of the terminal
is 1.2 m away from the ground, and the 3D grid of 1m ×
1m × 1m is divided. Two hundred sixty-four terminals
are located at the center of gravity of the grid. The test
scenario is shown in Fig. 1. The yellow dot indicates the
network element location to be installed and the green
dot indicates the user terminal location.
Before the simulation analysis, the parameters of the

ASA-GA fusion algorithm are initialized. In the experi-
mental simulation, eight network elements are pre-
installed in the positioning area. Both the simulated an-
nealing algorithm and the ant colony algorithm are iter-
ated for 50 times. The population of genetic algorithm is
set as 50, the genetic times are set as 50, and the number
of ants of ant colony algorithm is set as 50. The algo-
rithm parameter settings are shown in Table 1.

5 Results and discussion
In the above positioning scenario, there are 8 optimal
deployment positions number of network elements,
namely, 16, 29, 33, 43, 81, 88, 95, and 98. The first
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diameter coverage of the positioning area after the
layout optimization of network elements is shown in
Fig. 2.
According to the coverage of the first diameter in Fig. 2,

the number of the first diameter is mainly 5~7. Compared
with the positioning signal coverage before the layout
optimization of the network element, the coverage rate
statistical diagram is shown in Fig. 3.
It can be seen from the above figure that before the

network element layout is optimized, the effective posi-
tioning signal coverage rate of that the first diameter
(i.e., direct arrival signals) number is greater than or
equal to 4 is about 90%, and about 10% of the signal
coverage holes exist. After adopting the ASA-GA fu-
sion optimization algorithm proposed in this paper,
the positioning signal coverage rate reaches 100%
coverage, and the number of first diameter is mainly
distributed from 5 to 7. Through the experiment, the
change of positioning accuracy before and after the
layout of the network element is obtained, and the
positioning accuracy is obviously improved with the
increase of the coverage rate. The changes in

coverage rate and positioning accuracy before and
after optimization are shown in Table 2.
After the optimization of network elements layout, the ef-

fective positioning signal coverage rate increased from 89.77
to 100%, the coverage rate increased by 10.23%, and the
average positioning error decreased from 2.874 to 0.983 m.
According to the cumulative distribution of positioning er-
rors before and after network element layout optimization
shown in Fig. 4, the number of terminals with positioning
errors within 1m accounts for about 68% of the total, and
the number of terminals with positioning errors within 2 m
accounts for about 85%. The ASA-GA algorithm’s position-
ing accuracy and coverage rate have been significantly im-
proved, which proves the effectiveness of the ASA-GA
hybrid optimization algorithm proposed in this paper.
Comparing the proposed ASA-GA fusion optimization

algorithm with the AGA and AG-AC joint optimization
algorithm proposed in [25], the cumulative error distri-
bution of the three algorithms is shown in Fig. 5. After
the optimization of ASA-GA fusion algorithm, the posi-
tioning error of target nodes within 3 m accounts for
about 94% of the total, within 2 m accounts for about

Fig. 1 Simulation optimization scenario. In the simulation experiment of network element layout, the experimental scene was set as a “double L”
region, with a total length of 24.1 m and a width of 17.8 m. According to the actual situation, select 3 m from the ground height to divide the 1
m × 1m grid. A location near the wall was selected as the deployment of base station, a total of 102 locations for network deployment. The
selected position of the terminal is 1.2 m away from the ground, and the 3D grid of 1 m × 1m × 1m is divided. Two hundred sixty-four
terminals are located at the center of gravity of the grid. The yellow dot indicates the network element location to be installed and the green
dot indicates the user terminal location

Table 1 Algorithm parameter settings

Population quantity Ant quantity Genetic times Iteration times

ASA-GA 50 ---- 50 50

AG-AC 50 50 50 50

AGA 50 ---- 50 ---
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Fig. 2 The first diameter coverage. In the above positioning scenario, there are 8 optimal deployment positions number of network elements,
namely, 16, 29, 33, 43, 81, 88, 95, 98. The number of the first diameter that the user terminal received is represented by the digit of
corresponding location

Fig. 3 The first diameter coverage statistics chart. The brown columns represent the positioning signal coverage before the layout optimization
of the network element. The blue columns represent the positioning signal coverage after the layout optimization of the network element
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85%, and within 1 m accounts for about 68%, which is
about 16% better than that of AG-AC algorithm and
22% better than AGA algorithm.
The variation of positioning signal coverage during the

optimization of the three algorithms is shown in Fig. 6.
Experimental results show that ASA-GA fusion algo-
rithm needs to be inherited for 25 generations, AG-AC
algorithm needs to be inherited for 30 generations, and
AGA needs to be propagated for 38 generations to
achieve full coverage.

6 Conclusion
Due to the complexity and the characteristics of non-
line-of-sight of indoor scene, in the application of cel-
lular network positioning, the influence of indoor
three-dimensional positioning signal coverage and po-
sitioning accuracy has not been considered in the base
station deployment. This paper proposes an adaptive
genetic algorithm based on fusion annealing indoor
positioning base station layout method. This algorithm
adopts an adaptive way to control crossover and

mutation probability, avoids sharp rise and fall, and
makes the crossover and mutation operations tend to
be stable, thus ensuring the stability of the algorithm,
improving the convergence speed, and the simulating
annealing mechanism is integrated into the internal
genetic algorithm, which overcomes the shortcomings
of falling into the local optimal solution. Through simu-
lation experiments, the positioning accuracy of the ASA-
GA algorithm is more than 80%. Compared with AG-AC
and AGA algorithms, within 2 m, the performance is im-
proved by about 12% and 21%, respectively. The conver-
gence rate is significantly improved compared with the
above algorithms, and the localization signal coverage rate
is significantly improved compared with AGA algorithm.
In the future, we will further study the influence of

multipath in positioning, minimize the multipath effect
in combination with multi-objective optimization, prop-
erly compensate the attenuated positioning signal in
positioning, and analyze the specific factors that influ-
ence the positioning accuracy caused by multipath
effect.

Table 2 Changes before and after optimization of network element layout

Before network element layout optimization After ASA-GA algorithm optimization

Average positioning error 2.874 m 0.983 m

Location signal coverage rate 89.77% 100%

Fig. 4 Error accumulation distribution diagram before and after optimization of network elements layout. The curve with squares represents
before network element layout optimization and the curve with stars represents after ASA-GA algorithm optimization
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Fig. 6 Comparison of convergence of the three algorithms. The green curve with squares represents after AG-AC algorithm optimization, the
curve with stars represents after ASA-GA algorithm optimization, and curve with diamonds represents after AGA algorithm optimization

Fig. 5 Three optimization algorithms positioning error accumulation distribution diagram. The curve with circles represents after AG-AC algorithm
optimization, the curve with stars represents after ASA-GA algorithm optimization, and the curve with crosses represents after AGA
algorithm optimization
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