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Abstract

We investigate the transmission of a secret message from Alice to Bob in the presence of an eavesdropper (Eve) and
many of decode-and-forward relay nodes. Each link comprises a set of parallel channels, modeling for example an
orthogonal frequency division multiplexing transmission. We consider the impact of efficient implementations,
including discrete constellations and finite-length coding, defining an achievable secrecy rate under a constraint on
the equivocation rate at Eve. Then, we propose a power and channel allocation algorithm that maximizes the
achievable secrecy rate by resorting to two coupled Gale-Shapley algorithms for stable matching problem. We
consider the scenarios of both full and partial channel state information at Alice. In the latter case, we only guarantee
an outage secrecy rate, i.e., the rate of a message that remains secret with a given probability. Numerical results are
provided for Rayleigh fading channels in terms of average outage secrecy rate, showing that practical schemes
achieve a performance quite close to that of ideal ones.
Keywords: Channel state information, Decode-and-forward, Physical layer security, Relay channel, Resource allocation

1 Introduction
Adding secrecy features to the physical layer is an active
and promising research area [1] that complements tra-
ditional computational security approaches. Indeed, a
proper coding scheme can prevent an eavesdropper
Eve from getting information on a message exchanged
between the two legitimate users Alice and Bob [2].
In this paper we expand the results of [3] on resource

allocation for confidential communications over the
Gaussian parallel relay channels, as that work was lim-
ited to an ideal scenario, while we address a more realistic
model by including the practical constraints of finite-
length coding and discrete constellations. We first derive
the achievable secrecy rate of this scheme under the
assumption of full channel state information (CSI) by
Alice and the relay nodes. Then, in order to consider the
impact of discrete constellations and finite-length coding,
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we define an achievable secrecy rate under a constraint
on the equivocation rate at Eve. Using an approximated
formula of the achievable secrecy rate, we derive the
optimal power allocation for point-to-point confidential
transmission. By exploiting the power and rate adaptation
algorithm for the parallel relay channels of [3], we obtain
a resource allocation algorithm coupling two Gale and
Shapley algorithms to allocate resources over the parallel
relay channels. We also consider the partial CSI scenario,
wherein Alice does not know the gains of her channels to
Eve, while knowing their statistics. In this case, we only
guarantee an outage secrecy rate, i.e., the rate of a message
that remains secret with a given probability. We show that
the algorithm derived for full CSI can be easily adapted to
a partial CSI. Numerical results are provided, showing the
merit of the proposed solution.

1.1 Related works
The physical layer security of messages transmitted over
parallel channels with the assistance of trusted relays
has already been addressed in the literature. Most works
consider that relays can either forward the message or
generate a noise signal to jam Eve. For links comprising
a single channel, early works have addressed the relay
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selection problem [4–6], while various combinations of
message forwarding and jamming are considered in [7–
10] with multiple antenna nodes. In [11], multiple relays
either jam or forward noise, i.e., they transmit random
codewords from a globally known codebook, that hurts
more Eve than Bob.
We focus on links comprising parallel channels. For this

scenario, in [12], rate-equivocation regions are derived
by considering one relay only and assuming full CSI. In
[13], orthogonal frequency division multiplexing (OFDM)
is considered with a single relay, and Eve is equipped with
multiple antennas under partial CSI: subcarriers, powers,
and rates are optimized to maximize the average secrecy
outage capacity. In [14], the downlink of a cellular sys-
tem is considered, where the multi-antenna base station
performs both beamforming and jamming against a sin-
gle multi-antenna eavesdropper, and an outage problem is
formulated under partial CSI. The scenario is extended in
[15], where multiple relays operate in decode and forward
(DF) mode and still an outage approach is considered. In
[16], a single relay with parallel channels is considered,
which performs cooperative jamming against Eve, under
full CSI. When the single relay performs DF, resource
optimization has been considered in [17]. More compre-
hensive results, considering also the direct transmission
from Alice to Bob, are obtained in [18]. Resource allo-
cation for transmission over parallel channels assisted by
DF relays without secrecy features has also been widely
studied. Bit loading [19] and power and rate allocation
[20] have been investigated, while the availability of mul-
tiple relays transmitting on a single sub-carrier is studied
in [21], with efficient greedy algorithms provided in [22].
The resource allocation for parallel channels with secrecy
outage constraint has been considered in [23] and [24],
without taking into account the conditions imposed by the
presence of relay nodes in the system.
Recently, optimal resource allocation for security pur-

poses under different conditions has gained the attention
of several authors. In [25], an optimization framework
for two-hop communications is proposed, jointly opti-
mizing source and relay powers together, with the goal
of maximizing the secrecy outage capacity in a mas-
sive multiple input multiple output (MIMO) scenario. In
[26], optimal power allocation and pricing strategies are
determined using a Stackelberg game model in order to
maximize the players’ utilities, under both perfect and
imperfect CSI assumptions in the presence of multiple
eavesdroppers. An optimal power strategy to maximize
the achievable secrecy rate in wireless multi-hop DF relay
networks with a power constraint is studied in [27], under
the assumption of global CSI, and an iterative cooper-
ative beamformer design is also proposed. The work is
extended in [28] to the case of full-duplex relays, with
cooperative beamforming to null out the signal at multiple

eavesdroppers. In [29], a heuristic resource allocation
iterative algorithm is presented, based on the proximal
theory that maximizes the secure capacity of device-to-
device communications in heterogeneous networks. Joint
source-relay power optimization in a dual-hop communi-
cation using duality theory is performed in [30], with the
aim of maximizing the overall secrecy rate, under indi-
vidual power constraints and using a high signal to noise
ratio (SNR) approximation. In [31], a robust resource allo-
cation framework is proposed in the presence of an active
eavesdropper, assuming that both the legitimate receiver
and the eavesdropper are full-duplex: the receiver sends
jamming signals against the eavesdropper, without the
need for external helpers and having a partial CSI on
the links between the eavesdropper and the legitimate
receivers. Other works consider optimal power allocation
for security purposes with the help of imperfect hardware
analysis [32] and an external jammer [33]. Optimization
algorithms for null-space beamforming with full CSI have
been proposed in [34], while in [35], the authors pro-
pose a joint relay selection and optimal power allocation
algorithm to maximize security in a cooperative network,
considering the presence of untrusted relays and passive
eavesdroppers, possibly colluding. These works do not
take into consideration the impact of practical limitations
in the system.
The impact of finite-constellation inputs on the achiev-

able secrecy rate is analyzed in [36, 37]. However, the
role of finite-length coding is not investigated, and neither
parallel relay channels nor optimal power allocation are
considered. The effect of finite-alphabet signaling on the
secrecy performance achievable over the multiple-input
single-output wiretap channel is instead studied in [38],
where artificial noise is used to degrade the eavesdrop-
per’s performance. Still in [38], a power allocation scheme
based on gradient search optimizes the ratio between the
power of the information-bearing signal and the power
of the artificial noise. In our setting, instead, we do not
use artificial noise, i.e., we fix φ = 1, and therefore, the
optimization approach of [38] can not be applied to our
case.
The rest of the paper is organized as follows. Section 2

outlines the system model for secret message transmis-
sion over parallel Gaussian relay channels. The achievable
secrecy rates under full CSI are computed in Section 3,
where we also compute the outage secrecy rate. In
Section 4, an algorithm for resource allocation of a
secure point-to-point transmission over parallel chan-
nels is obtained, which is used then in Section 5 for the
resource allocation in a relay network. Numerical results
of the proposed solution are presented in Section 6, before
some conclusions are drawn in Section 7.
Notation: Vectors and matrices are written in bold let-

ters. We denote the base-2 and natural-basis logarithm
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by log and ln, respectively. We indicate the positive part
of a real quantity x as [ x]+ =max{x; 0}. E[X] denotes
the expectation of the random variable X, P[ ·] is the
probability operator, and T denotes the matrix transpose
operator. The entropy is denoted asH(·), while the mutual
information is denoted as I(·; ·).

2 Methods and contribution
Next, we describe the setting we consider and the main
contributions we provide.

2.1 Systemmodel
We consider a communication system to transmit a confi-
dential message M from Alice to Bob through N trusted
cooperating relays. Any link between a pair of devices is
constituted by a set of K parallel additive white Gaus-
sian noise (AWGN) channels. Eve is an eavesdropping
device that overhears communications originated from
both Alice and the relays. We assume that relay nodes
decode and forward (DF) the messages they receive. This
implies that each transmitting node in the system uses
the same code and the same constellation to send a mes-
sage. No direct link between Alice and Bob is available,
and all devices operate in half-duplex mode. Therefore,
the message transmission comprises two phases:

1) Alice transmits to the relays, and
2) The relays transmit to Bob.

We also assume that in phase 2 at most one relay trans-
mits on channel k and that the two phases have the same
duration.
The setting we consider is depicted in Fig. 1, where the

link from Alice to relay n is represented by the K-size col-
umn vector cHn =[Hn,1, . . . ,Hn,K ]T containing the gains
for each channel. The power of the signal received by relay

n on channel k is therefore Hn,kPn,k . Similarly, the vector
H̄n denotes the power gains of the link between relay n
and Bob, and H̄n,kP̄n,k is the power of the signal received
by Bob from relay n on channel k. Concerning Eve’s chan-
nel, G is the vector of power gains of the signal coming
from Alice, while Ḡn is the power gain vector of the signal
coming from relay n.
Let us denote with Xn,k and X̄n,k the signals transmit-

ted by Alice and by relay n on channel k in the first and
second phase, respectively. Similarly, Yn,k and Ȳn,k denote
the signals received by relay n and Bob on channel k in
the first and second phase, respectively. Finally, Zn,k and
Z̄n,k denote the signals received by Eve from Alice and
from relay n on channel k in the first and second phase,
respectively.
We can therefore write the signal received by the n-

th relay on channel k and the signal received by Bob
respectively as

Yn,k = HnXn,k + wn, (1a)

Ȳn,k = H̄nX̄n,k + w̄n. (1b)
On Eve’s side, we can write

Zn,k = GnXn,k + wn, (2a)

Z̄n,k = ḠnX̄n,k + w̄n, (2b)
where wn and w̄n represent the noise vectors in phase 1
and phase 2, which are assumed to be independent identi-
cally distributed (iid), with zeromean and unitary variance(
σ 2
n = 1

)
for all channels.

Figure 1 also shows in brackets the power flow of the
considered scenario. We indicate with Pn,k the transmit
power of Alice on channel k to relay n in phase 1, while
P̄n,k is the transmit power of relay n on channel k in phase

Fig. 1 System model of the relay parallel channels with N relays, r1, . . . rN . Mixers ⊗ and adders � represent element-wise multiplication and
addition of vectors, respectively.
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2. The N × K matrix P (P̄) collects all transmit pow-
ers, having Pn,k (P̄n,k) at entry n, k. In Fig. 1, P1K denotes
the N-size column vector of transmit powers for each
relay, with 1K being the K-size column vector of all ones.
We consider power constraints for both Alice and the
relays, i.e.,

K∑

k=1
Pn,k ≤ Ptot,1, n = 1, . . . ,N . (3a)

K∑

k=1
P̄n,k ≤ Ptot,2 , n = 1, . . . ,N . (3b)

The power constraint per relay in phase (1) simplifies
the power allocation in this phase and still provides an
upper bound on the total transmit power from the source
that cannot exceed NPtot, 1.
Being the noise iid, the SNR at relay n for a transmis-

sion from Alice on channel k is Hn,kPn,k , and similarly for
a transmission from relay n on channel k, the SNR at Bob
in phase 2 is H̄n,kP̄n,k .

2.2 Contribution
With respect to the previously described state of the art,
the main contributions of this paper can be summarized
as follows:

• To the best of our knowledge, there are no existing
works on power allocation with a secrecy rate target
under practical conditions, such as the use of finite-
length codes and discrete constellations. Motivated
by this, we provide a formulation of the secrecy rate
under practical constraints and compare it with the
achievable rate in ideal conditions. We consider both
perfect and partial CSI under outage constraints.

• By proposing an approximated expression for the
secrecy rate under practical conditions, we optimize
the link-level parallel channel power allocation,
generalizing the solution obtained for the ideal
transmission scenario.

• Extending [3], we maximize the secrecy rate by
resorting to an iterative algorithm based on the Gale
and Shapley theory for the stable matching problem.

• Extending [24], we derive the optimal power
allocation for the case of relayed transmission.

• Through numerical examples, we show that it is
possible to achieve an acceptable secrecy rate, even
using short codes and constellations with a small
alphabet.

3 Achievable secrecy rate
We consider a per-channel encoding, i.e., Alice splits M
into K messages Mk , k = 1, . . . ,K , each of which is sep-
arately encoded and transmitted on a channel. In [24], an

in-depth analysis of this coding strategy is provided, show-
ing that it performs similarly to the scheme with joint
coding across channels, while being simpler to design.
Therefore, each relay in general receives only a subset of
bits of the entire message. In the second phase, again,
each relay splits the received secret bits into groups, which
are separately encoded and transmitted on a different
channel, among those assigned to the relay.
In both phases, secrecy is achieved through classical

wiretap coding [1], based on adding random bits to the
secret message and encoding the resulting block with
capacity-achieving codes. The weak secrecy rate of a
point-to-point transmission is the rate of a message M
that [1]: (i) is correctly decoded by Bob and (ii) has a rate
of mutual information with the signal received by Eve Z
that is vanishing for infinite codewords, i.e.,

lim
l→∞

1
l
I(Z ;M) = 0 , (4)

where l is the message length in bits. Due to the per-
channel encoding, the achievable weak secrecy rate is the
sum of the achievable secrecy rates on each used chan-
nel. Let Rn,k be the secrecy rate on channel k, intended
for relay n in phase 1, and R̄n,k the secrecy rate on chan-
nel k transmitted by relay n in phase 2. Assuming that
the added random bits at each transmission are indepen-
dent, we immediately conclude that the achievable secrecy
rate between Alice and Bob is the minimum between the
secrecy rates in both phases, i.e.,

Rtot
(
P, P̄

) =
1
2

N∑

n=1
min

{ K∑

k=1
Rn,k(Pn,k),

K∑

k=1
R̄n,k(Pn,k)

}

,
(5)

where the factor 1/2 is due to the two phases of the same
duration, and we have highlighted the dependence of the
achievable rates on the transmit powers. The minimum
reflects the fact that either of the two phases can be a bot-
tleneck for transmission, and the sum over the subcarriers
k takes into account the fact that we decode and re-encode
the data signal at the relays; thus, each relay demodulates
all received signals and splits power and data among the
subcarriers in its own way upon transmission in phase 2.
Since we assume that Alice is transmitting to a single

relay per channel, we also have

Rn∗,k(Pn∗,k) > 0 → Rn,k(Pn,k) = 0 , n �= n∗ , (6)

and since we assume that at most one relay is transmitting
in any channel in phase 2, we also have

R̄n∗,k
(
P̄n∗,k

)
> 0 → R̄n,k

(
P̄n,k

) = 0 , n �= n∗ . (7)

In the following, we derive the achievable secrecy rates,
when full CSI is available at Alice, taking into considera-
tion infinite- and finite-length coding and continuous and
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discrete modulation formats. Then with discuss the ε-
outage achievable secrecy rate when Alice has only a par-
tial CSI, i.e., she knows only the statistics of her channels
to Eve.

3.1 Infinite-length coding with Gaussian signaling
When infinite-length coding and Gaussian signaling are
used, perfect secrecy, i.e., no information leakage to Eve,
can be achieved [1]. In this case, the achievable secrecy
rate can be written as

Rn,k(Pn,k) = C(Pn,kHn,k) − C(Pn,kGn,k) , (8)

where C(x) = log(1+x). Similar expressions are obtained
for R̄n,k(P̄n,k) where Pn,k , Hn,k , and Gn,k are replaced by
P̄n,k , H̄n,k , and Ḡn,k , respectively.

3.2 Finite-length coding with Gaussian signaling
A first limitation to the achievable secrecy rates intro-
duced by practical systems is related to the use of codes
working on finite-length blocks of symbols. In such a set-
ting, weak secrecy can not be guaranteed and Eve can get
some information on the secret message1. Moreover, the
decodability condition at Bob can not be guaranteed, and
wemust consider a non-zero codeword error rate (CER) κ .
Let Rn,k and R̄n,k be themessage rates, for which we have

a level of secrecy θ . In particular, in order to measure the
information leakage to Eve, we resort to the equivocation
rate, i.e., Eve’s uncertainty about the message after observ-
ing the transmitted codeword (through her channel). For
relay n transmitting on channel k and using codewords of
m symbols, the equivocation rate per symbol is

ρn,k(Pn,k) = 1
2m

H(Mk|Zn,k) , (9)

ρ̄n,k
(
P̄n,k

) = 1
2m

H
(
Mk|Z̄n,k

)
, (10)

where the factor 2 comes from the fact that we have two
phases of the same duration. We have that

0 ≤ ρn,k(Pn,k) ≤ Rn,k(Pn,k) , (11)

0 ≤ ρ̄n,k
(
P̄n,k

) ≤ R̄n,k
(
P̄n,k

)
, (12)

where the upper bound is achieved with infinitely long
codewords (m → ∞). We consider that transmission is
secure if

ρn,k(Pn,k)
Rn,k(Pn,k)

≥ θ ,
ρ̄n,k

(
P̄n,k

)

R̄n,k
(
P̄n,k

) ≥ θ , (13)

where θ ∈ (0, 1] is a suitably defined parameter that
limits the gap with respect to weak secrecy conditions
with infinite-length coding. Let us indicate with M̂n the
decoded version of message Mn. The achievable secrecy

1Indeed, the definition of weak secrecy (4) entails a limit to infinity of the
message length that can not be used in finite-codewords schemes.

rates for finite-length coding are therefore the maximum
rates satisfying condition (13), i.e.,

Rn,k(Pn,k) = max
r

r (14a)

s.t.
ρn,k(Pn,k , r)

r
≥ θ , (14b)

P

[
Mn �= M̂n

]
≤ κ , (14c)

where (14b) comes directly from (13) and (14c) imposes
a constraint on the decoding failure rate. A similar prob-
lem can be written for phase 2, for a given allocated power
P̄n,k , i.e.,

R̄n,k
(
P̄n,k

) = max
r

r (15a)

s.t.
ρ̄n,k

(
P̄n,k , r

)

r
≥ θ , (15b)

P

[
Mn �= M̂n

]
≤ κ . (15c)

For the computation of the equivocation rate, we can
resort to a lower bound. By the definition of entropy and
mutual information, we have that Eve’s equivocation rate
can be rewritten as

ρn,k(Pn,k) = 1
m

[
H(Xn,k) − I(Xn,k ;Zn,k)+

+H(Mn|Zn,k ,Xn,k) − H(Xn,k|Mn,Zn,k)
]
,

(16)

where Xn,k and Zn,k are the signals received by Bob and
Eve in phase 1, respectively.
By the definition of spectral efficiency as upper bound

to the mutual information, we have that

I(Xn,k ;Zn,k) < mC(Pn,kGn,k), (17)

and

H(Mn|Zn,k ,Xn,k) ≤ H(Mn|Xn,k) = 0. (18)

On the other hand, the entropy of Xn,k is the code rate,
which in turn determines the (non-null) CER at relay n,
due to the use of finite-length coding. A bound on the
code rate as a function of the CER for finite-length coding
is provided by [39], that in this scenario can be written as

H(Xn,k) =mγ (Pn,kHn,k) =

=m
[
C(Pn,kHn,k) − log e√

2m
Q−1(κ)

]+
,

(19)

where κ is the target CER at relay n and [ x]+ = x for
x ≥ 0 and 0 otherwise, and Q(·) is the complementary
cumulative distribution function of the standard Gaussian
variable.
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Let η(Rn,k ,Pn,kGn,k) be the CER experienced by a ficti-
tious receiver at the wiretapper position trying to decode
forXn,k from observingZn,k andM. By the Fano inequal-
ity, we have

H(Xn,k|Mn,Zn,k) ≤
1 + m

(
γ (Pn,kHn,k) − Rn,k

)
η(Rn,k ,Pn,kGn,k) .

(20)

Hence, from (16) and (20), we have the following lower
bound on ρn,k(Pn,k):

ρn,k(Pn,k) ≥ σn,k(Pn,k) = γ (Pn,kHn,k) − C(Pn,kGn,k)

− (
γ (Pn,kHn,k) − Rn,k)η(Rn,k ,Pn,kGn,k

) − 1
m

.
(21)

We pessimistically assume that Eve can exploit the chan-
nel to the maximum of its capacity, i.e., she can decode the
received message without errors.
The above analysis can be simplified by considering that,

for adherence to practical systems, deterministic coding
instead of random coding can be used. In such a case, each
l-bit block of data is univocally mapped into a codeword
Cn,k . This is opposed to either random or coset coding,
which are often invoked in the literature for this kind
of systems, but yield further issues (e.g., concerning the
generation of randomness). In the case of deterministic
coding, we no longer need to estimate the CER for the fic-
titious receiver, and we can write a simpler lower bound
on the equivocation rate, that is

ρn,k(Pn,k) = 1
m

[
H(Cn,k) − I(Cn,k ;Zn,k)

]
. (22)

Resorting again to (17) and (19), we obtain the following
approximation on Eve’s equivocation rate

ρn,k(Pn,k) � ξn,k(Pn,k) �
[
C(Hn,kPn,k) − log e√

2m
Q−1(κ) − C(Gn,kPn,k)

]+
,
(23)

which does not depend on Rn,k .
By replacing ρn,k(Pn,k) with its approximated lower

bound ξn,k(Pn,k) (and similarly for phase-2 equivocation
rates) in problems (14) and (15) and removing the (already
used) constraint on the error probability P[Mn �= M̂n],
we obtain the approximated achievable rates in the two
phases; the solution can be easily obtained in a closed
form as

Rn,k(Pn,k) = 1
θ

[
C(Hn,kPn,k) − + log e√

2m
Q−1(κ) − C(Gn,kPn,k)

]+

(24)

Note that the obtained secrecy rate with finite-length
coding is smaller than that obtained with infinite-length
coding. In particular, log e√

2mQ−1(κ) represents the secrecy
rate loss due to finite-length coding, which decreases as
either the code lengthm or the CER κ increase. Note that

the choice ofm is mostly dictated by implementation con-
straints as well as desired latency limitations, while κ is
associated to the reliability of the transmission. In Fig. 2,
we compare the results obtained for Rn,k(Pn,k) as a func-
tion of Gn,kPn,k for codes of different length, choosing
Hn,k/Gn,k of 20 dB and θ = 1.
We consider a fitting of Rn,k(Pn,k) solution of (14) by the

linear combination of logarithms of the powers, in order
to ease resource allocation, i.e.,

Rn,k(Pn,k) � α1 + α2 log(1 + α3Hn,kPn,k)−
α4 log(1 + α5Hn,kPn,k)−
− [

α6 log(1 + α7Gn,kPn,k)−
−α8 log(1 + α9Pn,kGn,k)

]
.

(25)

Note that (25) directly models the achievable secrecy rate
rather than the equivocation rate, and the parameters αi
are chosen at solution of problem (14). By this formula-
tion, the secrecy rates with ideal conditions can be seen as
a sub-case of (25) with αi = 1 for i = 2, 3, 6, 7, and αi = 0
otherwise. Themotivation behind the choice of this fitting
will be better understood when using it in the resource
optimization problem focus of this paper: indeed, it will
turn out (see Section 4) that with this choice the optimiza-
tion problem boils down to finding the roots of suitable
polynomials.
Figure 3 shows Rn,k(Pn,k) as a function of Gn,kPn,k for

values of Hn,k/Gn,k between 2 and 20 dB with a step of
1 dB, and results obtained by the fitting function (25)
with κ = 10−3, m = 4096, and θ = 0.9. We observe
a good agreement of the fitting function with Rn,k(Pn,k),
especially at low rates, and high values of Gn,kPn,k , with a
slight overestimation of the rate for intermediate values of
Gn,kPn,k for high Hn,k/Gn,k ratios.

3.3 Infinite-length coding with discrete constellations
A second limitation of practical systems is the use of
suboptimal constellations with discrete points taken from
a finite alphabet. In this case, perfect secrecy can still
be achieved, but we must consider the constellation-
constrained spectral efficiency [40] Ĉ(·) instead of C(·),
i.e., (8) becomes

Rn,k(Pn,k) = Ĉ(Pn,kHn,k) − Ĉ(Pn,kGn,k) . (26)

In order to obtain simple resource allocation algorithms,
we consider again (25) as a fitting of Rn,k(Pn,k). Figure 4
shows the secrecy rate as a function of the SNR for a
16-QAM constellation, and its comparison with the exact
function. We observe a good agreement between the
approximated and the exact curves, with slightly higher
discrepancy for high values ofGn,kPn,k . However, note that
in a power optimization process, these high power values
will not be used, since they provide a lower secrecy rate
than lower power values. We still have a slight mismatch
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Fig. 2 Rn,k(Pn,k) as a function of Gn,kPn,k for Hn,k/Gn,k equals to 20 dB, for infinite-length codes and codes of length 4096 and 128, and θ = 1

between the fitting and the analysis in correspondence
of the maximum rate, which is however not so relevant
(especially for increasing values of Hn,k/Gn,k).

3.4 Finite-length coding with discrete constellations
Let us consider the limitations introduced in Sections 3.2
and 3.3 jointly, i.e., both finite-length coding and discrete
constellations, which describe a practical scenario. Also in
this case, we resort to the equivocation rate for the defini-
tion of the achievable secrecy rate (see problems (14) and
(15)), by replacing the spectral efficiency C(P) with the

Fig. 3 Rn,k(Pn,k) as a function of Gn,kPn,k for values of Hn,k/Gn,k
between 2 and 20 dB with a step of 1 dB, and results obtained with
the fitting function (25), for codes of length 4096 and θ = 0.9

constellation-constrained spectral efficiency Ĉ(P) in (23).
On the other hand, since the approximation provided by
[39] is valid for any input distribution, (19) still holds true.
As already done in the previous section, we propose to

fit Rn,k(Pn,k) by the function (25). Figure 5 shows Rn,k(Pn,k)
for values of Hn,k/Gn,k between 2 and 20 dB with a step of
1 dB, and results obtained by the fitting function (25) with
κ = 10−3, 16-QAM constellation, and m = 4096. In this
case, we observe a good agreement between the approx-
imated and the exact curves for low values of Gn,kPn,k ,
while the curves show a small difference at high values.
As observed for the case of infinite-length coding, also in
this case, the high power values will not be used in the
optimization.

3.5 ε-Outage achievable secrecy rate
In many practical scenarios, Alice and the relays have only
a partial CSI of their channels to Eve. This is mainly due to
the fact that Evemay not have an advantage in revealing its
channels, e.g., by transmitting, unless this could be useful
to increase the rate of other messages exchanged between
her and the legitimate nodes. Indeed, in the absence of full
CSI, there is a non-zero probability (outage probability)
that for any power allocation and choice of the secret
message rate, Eve may get some information onM.
In particular, we focus on the secrecy outage probability

in each transmission phase and for each channel. Let πn,k
and π̄n,k be the secrecy outage probabilities on channel k
with respect to relay n in the first and the second phase,
when messages are transmitted at rates Rn,k(Pn,k) and
R̄n,k(P̄n,k), respectively. We consider as design criterion
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Fig. 4 Rn,k(Pn,k) as a function of Gn,kPn,k for values of Hn,k/Gn,k between 2 and 20 dB with a step of 1 dB, and results obtained with the fitting function
(25), considering a 16-QAM constellation

the limitation of the secrecy outage probability on each
channel, i.e.,

πn,k ≤ ε , π̄n,k ≤ ε , (27)

where ε is the target secrecy outage probability.
In the following, we assume that the legitimate nodes

know the statistics of both Gn,k and Ḡn,k , thus having
a partial CSI. If Rn,k(Pn,k) is the achievable secrecy rate

for Alice-Eve channel realization G∗
n,k , then the secrecy

outage probability can be written as

πn,k = P
[
Gn,k > G∗

n,k
]
. (28)

Similar expressions are obtained for the second phase.
From (27), we define Fε as the outage gain, i.e., the channel
gain for which

Fig. 5 Rn,k(Pn,k) as a function of Gn,kPn,k for values of Hn,k/Gn,k between 2 and 20 dB with a step of 1 dB, and results obtained with the fitting function
(25), considering a 16-QAM constellation andm = 4096
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πn,k = P
[
Gn,k > Fε

] = ε. (29)

Then, the ε-outage achievable secrecy rate can be
obtained from the previous sections by considering
Gn,k = Ḡn,k = Fε .
Note that this approach works with any kind of fading

(e.g., Rayleigh Rician, Nakagami fading). For example, for
Rayleigh fading

P
[
Gn,k ≤ Fε

] = exp
[
−Fε/

(
d−ζ

E

)]
, (30)

where ζ is the path-loss exponent, therefore

Fε = −d−ζ

E ln ε . (31)

For Nakagami fading, Gn,k is gamma distributed, i.e.,
P

[
Gn,k ≤ Fε

] = 1
�(σ)

γ (σ , κFε), where σ is the shape
parameter, κ is the rate parameter, and �(·) and γ (·)
are the Gamma and lower-incomplete Gamma functions,
respectively. Therefore, we have

Fε = 1
κ

γ −1(σ ,�(σ)ε) , (32)

where γ −1(σ , x) represents the inverse lower-incomplete
Gamma function.

4 Single link power optimization
We first consider the single-link power optimization,
where we allocate powers that maximize the secrecy sum
rate between two nodes, using parallel channels. This
problem must be solved in both transmission phases, and
here, we focus on the first phase, i.e., the optimization
of the communication from Alice to a specific relay n,
assuming that all power Ptot,1 can be used on that link. In
this situation, we have Pn′,k = 0 for n′ �= n, n = 1, . . . ,N ,
k = 1, . . . ,K , and we must solve

Rmax = max{Pn,k}

K∑

k=1
Rn,k(Pn,k) , s.t. (3). (33)

The four cases of previous section are considered, i.e.,
(a) infinite-length coding with Gaussian constellation,
(b) finite-length coding with Gaussian constellation, (c)
infinite-length coding with discrete constellations, and (d)
finite-length coding with discrete constellations. More-
over, we consider here the case of ε-outage rates discussed
in Section 3.5, thus considering gain Fε for all channels
to Eve.

4.1 Infinite-length coding with Gaussian signaling
For infinite-length coding with Gaussian signaling, the
optimization problem (33) has been proven to be convex
and solved in [41, Th. 1]. In particular, we immediately see
that all channels for whichHn,k < Fε must be switched off
(Pn,k = 0), since they do not provide any secrecy rate. Let
the set of used channels be

F = {k : Hn,k > Fε} . (34)

Then, we have

Pn,k =
[
−λ(Hn,k + Fε)

2λFεHn,k
+

√
[ λ(Hn,k + Fε)]2 −4λFεHn,k(λ − Hn,k + Fε)

2λFεHn,k

]+

=
[
−Hn,k + Fε

2FεHk
+

√
(Hn,k + Fε)2 − 4FHn,k(1 − (Hk − Fε)/λ)

2FεHk

]+

=
[
−Hn,k + Fε

2FεHk
+

√
(Hn,k − Fε)2 + 4FHn,k(Hn,k − Fε)/λ)

2FεHn,k

]+
,

(35)

where λ ≥ 0 is the Lagrange multiplier to be optimized in
order to satisfy the power constraint, which can be com-
puted by a dichotomic search to find the unique optimal
solution.

4.2 Finite-length coding with Gaussian signaling
For finite-length coding with Gaussian signaling, we
exploit the fitting (25) and the optimization problem (33)
becomes

Rmax = max{Pn,k}

K∑

k=1
α1 + α2 log(1 + α3Hn,kPn,k)

− α4 log(1 + α5Hn,kPn,k) − α6 log(1 + α7FεPn,k)
+ α8 log(1 + α9FεPn,k) ,

(36a)

subject to (3). (36b)

We observe that (36) is a maximization problem of con-
tinuously differentiable objective functions with inequal-
ity constraints of continuously differentiable functions,
thus satisfying the necessary conditions for the applica-
tion of the Lagrange multipliers method, which provides
the constrained maxima as one or more solutions of

α2α3Hn,k
1 + α3Hn,kPn,k

+ α4α5Hn,k
1 + α5Hn,kPn,k

+

+ α6α7Fε

1 + α7FεPn,k
+ α8α9Fε

1 + α9FεPn,k
− λ = 0 ,

(37)

where λ ≥ 0 is the Lagrange multiplier to be chosen in
order to satisfy the power constraint.
By using the common denominator of the four fractions

in (37), by simple algebraic steps, we separate the terms of
different order and we define
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An,k = λ ln(2)α3α5α7α9H2
n,kF

2
ε , (38a)

Bn,k = α3α5α6α7α9H2
n,kF

2
ε − α3α5α7α8α9H2

n,kF
2
ε

− α2α3α5α7α9H2
n,kF

2
ε + α3α4α5α7α9H2

n,kF
2
ε

+ λ ln(2)α5α7α9Hn,kF2
ε + λ ln(2)α3α7α9Hn,kF2

ε

+ λ ln(2)α3α5α9H2
n,kFε + λ ln(2)α3α5α7H2

n,kFε ,
(38b)

Cn,k = λ ln(2)α3α5H2
n,k − α2α3α5α9H2

n,kFε

+ λ ln(2)α7α9F2
ε + λ ln(2)α5α7Hn,kFε

− α2α3α5α7H2
n,kFε + α4α5α7α9Hn,kF2

ε

+ α3α4α5α9H2
n,kFε + λ ln(2)α3α9Hn,kFε

+ λ ln(2)α3α7Hn,kFε + α3α6α7α9Hn,kF2
ε

+ α3α5α6α7H2
n,kFε − α5α7α8α9Hn,kF2

ε

− α3α7α8α9Hn,kF2
ε − α3α5α8α9H2

n,kFε

+ λ ln(2)α5α9Hn,kFε − α2α3α7α9Hn,kF2
ε

+ α3α4α5α7H2
n,kFε + α5α6α7α9Hn,kF2

ε ,

(38c)

Dn,k = α4α5α7Hn,kFε − α2α3α9Hn,kFε

− α5α8α9Hn,kFε − α3α8α9Hn,kFε

+ α5α6α7Hn,kFε − α2α3α7Hn,kFε

+ α4α5α9Hn,kFε − α2α3α5H2
n,k

+ α3α6α7Hn,kFε + α6α7α9F2
ε

− α7α8α9F2
ε + λ ln(2)α9Fε + λ ln(2)α7Fε

+ λ ln(2)α5Hn,k

+ α3α4α5H2
n,k + λ ln(2)α3Hn,k ,

(38d)

En,k = λ ln(2) − α2α3Hn,k − α8α9Fε

+ α6α7Fε + α4α5Hn,k .
(38e)

Then, the Lagrangian (37) becomes

An,kP4n,k + Bn,kP3n,k + Cn,kP2n,k
+Dn,kPn,k + En,k = 0 .

(39)

For a given λ ≥ 0, for all real positive roots of the
polynomial, we compute (26) and select the root yielding
the highest secrecy rate. When no real roots are found,
it means that the secrecy rate is strictly decreasing for
Pn,k > 0; thus, Pn,k = 0 and a null secrecy rate is achieved.
We can now appreciate the value of the fitting (25),

which provides the simple polynomial (39), whose roots
can be obtained using well-established algorithms. Note
that the algorithm must include a dichotomic search over
λ ≥ 0 in order to satisfy the power constraints. Again,
note that the solution to problem (36) is a generalization
of the solution (35) for ideal transmission conditions.

4.3 Discrete constellations
For infinite-length coding with discrete constellations, the
optimization problem (33) using the fitting (25) becomes
(36); hence, by applying also in this case the Lagrange
multiplier method, we obtain again (39).
For finite-length coding with discrete constellations, the

optimization problem (33) using the fitting (25) becomes
(36) and the Lagrange multiplier methods lead to (39).

5 Maximum rate power allocation
We now consider the power allocation problem at Alice
and Bob with the aim of maximizing the secrecy rate, i.e.,

Rmax = max
P,P̄

Rtot(P, P̄) , (40a)

subject to power constraints (3), (40b)

and rate constraints (6) and (7). (40c)
As observed in [3], this is a mixed-integer programming

problem, and for its solution, we resort to the iterative
approach of [3], based on the game-theoretic Gale and
Shapley algorithm for the stable matching problem [42].
In the following, we report the algorithm developed in [3]
with its detailed description.
The stablematching problem aims atmatching dames to

cavaliers, preventing any dame and any cavalier belonging
to two different couples both preferring to be matched. In
our scenario, dames and cavaliers are channels and relay,
respectively, and the preference of matching is the achiev-
able secrecy rate when using the channel for that relay.We
have actually two coupled stable matching problems for
the two phases. We use an iterative algorithm, where at
each iteration, one step of the Gale and Shapley algorithm
is performed for both problems.
We start computing the overall rates obtained by assign-

ing all channels to each relay in phase 2 (finding the
best power allocation for both phases and the best chan-
nel assignment in phase 1), and then, we exclude the
relay-channel couple in phase 2 that provides the low-
est rate. At the second iteration, we compute the overall
rates obtained by assigning all channels (except the cou-
ple excluded in the first iteration) to each relay in phase
2 (again optimizing powers and phase-1 channel alloca-
tion), before excluding another relay-channel couple in
phase 2 that provides the lowest rate. The process is iter-
ated excluding a couple at each iteration until for each
channel we have at most one associated relay in phase 2.
Within each iteration, the channel allocation for phase 1
is obtained by applying the Gale and Shapley algorithm to
the matching of channels and relays in phase 1 (for a given
allocation in phase 2).
Algorithm 1 shows the general solution of the algorithm

that iteratively computes the rates offered by relays to Bob
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for each channel, and Bob discards the proposal providing
the lowest rate for all channels where at least two propos-
als have been received. The process is iterated until Bob
receives at most one proposal of non-zero rate for each
channel. The outputs of the algorithm are the allocated
power matrices P and P̄, having as (n, k) entry Pn,k and
P̄n,k , respectively. Matrices R and R̄ collect the rates in
the two phases and are defined analogously. The set Q̄k ,
k = 1, . . . , is iteratively updated and at each iteration col-
lects the indices of relays that are not allowed to transmit
on channel k in phase 2. Set S̄n = {k : n /∈ Q̄k} instead
collects all channels available for transmission to relay n in
phase 2.

Algorithm 1: General Resource Allocation
Algorithm

output: P, P̄
1.1 Set Q̄k = ∅;
1.2 while (∃k : |Q̄k| < N − 1) do
1.3 (P, P̄, R̄) = Rate_Offer_Phase_2({Q̄k});
1.4 Find relay channel indices (n′, k′) from (41);
1.5 Q̄k′ = Q̄k′ ∪ {n′}
1.6 end
1.7 return

Initially, all these sets are empty as all relays are poten-
tially free to transmit on any channel in phase 2. Note
that the constraint of having at most one relay transmit-
ting in each channel is not taken into account initially.
However, at each iteration, a competing relay for one
channel is prevented from transmitting and the process
stops exactly when there is at most one relay trans-
mitting on each channel. At each iteration, the rou-
tine Rate_Offer_Phase_2 is run, which provides the
power allocation that maximizes the total rate under the
power constraints and the channel availability in phase
2 (i.e., sets Q̄k). Then, we remove the relay that pro-
vides the minimum rate on one channel, i.e., we select the
relay/channel index

(n′, k′) = argmin(n,k):|Q̄k |<(N−1) and n/∈Q̄k
R̄n,k (41)

and insert its index in Q̄k .
The Rate_Offer_Phase_2 algorithm (shown in

Algorithm 2) computes the rate offers for phase 2, given
channel availability S̄n for each relay n = 1, . . . ,N . In for-
mulas, this is problem (40a)-(40b) subject to the additional
constraint

K∑

k=1
Rn,k(Pn,k) =

∑

k∈S̄n

R̄n,k(P̄n,k) , n = 1, . . . ,N . (42)

In Algorithm 2 R̄n,· (P̄n,·) denotes the nth row of R̄ (P̄n,·).
Matrix H̄n,S̄n collects the columns of matrix H̄ with
indices in S̄n.

Algorithm 2: Rate_Offer_Phase_2
Input : {Q̄k}
Output: P, P̄, R̄
Data: ε, H̄

2.1 Sn = {k : n /∈ Q̄k}
2.2 for n = 1 to N do
2.3 (P̄n,·, R̄n,·) = MACalPowRate(H̄S̄n,n, Ptot, ∞);
2.4 end
2.5 (P, R) = Rate_Offer_Phase_1(R̄);
2.6 for n = 1 to N do
2.7 (P̄n,·, R̄n,·) = MACalPowRate(H̄S̄n,n, Ptot,∑K

k=1 Rn,k);
2.8 end
2.9 return

The solution is achieved by computing the rates
achieved in phase 2 through function MACalPowRate,
which takes into account channel availability. Let R̄(P̄n,k)
be obtained solution. Then, we compute the max-
imum rates achievable in phase 1 under the rate
matching constraint (40c), by invoking the function
Rate_Offer_Phase_1. Lastly, we consider the rates
obtained in phase 1 as a constraint to re-compute the
optimal power allocation in phase 2, under the chan-
nel availability constraint. This is achieved by calling
MACalPowRate for each relay, with the additional con-
straint that the rate in phase 2 can not exceed that in phase
1, i.e.,

∑K
k=1 Rn,k .

The MACalPowRate algorithm is reported in
Algorithm 3, where h denotes the channel matrix (possi-
bly being a sub-matrix of H or H̄). The MACalPowRate
algorithm aims at maximizing the total secret rate over
channel set Sn, in point to point transmission, under (a)
a power constraint and (b) a total rate constraint. Note
that the point to point solution of Section 4 is indicated
by function MACAllocation and that the algorithm
performs a dichotomic search between zero allocated
power and Ptot in order to find the intermediate power
constraint that yields a rate satisfying the rate constraint.
Further details on the algorithm can be found in [23].
The Rate_Offer_Phase_1 algorithm reported in

Algorithm 4 aims providing the offers for rates in phase
1, given the maximum rates that can be supported in
phase 2, R̄. Solution is achieved by applying again the
Gale Shapley approach, where now at each iteration relays
offer rates for phase 1 and Alice discards the worst pro-
posal. In particular, the rate proposal to relay n in phase
1 is obtained by power allocation that maximizes the
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Algorithm 3: MACalPowRate
Input : h, Ptot, ρmax
Output: π , ρ
Data: ε

3.1 wmin = 0, wmax = 1, w = 1.
3.2 (π , ρ) = MACAllocation(h, Ptot);
3.3 if

∑
k ρk > ρmax then

3.4 while | ∑k ρk − ρmax| > ε do
3.5 if

∑
k ρk > ρmax then

3.6 wmax = w
3.7 else
3.8 wmin = w
3.9 end

3.10 w = (wmax + wmin)/2;
3.11 (π , ρ) = MACAllocation(h, wPtot);
3.12 end
3.13 end
3.14 return

secrecy rate to relay n, assuming that all power is avail-
able to transmit to relay n. This is achieved by calling
N times MACAllocation, one time for each Alice-relay
link, obtaining power allocations P∗

n,k . Among all propos-
als to all relay, we select the worst one, corresponding to
the channel-relay couple (n′, k′) = argmin(n,k)Rn,k

(
P∗
n,k

)
,

and we discard it, by preventing relay n′ from allocating
power on channel k′. The process is iterated by updat-
ing the power allocation for user n′. In order to take into
account the power constraint of phase 1 that operates
across the relays, the maximum power available to relay n′
is reduced, since channel k′ is used by another relay. As we

Algorithm 4: Rate_Offer_Phase_1
input : R̄
output: P, R

4.1 SetQk = ∅, Sn = {1, . . . ,K}, P(tot)n = Ptot;
4.2 while (∃k : |Qk| < N − 1) do
4.3 for n = 1 to N do
4.4 (P·,n, R·,n) = MACalPowRate(HSn,n, P

(tot)
n ,

∑K
k=1 R̄n,k);

4.5 end
4.6 Compute (n′, k∗) using (43);
4.7 Qk∗ = Qk ∪ {n∗};
4.8 Sn = {k : n /∈ Qk};
4.9 for n = 1 to N do

4.10 Compute P(tot)n from (44);
4.11 end
4.12 end
4.13 return

do not know which relay at the end will use the channel,
the total power available for user n′ is reduced by themini-
mum among all power allocations, i.e., Ptot−minn�=n′ Pn,k∗ .
The process is iterated until for each channel Alice trans-
mits at most one relay. At a generic iteration, letQk be the
set of relays to which Alice transmits on channel k, and Sn
the set of channels that can be used for relay n. Then, the
discarded proposal is that of relay/channel couple

(n′, k′) = min
k,n∈Qk

Rn,k(P∗
n,k) , (43)

and the maximum power to be used for transmission to
relay n is

P(tot)n = Ptot −
∑

k �=Sn

min
n∈Qk

Pn,k . (44)

5.1 Complexity
The complexity C of Algorithm 1 can be measured as a
function of the number of relays N as follows

C = O
{
2N2I5 (1 + I3) + N3 [C5(1 + I3) + 1]

}
, (45)

where I3 and I5 represent the number of iterations
performed within the while cycle of the Algorithms
MACalPowRate and MACAllocation, respectively.
Therefore, we can say that the proposed resource allo-
cation algorithm asymptotic complexity corresponds to
O(N3). In order to evaluate the impact of I3 and I5 in
terms of average and maximum value, in Fig. 6, we report
their cumulative density function (c.d.f.) for different val-
ues of N. Note that both I3 and I5 do not depend on
N, and they do not depend either on the configuration
setting, i.e., on choice of code and modulation. I3 and
I5 show an average value of about 4 and 13.5 iterations,
respectively, independently of N.

6 Results and discussion
Let us consider the scenario reported in Fig. 7, where the
relay nodes are positioned along a line that is orthog-
onal to the segment between Alice to Bob, intersecting
it at a distance dI and dII from Alice and Bob, respec-
tively. Moreover, relays are equispaced with a distance �

between any two adjacent relays. We further assume that
the eavesdropper is at least at a distance dE from any
transmitting node, i.e., it is outside of the dashed circles
surrounding Alice and the relays.
The K = 16 channels between any couple of nodes are

assumed independent Rayleigh fading. We also consider
Ptot,1 = Ptot,2 = 1. The average SNR at unitary distance is
of 0 dB, and the path loss coefficient is 3.5; thus, the aver-
age SNR at distance d is d−3.5. About the eavesdropper,
since it is assumed to be at a minimum distance dE from
any transmitting node, the outage gain is obtained from
(29). For finite-length coding, we assume a CER at Bob
κ = 10−3, andm = 128 or 4096.
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Fig. 6 Cumulative density function (c.d.f.) of I3 and I5

6.1 Impact of eve’s distance
We first consider a scenario wherein each relay has the
same distance from Alice and Bob, i.e., dI = dII = 0.8, the
separation between relays is � = 0.05, and the number of
relays is N = 2, 4, or 8.
Figures 8 and 9 show the average maximum outage

secrecy rate E[Rmax], averaged over channel realizations,
as a function of dE, for a target secrecy outage prob-
ability ε = 10−4, and comparing different coding and

Fig. 7 Node position diagram. (A) Alice, (B) Bob, rn : relay n

constellations settings. We first investigate the impact
of discrete constellations with respect to Gaussian sig-
naling, and Fig. 8 shows the average maximum outage
secrecy rate obtained when using infinite-length coding
with both the aforementioned signalling schemes. We
observe that the use of 16-QAM does not yield any signif-
icant performance loss with respect to Gaussian signaling,
since the maximum rate of 16 channels with 16-QAM
is 256 b/s/Hz, which is well above the average secrecy
rate of 25 b/s/Hz achievable in the considered setting
with ideal Gaussian signaling. Therefore, constellations
with small alphabet already provide close-to-optimal per-
formance. Moreover, by increasing the number of relays,
the average maximum outage secrecy rate increases, as a
diversity gain is available on the links among legitimate
nodes. Figure 9 shows results for finite-length coding and
both Gaussian signaling and discrete constellations. As
regards the Gaussian signaling, comparing Figs. 8 and 9,
we note a negligible performance degradation for a code-
word length m = 4096 with respect to infinite-length
coding, since Q−1(κ) = 3.1, and from (23), the loss is of
the order ofK ·10−3 ≈ 10−2. About Fig. 9, we observe that
finite-length coding further increases the gap with respect
to Gaussian signaling: this is due to the fact that proper
matching in the two phases of relaying must be found to
achieve an end-to-end secrecy rate and adding constraints
further limits this performance, in a non-linear fashion.
Lastly, as dE → ∞, we note that the rate curves flatten
in correspondence of the insecure rate of the relay paral-
lel channels, as in this case, security conditions are always
met and the performance is limited only by the legitimate
channel conditions.
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Fig. 8 Average maximum secrecy rate as a function of dE with infinite-length coding, both Gaussian signaling and discrete (16-QAM) constellations
and various values of N

6.2 Impact of codeword length
In Fig. 10, the impact of the codeword length for finite-
length coding with Gaussian signaling is investigated.
Note that the performance of codes with long codewords
(m = 4096) is comparable to that of infinite-length
coding. Considering a 16-QAM, differences between
infinite-length coding and 4096-length coding are negligi-
ble as the average maximum outage secrecy rates coincide
for all numbers of relay nodes. Similar results are obtained

with discrete constellations, not reported here for the
sake of conciseness, where, as seen before, the impact
of finite-length coding is stronger than for the Gaussian
signaling.

6.3 Impact of relative node distances
We now study the impact of the relative distances among
legitimate nodes. In particular, we fix the Alice-Bob
distance to dI + dII = 2, and we let both the ratio between

Fig. 9 Average maximum outage secrecy rate as a function of dE with finite-length coding (m = 4096), both Gaussian and discrete (16-QAM)
constellations, and various values of N
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Fig. 10 Average maximum outage secrecy rate as a function of dE with Gaussian constellation, both infinite- and finite-length (m = 128 and
m = 4096) coding, and various values of N

the two distances (dI/dII) and the distance among the
relays vary, i.e.,� = {0.05, 0.1, 0.5}, for dE = 10, ε = 10−4,
and N = 4 relays.
Figure 11 shows the average maximum outage secrecy

rate as a function of dI/dII, and finite-length coding
(m = 4096) with Gaussian signaling. We observe that for
decreasing values of �, the curves tend asymptotically to
a maximum average secrecy rate of 2 b/s/Hz. On the other
hand, as dI/dII tends to infinity, the average maximum

outage secrecy rate tends to zero, as the Alice-relay links
will provide vanishing data rates. When the distance �

tends to zero, all the relay nodes are squeezed in the
same point between Alice and Bob, which represents the
optimal relaying configuration.

6.4 Comparison with other solutions
Figures 12 and 13 provide a comparison between our
resource allocation (denoted as Gale-Shapley, or GS)

Fig. 11 Average maximum outage secrecy rate as a function of dI/dII , various values of �, and finite-length coding (m = 4096) with discrete
(16-QAM) constellations, for dE = 10, ε = 10−4, and N = 4 relays
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Fig. 12 Average maximum outage secrecy rate as a function of dE , with infinite-length coding (m = 4096) and Gaussian constellation, obtained
using GS power allocation, water-filling, and uniform power allocation

strategy and two suboptimal solutions, respectively uni-
form power allocation over the K channels and water-
filling allocation. Various scenarios are considered, i.e.,
infinite-length codes with Gaussian signaling and finite-
length coding with discrete constellations. We also con-
sider that each relay has the same distance from Alice and
Bob, i.e., dI = dII = 0.8, the separation between relays
is � = 0.05, and the number of relays is N = 2, 4, or 8.

Water-filling provides the best possible power allocation
in Eve’s absence, since it assigns more power to the chan-
nels presenting better gains. However, this solution is not
convenient from a security standpoint, since channels that
are good for the legitimate receiver could also be good for
the attacker, thus degrading the secrecy performance. As
predicted, uniform allocation leads to the worst average
secrecy rate for all the considered cases.

Fig. 13 Average maximum outage secrecy rate as a function of dE , with finite-length coding (m = 4096) and discrete (16-QAM) constellations,
obtained using optimal power allocation, water-filling, and uniform power allocation
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7 Conclusions
In this paper, we have derived the secrecy rate of the
Gaussian relay parallel channel under finite-length cod-
ing and discrete constellation constraints, defined as the
maximum rate for which a minimum equivocation rate is
achieved at Eve. Moreover, we have applied a coupled ver-
sion of the Gale and Shapley algorithm to allocate power
within each channel in order to maximize the secrecy rate.
Numerical results show the effectiveness of our resource
allocation approach and show that moderate sizes of both
the constellation alphabet and the codeword length are
sufficient to achieve close-to-optimal secrecy rates for
typical wireless transmission scenarios.

Abbreviations
AWGN: Additive white Gaussian noise; CER: Codeword error rate; CSI: Channel
state information; DF: Decode and forward; iid: Independent identically
distributed; MIMO: Multiple input multiple output; OFDM: Orthogonal
frequency division multiplexing; SNR: Signal to noise ratio

Acknowledgements
The material in this paper was presented in part at the IEEE Conference on
Communications and Network Security (CNS 2015) – Workshop on
Physical-layer Methods for Wireless Security, Florence, Italy, Sep. 2015.

Authors’ contributions
All the authors participated in writing the article and revising the manuscript.
All authors read and approved the final manuscript.

Availability of data andmaterials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle
Marche, Via Brecce Bianche 12, 60131 Ancona, Italy. 2Department of
Information Engineering, University of Padova, Via Gradenigo 6, 35131 Padova,
Italy.

Received: 22 May 2019 Accepted: 15 November 2019

References
1. M. Bloch, J. Barros, Physical-Layer Security. From Information Theory to

Security Engineering. (Cambridge University Press, Cambridge, 2011), p. 357
2. W. K. Harrison, J. Almeida, M. R. Bloch, S. W. McLaughlin, J. Barros, Coding

for secrecy: an overview of error-control coding techniques for
physical-layer security. IEEE Signal Process. Mag. 30(5), 41–50 (2013)

3. S. Tomasin, in Proc. IEEE Conference on Communications and Network
Security (CNS). A Gale-Shapley algorithm for allocation of relayed parallel
wiretap coding channels, (2015), pp. 119–124. https://doi.org/10.1109/
CNS.2015.7346819

4. C.-L. Wang, T.-N. Cho, K.-J. Yang, in Proc. 75th IEEE Vehicular Technology
Conference (VTC Spring). A new cooperative transmission strategy for
physical-layer security with multiple eavesdroppers, (2012), pp. 1–5.
https://doi.org/10.1109/VETECS.2012.6240269

5. Y. Shen, X. Jiang, J. Ma, W. Shi, in Information Technology Convergence, ed.
by J. J. J. H. Park, L. Barolli, F. Xhafa, and H.-Y. Jeong. Secure and reliable
transmission with cooperative relays in two-hop wireless networks
(Springer, Dordrecht, 2013), pp. 397–406

6. S. Luo, H. Godrich, A. Petropulu, H. V. Poor, in Proc. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP). A knapsack problem
formulation for relay selection in secure cooperative wireless
communication, (2011), pp. 2512–2515. https://doi.org/10.1109/ICASSP.
2011.5946995

7. Z. Ding, M. Xu, J. Lu, F. Liu, Improving wireless security for bidirectional
communication scenarios. IEEE Trans. Veh. Technol. 61(6), 2842–2848
(2012). https://doi.org/10.1109/TVT.2012.2197032

8. L. Dong, Z. Han, A. P. Petropulu, H. V. Poor, Improving wireless physical
layer security via cooperating relays. IEEE Trans. Signal Process. 58(3),
1875–1888 (2010). https://doi.org/10.1109/TSP.2009.2038412

9. J. Li, A. P. Petropulu, S. Weber, On cooperative relaying schemes for
wireless physical layer security. IEEE Trans. Signal Process. 59(10),
4985–4997 (2011). https://doi.org/10.1109/TSP.2011.2159598

10. X. Chen, D. W. K. Ng, W. H. Gerstacker, H. Chen, A survey on multiple-
antenna techniques for physical layer security. IEEE Commun. Surv. Tutor.
19(2), 1027–1053 (2017). https://doi.org/10.1109/COMST.2016.2633387

11. R. Bassily, S. Ulukus, Deaf cooperation and relay selection strategies for
secure communication in multiple relay networks. IEEE Trans. Signal
Process. 61(6), 1544–1554 (2013). https://doi.org/10.1109/TSP.2012.
2235433

12. Z. H. Awan, A. Zaidi, L. Vandendorpe, Secure communication over parallel
relay channel. IEEE Trans. Inf. Forensic. Secur. 7(2), 359–371 (2012). https://
doi.org/10.1109/TIFS.2012.2185493

13. D. W. K. Ng, E. S. Lo, R. Schober, Secure resource allocation and scheduling
for OFDMA decode-and-forward relay networks. IEEE Trans. Wirel.
Commun. 10(10), 3528–3540 (2011). https://doi.org/10.1109/TWC.2011.
082011.110538

14. D. W. K. Ng, E. S. Lo, R. Schober, in Proc. IEEE Global Telecommunications
Conference (GLOBECOM). Resource allocation for secure OFDMA networks
with imperfect csit, (2011), pp. 1–6. https://doi.org/10.1109/GLOCOM.
2011.6133580

15. D. W. K. Ng, R. Schober, in Proc. 12th CanadianWorkshop on Information
Theory (CWIT). Resource allocation for secure OFDMA
decode-and-forward relay networks, (2011), pp. 202–205. https://doi.org/
10.1109/CWIT.2011.5872157

16. Z. Yu, Y. Ma, B. Wang, J. Zhao, in Proc. Int. Conf. onWireless Communications
Signal Processing (WCSP). Optimal resource allocation for OFDM wiretap
channel with cooperative jammer, (2012), pp. 1–4. https://doi.org/10.
1109/WCSP.2012.6542965

17. C. Jeong, I.-M. Kim, in Proc. 8th Int. Workshop onMulti-Carrier Systems
Solutions (MC-SS). Optimal power allocation for secure multi-carrier relay
systems, (2011), pp. 1–4. https://doi.org/10.1109/MC-SS.2011.5910728

18. C. Jeong, I.-M. Kim, Optimal power allocation for secure multicarrier relay
systems. IEEE Trans. Signal Process. 59(11), 5428–5442 (2011). https://doi.
org/10.1109/TSP.2011.2162956

19. B. Gui, L. J. Cimini, Bit loading algorithms for cooperative OFDM systems.
EURASIP J. Wirel. Commun. Netw. 2008(1), 476797 (2008)

20. L. Vandendorpe, J. Louveaux, O. Oguz, A. Zaidi, Rate-optimized power
allocation for DF-relayed OFDM transmission under sum and individual
power constraints. EURASIP J. Wirel. Commun. Netw. 2009(1), 814278
(2009). https://doi.org/10.1155/2009/814278

21. T. Wang, L. Vandendorpe, Sum rate maximized resource allocation in
multiple DF relays aided OFDM transmission. IEEE J. Sel. Areas Commun.
29(8), 1559–1571 (2011)

22. K. Bakanoglu, S. Tomasin, E. Erkip, Resource allocation for the parallel relay
channel with multiple relays. IEEE Trans. Wirel. Commun. 10(3), 792–802
(2011)

23. N. Laurenti, S. Tomasin, F. Renna, in Proc. IEEE Int. Conf. Commun. (ICC).
Resource allocation for secret transmissions on parallel Rayleigh channels,
(2014). https://doi.org/10.1109/icc.2014.6883651

24. M. Baldi, F. Chiaraluce, N. Laurenti, S. Tomasin, F. Renna, Secrecy
transmission on parallel channels: theoretical limits and performance of
practical codes. IEEE Trans. Inf. Forensic. Secur. 9(11), 1765–1779 (2014).
https://doi.org/10.1109/TIFS.2014.2348915

25. J. Chen, X. Chen, W. H. Gerstacker, D. W. K. Ng, Resource allocation for a
massive MIMO relay aided secure communication. IEEE Trans. Inf.
Forensic. Secur. 11(8), 1700–1711 (2016)

26. H. Fang, L. Xu, K.-K. R. Choo, Stackelberg game based relay selection for
physical layer security and energy efficiency enhancement in cognitive
radio networks. Appl. Math. Comput. 296, 153–167 (2017)

27. J. H. Lee, Optimal power allocation for physical layer security in multi-hop
DF relay networks. IEEE Trans. Wirel. Commun. 15(1), 28–38 (2016).
https://doi.org/10.1109/TWC.2015.2466091

28. J.-H. Lee, I. Sohn, Y.-H. Kim, Transmit power allocation for physical layer
security in cooperative multi-hop full-duplex relay networks. Sensors.
16(10), 1726 (2016)

https://doi.org/10.1109/CNS.2015.7346819
https://doi.org/10.1109/CNS.2015.7346819
https://doi.org/10.1109/VETECS.2012.6240269
https://doi.org/10.1109/ICASSP.2011.5946995
https://doi.org/10.1109/ICASSP.2011.5946995
https://doi.org/10.1109/TVT.2012.2197032
https://doi.org/10.1109/TSP.2009.2038412
https://doi.org/10.1109/TSP.2011.2159598
https://doi.org/10.1109/COMST.2016.2633387
https://doi.org/10.1109/TSP.2012.2235433
https://doi.org/10.1109/TSP.2012.2235433
https://doi.org/10.1109/TIFS.2012.2185493
https://doi.org/10.1109/TIFS.2012.2185493
https://doi.org/10.1109/TWC.2011.082011.110538
https://doi.org/10.1109/TWC.2011.082011.110538
https://doi.org/10.1109/GLOCOM.2011.6133580
https://doi.org/10.1109/GLOCOM.2011.6133580
https://doi.org/10.1109/CWIT.2011.5872157
https://doi.org/10.1109/CWIT.2011.5872157
https://doi.org/10.1109/WCSP.2012.6542965
https://doi.org/10.1109/WCSP.2012.6542965
https://doi.org/10.1109/MC-SS.2011.5910728
https://doi.org/10.1109/TSP.2011.2162956
https://doi.org/10.1109/TSP.2011.2162956
https://doi.org/10.1155/2009/814278
https://doi.org/10.1109/icc.2014.6883651
https://doi.org/10.1109/TIFS.2014.2348915
https://doi.org/10.1109/TWC.2015.2466091


Senigagliesi et al. EURASIP Journal onWireless Communications and Networking        (2019) 2019:276 Page 18 of 18

29. K. Zhang, M. Peng, P. Zhang, X. Li, Secrecy-optimized resource allocation
for device-to-device communication underlaying heterogeneous
networks. IEEE Trans. Veh. Technol. 66(2), 1822–1834 (2017). https://doi.
org/10.1109/TVT.2016.2566298

30. W. Aman, G. A. S. Sidhu, H. M. Furqan, Z. Ali, Enhancing physical layer
security in AF relay-assisted multicarrier wireless transmission. Trans.
Emerg. Telecommun. Technol. 29(6), 1–14 (2018). https://doi.org/10.
1002/ett.3289

31. M. R. Abedi, N. Mokari, H. Saeedi, H. Yanikomeroglu, Robust resource
allocation to enhance physical layer security in systems with full-duplex
receivers: active adversary. IEEE Trans. Wirel. Commun. 16(2), 885–899
(2017). https://doi.org/10.1109/TWC.2016.2633336

32. A. Kuhestani, A. Mohammadi, K. Wong, P. L. Yeoh, M. Moradikia, M. R. A.
Khandaker, Optimal power allocation by imperfect hardware analysis in
untrusted relaying networks. IEEE Trans. Wirel. Commun. 17(7),
4302–4314 (2018)

33. A. Kuhestani, A. Mohammadi, P. L. Yeoh, Optimal power allocation and
secrecy sum rate in two-way untrusted relaying networks with an
external jammer. IEEE Trans. Commun. 66(6), 2671–2684 (2018)

34. M. Obeed, W. Mesbah, Efficient algorithms for physical layer security in
two-way relay systems. Phys. Commun. 28, 78–88 (2018). https://doi.org/
10.1016/j.phycom.2018.03.007

35. A. Kuhestani, A. Mohammadi, M. Mohammadi, Joint relay selection and
power allocation in large-scale MIMO systems with untrusted relays and
passive eavesdroppers. IEEE Trans. Inf. Forensic. Secur. 13(2), 341–355
(2018)

36. S. Bashar, Z. Ding, C. Xiao, On secrecy rate analysis of MIMO wiretap
channels driven by finite-alphabet input. IEEE Trans. Commun. 60(12),
3816–3825 (2012). https://doi.org/10.1109/TCOMM.2012.091212.110199

37. Z. Mheich, F. Alberge, P. Duhamel, Achievable secrecy rates for the
broadcast channel with confidential message and finite constellation
inputs. IEEE Trans. Commun. 63(1), 195–205 (2015)

38. X. Liu, D. Ma, J. Xiong, W. Li, L. Cheng, in 2016 IEEE 84th Vehicular
Technology Conference (VTC-Fall). Power allocation for an-aided
beamforming design in MISO wiretap channels with finite-alphabet
signaling, (2016), pp. 1–6. https://doi.org/10.1109/vtcfall.2016.7881170

39. Y. Polyanskiy, Saddle point in the minimax converse for channel coding.
IEEE Trans. Inf. Theory. 59(5), 2576–2595 (2013)

40. N. Varnica, X. Ma, A. Kavcic, in Global Telecommunications Conference, 2002.
GLOBECOM ’02. IEEE. Capacity of power constrained memoryless AWGN
channels with fixed input constellations, vol. 2, (2002), pp. 1339–13432.
https://doi.org/10.1109/GLOCOM.2002.1188416

41. E. A. Jorswieck, A. Wolf, in Proc. of Int. Workshop onMultiple Access
Communications (MACOM). Resource allocation for the wire-tap
multi-carrier broadcast channel, (Saint Petersburg, 2008). https://doi.org/
10.1109/ictel.2008.4652697

42. D. Gale, L. S. Shapley, College admissions and the stability of marriage.
Am. Math. Mon. 69, 9–15 (1962)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/TVT.2016.2566298
https://doi.org/10.1109/TVT.2016.2566298
https://doi.org/10.1002/ett.3289
https://doi.org/10.1002/ett.3289
https://doi.org/10.1109/TWC.2016.2633336
https://doi.org/10.1016/j.phycom.2018.03.007
https://doi.org/10.1016/j.phycom.2018.03.007
https://doi.org/10.1109/TCOMM.2012.091212.110199
https://doi.org/10.1109/vtcfall.2016.7881170
https://doi.org/10.1109/GLOCOM.2002.1188416
https://doi.org/10.1109/ictel.2008.4652697
https://doi.org/10.1109/ictel.2008.4652697

	Abstract
	Keywords

	Introduction
	Related works

	Methods and contribution
	System model
	Contribution

	Achievable secrecy rate
	Infinite-length coding with Gaussian signaling
	Finite-length coding with Gaussian signaling
	Infinite-length coding with discrete constellations
	Finite-length coding with discrete constellations
	-Outage achievable secrecy rate

	Single link power optimization
	Infinite-length coding with Gaussian signaling
	Finite-length coding with Gaussian signaling
	Discrete constellations

	Maximum rate power allocation
	Complexity

	Results and discussion
	Impact of eve's distance
	Impact of codeword length
	Impact of relative node distances
	Comparison with other solutions

	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

