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Abstract

balancing.

Server workload in the form of cloud-end clusters is a key factor in server maintenance and task scheduling.
How to balance and optimize hardware resources and computation resources should thus receive more
attention. However, we have observed that the disordered execution of running application and batching
seriously cuts down the efficiency of the server. To improve the workload prediction accuracy, this paper
proposes an approach using the long short-term memory (LSTM) encoder-decoder network with attention
mechanism. First, the approach extracts the sequential and contextual features of the historical workload data
through the encoder network. Second, the model integrates the attention mechanism into the decoder
network, through which the prediction for batch workloads can be carried out. Third, experiments carried out
on Alibaba and Dinda workload traces dataset demonstrate that our method achieves state-of-the-art
performance in mixed workload prediction in cloud computing environment. Furthermore, we also propose a
scroll prediction method, which splits a long prediction sequence into several small sequences to monitor
and control prediction accuracy. This work helps to dynamically guide the configuration for workload
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1 Introduction

With the development of the Internet, many enter-
prises have accelerated and begun to include cloud-
based online services. Because cloud computing can
provide the capacity of on-demand network access, it
enables an EIS or E-Common system to use service
components without software development or refac-
toring, such as servers provided by Amazon, Micro-
soft, and Alibaba. These servers promise high
availability with a probability of 99.95%, as declared
in their SLA (service-level agreement). However, it is
a challenge to keep their service at such a high rate
while allocating as few resources as possible [1, 2].
Thus, predicting the workload helps the maintainers
of the cloud-end cluster to estimate whether the
current resource allocation strategy is sufficient or
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not [3, 4]. Based on these predictions, we can create
corresponding scheduling for resource allocation or
task assignment.

Existing works [5, 6] have proved that workload is a
time sequence. This means that each workload at a time
interval correlates its contextual workloads. Traditional
statistical methods for processing time series data have
been applied to workload prediction, such as auto-
regressive model (AR) [6], moving average model (MA)
[6], and auto-regressive integrated moving average
model (ARIMA) [6]. Although these models have rea-
sonable accuracy, they are highly dependent on the sta-
tionary form of collected data. Additionally, the model
result will be changed dramatically due to different
model parameters, which requires substantial manual
work or experienced maintainer to adjust the parameters
to fit the specific data features [7].

Recently, machine learning methods, as emerging
tools, have been used to predict the workload: for ex-
ample, Bayesian methods [8, 9] and k-nearest neighbor
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(k-NN) [10]. These machine learning—based methods
outperform the accuracy of traditional statistical ap-
proaches, which require only a little manual work. How-
ever, the historical workload values are considered as
independent features, which mean that they ignore the
relationships between the workloads. Fortunately, the re-
current neural network (RNN), a particular form of
neural network, has solved this problem. RNN is de-
signed to learn the internal correlations between data
and their context in a sequence, but few RNN-based
workload prediction methods have been proposed, such
as echo state network [11], basic LSTM network [12],
and GRU encoder-decoder network [13]. Thus, we are
motivated to employ machine learning to the application
areas of workload prediction.

All of the RNN-based methods have high accuracy
in workload prediction of application servers. When
we explore the service deployment of cloud service
providers, we find that their clusters are running for
both applications and batching, and the accuracy of
the above methods drops when predicting such mixed
workloads. Batching is an approach that divides a
time-consuming task into multiple sequential subtasks
to increase efficiency. We notice that, in batch work-
load prediction, the impact of the historical workload
on the current workload is different, and these
methods give the historical sequence the same weight
during feature extraction [14, 15]. Therefore, we
introduce an attention mechanism to address this
problem. When dealing with sequence data, attention
mechanism evaluates the relevancy of the historical
data and gives corresponding weights. In this manner,
the importance of each workload in the historical se-
quence can be recognized. To the best of our know-
ledge, attention-based RNNs have shown their power
in the machine translation domain [16, 17] and have
not been applied to workload prediction.

In this paper, we combine the attention mechanism
with an RNN-based method and based on which LSTM
encoder-decoder network with attention for workload
prediction is proposed. The model contains two LSTM
networks that act as the encoder and the decoder, as
well as an output layer. The encoder maps the histor-
ical workload sequence to a fixed-length vector
according to the weight of each time step supported
by the attention module, namely, the context vector.
Then, the decoder maps the context vectors back to a
sequence. Finally, the output layer transforms the
sequence into the final output. In this paper, our con-
tributions are as follows:

1) Attention mechanism is applied to the RNN-based
model. It enhances the prediction accuracy of batch
workloads during workload prediction.
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2) A scroll prediction method is proposed that divides
a long prediction sequence into several small
sequences to increase the accuracy of the long-term
prediction method.

3) Experiments show that our approach reaches state-
of-the-art performance and can achieve almost the
same prediction accuracy.

The rest of the paper is organized as follows: Related
Works gives a review of related work on workload predic-
tion. Our Approach introduces the technical and conceptual
details of our approach. The contrast experiment and its re-
sult and discussion are presented in Experiments. Finally, the
conclusion is given in Conclusion and future work.

2 Related works

In this section, related works on predicting workload are
divided into linear methods, machine learning methods,
and RNN-based methods.

2.1 Linear method-based workload predictions

In the beginning, a server cluster is designed to increase
the performance and availability of service [18-20].
Under such circumstances, most servers in the cluster
are running the same applications, and the workload re-
flects how many requests are responded to on one ser-
ver. The workload sequence consists of long-term trends
and cyclic changes, which can be regarded as time series
data [21, 22].

To explore the features of historical workload se-
quences, researchers have applied many linear models
[6, 23—-26] for processing time series to workload predic-
tion. Dinda et al. [6] put forward a dataset that contains
four types of UNIX distributed system workload traces.
They use and compare AR, MA, and ARIMA models on
their dataset and find that a simple AR model has the
best predictive power. Wu et al. [23] combine AR model
with Kalman filter for multistep-ahead workload predic-
tion. Calheiros et al. [24] use ARIMA model in software
as a service (SaaS) applications and reduce its impact on
the quality of service (QoS) to its minimum.

These time series methods first transform the non-
stationary time series to stationary time series through k-
order difference methods, where the factor k greatly deter-
mines the final result of the model. Despite the high ac-
curacy with a proper k in time series transformation,
finding that k is difficult when the workload dataset is
large, and this approach requires much manual work.

2.2 Machine learning method-based workload predictions
Cloud computing services enable one host to become
multiple cloud virtual machines through virtualization
technology. Such virtualization technology makes the
workload much more complicated and harder to predict
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Fig. 1 The framework of the LSTM encoder-decoder network with attention for workload prediction

through linear models [27, 28]. Therefore, machine
learning algorithms, which are good at nonlinear prob-
lems, have been studied by researchers to support the
prediction.

Di et al. [8] introduce Bayesian model for future host
load prediction. The model proposes nine features of the
recent historical load to predict the mean load over con-
secutive time intervals. Benhammadi et al. [9] integrate
fuzzy inference and Bayesian inference methods to predict
CPU loads. Liang et al. [10] propose a kNN-based ap-
proach to predict long-term CPU workloads. Cao et al.
[29] use ensemble learning to combine the result of sev-
eral algorithms and dynamically adjust the parameters
with the prediction residual. Singh et al. [30] combine
ARIMA and support vector regression model (SVR) to
adapt to different workload features. Kumar et al. [31] use
artificial neural network to predict workload and adaptive
differential evolution method to enhance the accuracy.
Urgaonkar et al. [32] use dynamic queuing model to pre-
dict resources required in each tier of Internet.

Unlike the linear models, the Bayesian methods and k-
NN methods directly use the history as features to build
various rules mapping the historical workloads to future
workloads. These methods only require a little manual
work for hyper parameter adjustment and can achieve
good accuracy in prediction results. However, these
methods do not consider the correlation between the
workload values of different time steps, which is
improper for batch-workload cloud computing envi-
ronments [33-35].

2.3 RNN-based method-based workload predictions

Recurrent neural network is designed to model the
relationships between the items in the sequence,
which makes it quite suitable to do the workload pre-
diction tasks. Song et al. [12] use basic LSTM net-
work to predict the multistep-ahead workload and
achieve pretty good performance. Peng et al. [13]
propose a GRU-based encoder-decoder network
model to enhance the long-term prediction ability of
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RNNs. The model encodes the historical sequence to
a fixed-length vector and decodes the vector to pre-
dict the future workload value. Huang et al. [36] use
RNN with long short-term memory to analyze user
request logs to predict servers’ performance. Add-
itionally, they proposed a new way to reproduce user
request sequences by RNN-LSTM. Kumar et al. [37]
predict the number of requests with LSTM and
achieve SOTA performance.

Our proposed method uses attention-based LSTM
encoder-decoder network to enhance the prediction for
batch workloads. According to the experimental results,
our method outperforms the previous methods in both
traditional distributed system and mixed cloud comput-
ing environment, and the accuracy score of the mixed
cloud computing environment catches up with that of
conventional distributed system. Furthermore, we put
forward a scroll prediction method that helps prevent
the error from being amplified when the prediction step
goes long.

3 Our approach

Figure 1 shows the complete cycle of workload schedule
adjustment using our workload prediction approach, and
the framework of our model is on the right side in Fig.
1. First, the workload traces are collected from every ser-
ver in the cluster. Our workload prediction model ana-
lyzes these traces and predicts workload change over the
next period of time. A new allocation schedule is then
made and is updated to the load balance server. The
framework of our model is on the right side in Fig. 1.
The model consists of two components: an LSTM-based
encoder-decoder network and an output layer. First, the
time sequence data is inputted into the encoder, where
it will be encoded into the context vector. Then, the de-
coder iteratively generates the intermediate prediction
results for the output layer. Finally, the output layer
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outputs the prediction values of the workload. Given the
input workload value sequence of the last time, step p is
X1, X2, ..., X, the model outputs the workload prediction
of the future time step g as y1, y2, ..., ¥4

3.1 Long short-term memory
Recurrent neural network (RNN) is suitable for process-
ing time sequence data because RNN models the rela-
tionships between the former states and the latter states.
However, the vanilla RNN architecture, which is shown
in Fig. 2a, suffers from “long dependency” problem,
which stops the RNN from processing a long sequence
[38]. Therefore, LSTM network [39], which is capable of
learning the long-term dependencies, is selected in the
model. The architecture of the LSTM cell is shown in
Fig. 2b, where there are a hidden state and three gates in
addition to the vanilla RNN cell.

At each time step t, given the input x,, the calculations
of the current hidden state 4, and the cell state C, in the
LSTM cell are as follows [39]:

fi= O'(Wf hper, %] + bf)
~l’t = O'(Wi . [ht_l,xt] + bl)
C, = tanh(W, - [l 1, %] + b.)
Ci = fxCey + ipxCy
o =0(W, - [he1,%:] + by)
hy = oy tanh(C;)

where ¢ is the sigmoid function and tanh is the hyper-
bolic tangent function. The symbols i, f;, and o, denote
the input gate, forget gate, and output gate, which de-
cides whether to update the cell state with the input, for-
get the memory from the last time step, and output the
memory, respectively. W W;, W,, W¢ and by b;, b,, bc
are the weight matrixes and the biases of the three gates
and the cell state.

~

tanh

(a)

Fig. 2 The architecture of an RNN cell. a The architecture of a vanilla RNN cell. b The architecture of a LSTM cell
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The hidden state vector represents the current state of
the implicit variables of the workload, and the cell state
vector is the accumulated change of the entire historical
workload on the implicit variables. During the calcula-
tion in the LSTM as above, the hidden state and the in-
put jointly decide how the workload at the current time
step impacts the accumulated change of history, i.e., the
cell state, and the three vectors together determine the
updated hidden state, which is also the output of the
LSTM cell.

3.2 LSTM encoder-decoder network

Figure 3 shows the unfolded architecture of the
LSTM-based encoder-decoder network. The model
consists of three parts, an LSTM-based encoder net-
work, an LSTM-based decoder network, and a context
vector. The encoder network encodes the input se-
quence into the context vector, and the decoder net-
work decodes the context vector step by step to
output the prediction value. In general, the encoder
network and the decoder network are independent of
each other, which means that the parameters inside
the LSTM cell are not shared between the encoder
and the decoder.

In the encoding stage, the input workloads are fed
into the LSTM network sequentially. The hidden
state and the cell state are updated when the net-
work reads the input workload value. When the in-
put sequence reaches its end, the hidden state and
the cell state are sent to the context vector, which
represents the overall encoding result of the input
sequence.

The decoder network outputs the predicted se-
quence by iteratively decoding the context vector.
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There are two types of decoders, as shown in Fig. 3a
and b, and they differ based on whether the context
vector takes part in each time step. In the (a) model
[40], the context vector works as the initial state of
the decoder LSTM cell, and the output of the last
time step is taken as the input of the current time
step. The hidden state of the context vector carries
the final state of the implicit variable, and the cell
state summarizes the accumulated change of the en-
tire history. Then, the decoder network continues to
update the hidden state and the cell state, the only
difference being that the input is no longer a ground-
truth workload value. The initial input of the decoder
network is the average workload of the historical
workloads.

In the (b) model [41], the context vector is part of
the input at each time step, where the output of the
last time step and the context vector together form
the input of the current time step. The input se-
quence of the decoder starts with an initial input s,
and the rest of the inputs are the output of the de-
coder in the last time step. The decoding LSTM cell
iteratively reads the input, updates its state and hid-
den state, and outputs its prediction of the current
time step. The output is transformed through the
output layer and is fed back to the decoder network
as the next input.

Obviously, model (a) is simpler and more explain-
able, but it may accumulate errors in the iteration
process. In addition, model (a) tends to converge
with more epochs than model (b) in our early exper-
iments. The advantage of model (b) is more about
its flexibility, which allows changes to how the con-
text vector is calculated during the sequence, whose
typical representative is the attention mechanism.

Encoder
Context Vector

(@)

context vector is connected to each decode step

Decoder

Fig. 3 The unfolded architecture of the LSTM encoder-decoder network. a The context vector is only connected to the first decode step. b The

Encoder Context Vector
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3.3 LSTM encoder-decoder network with attention

The LSTM encoder-decoder network has the ability
to deal with the workload sequence prediction task
when the workload at each time step is simple time
series data. However, only when the hosts in the clus-
ter are doing the same computing job or providing
the same application do the workloads of the cluster
become time series data. In a large cloud computing
environment, compute-intensive jobs are often divided
into multiple subparts, which are also known as batch
workloads. In batch workloads, latter subparts must
wait for the previous subparts to be finished before
they can be carried out.

In such a case, each step in the historical workload
sequence has a different impact on the current
workload. For example, the peak workloads and the
initial workloads of the latter subparts may affect it
greatly, while bottom workloads may have tiny
impacts. Therefore, when modeling the relationships
between the current time step and its context, the
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different weight at each position rather than given
the same weight. A basic LSTM encoder-decoder
network gives the historical sequence the same
weight, so the attention mechanism is introduced to
solve the issue.

The attention mechanism is similar to human be-
havior when reading a sentence in that one tends not
to pay the same attention to each word in the sen-
tence but instead focus on important words. The at-
tention mechanism evaluates how important each part
is by giving a weight to each part in the sequence;
the higher weight is, the more important the word is.
Similar to how the attention operates in sentence
processing, the attention module in our approach
gives each workload in the input sequence different
weight, which represents how much the workload im-
pacts the current workload prediction.

Figure 4 shows the details of the attention module.
The attention module is part of the decoder network
and replaces the context vector as input. In the attention

historical workload sequence should be given module, the context vector ¢; at the i decoding time
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Fig. 4 The architecture of the attention mechanism in the decoder network
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step is computed as a weighted sum of the hidden states
of the encoder network [40]:

T
Ci = Za’ijhj
j=1

The weight a;; of each hidden state /; is calculated by:

_exp(ey)
@ = =F
> k=1 exp(eix)
where
ej = a(Si1,h))

is the correlation value of the output at position i and
the input at position j, where a denotes the scoring func-
tion that evaluates the correlation value. In our ap-
proach, global general attention is selected as the
scoring function, which is computed by [42]:

elj = S,'_j Wﬂhj

where W, is the weight matrix of the scoring function.

From the computation above, the attention mechan-
ism is more like a selection process. In this mode, the
system regards the implicit variables of a workload as
the composition of its historical workloads, and the
weight of each historical workload represents its impact
on the current workload. It is a more advanced form of
searching for similar historical situations: during the
training process, the general attention is trained to
memorize how much the current workload and the his-
torical workload are correlated under all circumstances
in the training set, and the attention mechanism has
learned how to select the correlated history after the
training.
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3.4 Deep LSTM encoder-decoder network

LSTM Encoder-Decoder Network illustrates the
LSTM encoder-decoder framework, and Fig. 3 shows
the two types of single-layer encoder-decoder net-
work. However, when the relationship between the in-
put and its context is complex, a single-layer network
may not be sufficient to express the features. The
deep LSTM encoder-decoder network extracts the im-
plicit features from low level to high level with the
layer going deeper, and the high-level features are
synthesized by low-level features and are more likely
to lead to workload change. Therefore, the encoder-
decoder network can be stacked up to form a deep
architecture to model the more complex features, as
shown in Fig. 5.

During the encoding process, the deep layers take
the output sequence of the former layer as their input
sequence. As in the example of the three-layer
encoder-decoder network in Fig. 5, the LSTM cell of
the second layer is fed with the output of the first
layer, and the third layer uses the output of the sec-
ond layer as the input sequence. At each time step t,
the state and the hidden state of the LSTM cell are
updated from shallow layer to deep layer, where the
deepest layer may contain the highest-level feature of
the input sequence. After inputting the last of the in-
put sequence, each layer of the encoder separately
sends its state and hidden state to the context vector.
The context vectors of the network are independent
among the layers, which are the encoding of its be-
longing layer.

The decoder network works almost the same as the
single-layer decoder network does except for the multi-
layer computing. There are also two types of decoder in
the deep form, with the difference between them being
whether the context vector only joins the first time step
or joins each time step. In the multilayer decoder,

Decoder
Encoder

Context Vector

(@)

Encoder

I

I

: Vector Decoder
I

(b)

Fig. 5 The unfolded architecture of a deep LSTM encoder-decoder network. a Single-layer network. b Three-layer network
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regardless of how the context vector joins the cell updat-
ing, the input is sent into the first layer, whose output
works as the input of the second layer. Eventually, the
output of the last layer is transformed through the out-
put layer and is fed back to the decoder network as the
next input.

There is a trade-off of the architecture, that is, the
deep LSTM encoder-decoder network has better per-
formance than the single-layer LSTM encoder-
decoder network when dealing with a long sequence,
but it incurs more than twice the time cost compared
to the single-layer network (Fig. 5). Nevertheless,
when the sequence is not so long, the deep LSTM
encoder-decoder network can easily get overfitting
due to its complex model. The performance of the
single-layer network and multilayer network will be
discussed in Experiments.

3.5 Output layer

The output layer transforms the output of the decoder
network into the final prediction value of the model. Be-
cause the output layer actually works as a regression
function rather than a classifier, the traditional selection
of softmax function and argmax function is inappropri-
ate in our model.

The output layer is a three-layer perceptron network.
The activation function of the first two layers is a para-
metric rectifier linear unit (PReLU), which is calculated
as follows [43]:

f(x) = max(ax,x)

where a is a parameter that is updated through the
training process. PReLU is proved to have better per-
formance than ReLU or Leaky ReLU (a special form
of PReLU where the parameter a is set to 0.01), and
it only adds a few parameters to the model, which
may not increase the risk of overfitting. The third
layer is activated by the sigmoid function to constrain
the prediction value to the range between 0 and 1:

1

y=f(x)= 1tebx
where y is the final prediction value of the future
workload.

3.6 Model training

The goal of the encoder-decoder network is to esti-
mate the conditional probability of the output se-
quence when given the input sequence. The attention
module does not change the goal of the entire
encoder-decoder network; it only impacts the context
vector. Denoting the context vector of the decoder
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network at position t as ¢, the conditional probability
of the output sequence is [41]:

q
p<y17y27~~7yq|x17xz,~~7xp;9) o | ECACRIR T
t=1

The encoder and decoder are jointly learned by
maximizing the log-likelihood of the output sequence,
which is:

6 = argznax Z log(p(yl,y27 oo V|1, %2, ey 25 9))

The parameters inside the LSTM cell are updated
through a backpropagation algorithm. The encoder net-
work and the decoder network are jointly learned, but
their parameters are independently updated. Denoting
the loss function as L, the parameter updating at time
step T is as follows [39]:

oL _§naL
oW oW

where W can be W; W;, W,, and Wc. The detailed for-
mulas of the update process of the four matrixes are the
following [39]:

oL _ 5~ 2L 3G, of,
oWy  £=£9C; df , oW
oL I~ oL aC, diy

T
=Y [6C.0C10f,0(1-f )h!
=0

T
= Y- [sc.oceio(i-i)|i

oW; 4= 0dC, diy OW; 4

OL 0L ok do, <& T
=St N h 1-

W, £ 0h do, oW, “= [61,© tanh(C,)Oo:(1-00)l,

A _§019G 6
BWC pard dC; aa BWC

5ct@it@<1-(a)2>]hf

The parameters of the output layer contain « in the
PReLU formula and 6 in the sigmoid function. The par-
ameter a is updated through gradient descent with
momentum:

t=0

oL
Aot = pAa'™t + e
a = ulAa +eaa

where the momentum Aa’~ ' is the change in « at the
last gradient descent step ¢-1, y is the factor for the mo-
mentum, and ¢ is the learning rate of the system. The
parameter of the last layer’s sigmoid function is updated
with simple gradient descent:

oL
A0 =e—
‘90

The loss function is the Huber loss [44] with L2
regularization:
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— O\ 2 — i
- 1 <y(i) _y(l)) for‘ Y-y <8
L(y9,50) =4 21 1
5‘ () —y(D ’_ 5 52 otherwise
+ P

where y is the ground truth of the /™ sample, y( is
the prediction value of the i™ sample, and \ repre-
sents the parameters of the entire model. Huber loss
is a smoother form of squared error loss, which is
less sensitive to the outlier samples than squared
error loss.

The parameter estimation method is mini-batch gradient
descent, and the Adam optimizer [45] is selected to help
the model to converge. The gradient update at each time
step is calculated as follows in the Adam optimizer [45]:

8 = VG](et—l)
my = Bymey + (1=, )g,
Ve = Bavee1 + (l—ﬁz)g?
A mi
my —

1-4)
N Vi
vV, =
C1-8
6, = 9t-1—1’/*L

\/f/t‘f'e

where 7 is the learning rate, 5; and f3, are the learning
rate decay factors, and ¢ is a tiny number to avoid the
divisor ever equaling 0. In the Adam optimizer, the mov-
ing average of the gradient and squared gradient are cal-
culated as m, and v,. 71; and V; are the bias correction of
m,; and v, because the moving average tends to have a
large bias in the first few steps.

4 Experiments

In this section, experiments are carried out to demon-
strate the effectiveness of our approach. First, in Datasets
and Preprocessing and Parameter Setting, the prepar-
ation of the experiments will be introduced, which in-
cludes detailed statistics, descriptions of datasets, and
the parameters of our model. Then, in Evaluation Met-
rics and Baseline Methods, the evaluation metrics and
other workload prediction models are introduced. Next,
the contrasting experimental results of our model and
baseline methods on the datasets are discussed in
Comparison of the Experimental Results and Discus-
sion. A few more discussions about the model’s in-
trinsic structures are presented in Discussion of
History Window Length and Prediction Sequence
Length and Trade-offs of the Deep Model and Atten-
tion Mechanism. Finally, a discussion about scrolling
prediction is provided in Discussion of Scrolling
Prediction.
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4.1 Datasets and preprocessing

In this paper, two datasets collected from real cloud environ-
ments are used to evaluate the performance and verify the
effectiveness of our method, Alibaba cluster-trace-v2018*
and Dinda”.

Alibaba cluster-trace-v2018 is provided by the Alibaba
Open Cluster Trace Program and is the new version that
contains the traces of approximately 4000 machines in a
period of 8 days. Each machine in the cluster provides both
long-running applications and batch workloads. The work-
load change through time of one host is shown in Fig. 6.

The Dinda workload dataset is collected by Carnegie
Mellon University, whose traces were collected from late
August 1997 to March 1998 on roughly the same group
of machines. The Dinda dataset consists of four types of
workload, which refer to four different runtime scenar-
ios, the descriptions and statistics of which are shown in
Table 1.

Before putting the data into our model, it is prepro-
cessed through several stages. First, normal values in
both datasets are scaled to a range from 0.1 to 0.9 by the
minimum-maximum scaler:

% = LWL + 225 ypy [ wL)

Xmax —¥min

where X, and X, refer to the minimum value and
maximum value of the dataset. LWL and UPL are the
lower and higher limits of the target range, which are set
to 0.1 and 0.9, respectively.

Second, abnormal values are replaced with specified
values. For the Alibaba dataset, whose abnormal values
are 101 and - 1, the substitution is set to 0 and 1, re-
spectively, and represents machine failures caused by
physical reasons and workload overflow.

4.2 Parameter setting
The hyper parameters of our approach are presented in
Table 2.

The hyper parameters are determined in multiple
ways. First, the three hyper parameters concerning
the architecture, history window length, and dimen-
sion of the hidden state in the encoder network and
decoder network are selected via grid search. The grid
search of the history window length is conducted
among p € {12,18,24,30,36,42,48}, and the dimension
of the hidden state in the encoder and decoder is
searched among {16,32,64,128}, while the prediction
step is fixed to 12. The length of the prediction se-
quence, i.e., the prediction step, is a variable whose
impact on the accuracy will be discussed in

'https://github.com/alibaba/clusterdata
*http://www.cs.cmu.edu/~pdinda/Load Traces/


https://github.com/alibaba/clusterdata
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Fig. 6 The workload of one host in Alibaba cluster-trace-v2018. CPU load: The CPU workload of one host that changes from 0 to 1. The

I I
410000 420000

Discussion of History Window Length and Prediction
Sequence Length.

The other hyper parameters concerning model
training are set according to prior works and some
tuning. Batch size is set to the limit of the experi-
ment device, where 128 is the max size for which the
server does not go out-of-memory. The factor for
momentum is set to 0.8 according to [43], and § in
the Huber loss function is set to 1.35 according to
the distribution of outliers. The three factors in the
Adam optimizer, ie., the initial learning rate x and

Table 1 Description of the Dinda workload dataset

Stddev
0.54

Traces Mean

1,296,000 1

Name
Axp0

Description

A heavily loaded, highly
variable interactive machine

on the PSC cluster.
Axp7 A more lightly loaded batch 1,123,200  0.12 0.14
machine on the PSC cluster
that has interesting epochal

behavior

Sahara A moderately loaded, big 345,600 022 033

memory compute server
in the CMCL

A moderately loaded 345,600 049 0.5

desktop machine.

Themis

two factors for moving average B; and f3,, are set fol-
lowing [13, 45, 46].

4.3 Evaluation metrics

To evaluate the effectiveness of the workload predic-
tion approaches, three metrics are considered, which
are the mean absolute error (MAE), root mean
squared error (RMSE), and mean absolute percentage
error (MAPE). These metrics are computed as
follows:

Table 2 Hyper parameters of the LSTM encoder-decoder
network with attention

Hyper parameter Value
History window length 18
Dimension of hidden state in encoder 64
Dimension of hidden state in decoder 64
Batch size 128
Factor for momentum u 08

6 in Huber loss function 135
Initial learning rate n 0.001
Factor for moving average $3; 09
Factor for moving average 3, 0.999
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Among the three metrics, MAE and RMSE are
scale-dependent, and MAPE is scale-independent,
which denotes the Manhattan distance, Euclid dis-
tance, and deviation proportion between the ground
truth value and the prediction value. For each metric,
the performance of a model is better when the metric
gets a lower value.

In addition to the three metrics for regression tasks,
root mean segment squared error (RMSSE) is also
used to evaluate the models. RMSSE is a traditional
metric for quantifying the prediction performance and
was put forward in [8]. Because the actual workload
is hard to predict in the past, RMSSE evaluates the
error of the average workload between the ground
truth value and the prediction. RMSSE is computed
as follows:

1 )
RMSSE =, |- (L=L;
DINER

i=1

where s; = b2, s=3"" s, b is the basic window
length, and s; is the separate segment; /; and L; denote
the prediction value and the ground truth value, respect-
ively; and # is the number of segments.

4.4 Baseline methods
To verify the effectiveness of our approach, several base-
line methods are selected for comparison.

ARIMA: The auto-regressive integrated moving aver-
age model (ARIMA) [6] is a traditional statistical model
for time series data prediction. First, the model analyzes
the time series data and transforms the non-stationary
time series to stationary time series data through the k-
order difference method, which is the key procedure of
ARIMA. Then, according to the auto-correlation func-
tion and the partial autocorrelation function of the sta-
tionary time series, the order p for the lags of the auto-
regressive model and the order q for the lags of the
moving average model are determined. Finally, the least-
squares method is applied to parameter estimation.

PSR + EA-GMDH: The phase space reconstruction
(PSR) method combines the group method of data hand-
ling based on evolutionary algorithm (EA-GMDH) [47],
a model that contains two stages of works. First, the
model reconstructs the workload into multidimensional
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phase space. Then, the result is fed into the EA-GMDH
network, where an evolutionary algorithm is responsible
for adjusting the parameters of the model and finally
outputting the prediction sequence.

LSTM: The basic long short-term memory network
[12] is a recurrent neural network that uses LSTM as
the computing unit. Unlike the encoder-decoder archi-
tecture, basic LSTM network outputs the prediction
workload of the next time step when fed the current
workload value.

GRUED: The gated recurrent unit (GRU) encoder-
decoder model [13] is an RNN-based encoder-decoder
network similar to ours. The differences are that our
model uses LSTM rather than GRU and that our model
is equipped with attention module.

4.5 Comparison of the experimental results and
discussion

The performances of our approach and baseline
methods for the Alibaba dataset are shown in Table 3,
and the results for the Dinda dataset are shown in Fig. 7,
where both results are the average value of five experi-
ments. All of the models are used to make a 12-step
prediction.

From Table 3, we can see that three RNN-based
methods, basic LSTM, GRUED, and our model, are all
better than the two non-RNN methods on both the Ali-
baba traces and Dinda dataset. Though the ARIMA
model has a perfect theoretical basis, we find it hard to
actually transform the historical workload sequence into
its stationary form, which prevents the error from get-
ting lower. The problem of PSR + EA-GMDH is that the
model cannot make use of the long-term historical
workload efficiently, so the model fails to achieve an ac-
curate prediction when the prediction step is 12 steps
long.

Among the three RNN-based methods, two models
with an encoder-decoder architecture, GRUED, and our
approach, score better than basic LSTM, which suggests
the effectiveness of the encoder-decoder architecture. It
is because the encoder network can not only extract the
hidden features of the context but also extract that of
the overall sequence, and the decoder network can select

Table 3 Workload prediction result of baseline methods and
our approach on Alibaba cluster-trace-2018

Model Alibabax 1072

MAE RMSE MAPE RMSSE
ARIMA 7016 8337 33.126% 8.272
PSR + EA-GMDH 7.021 8346 33.174% 8311
LSTM 5.756 6.903 28.031% 6.014
GRUED 4371 5211 24.362% 4432
Our model 3.520 4134 19.529% 3.815
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Fig. 7 Workload prediction RMSE of four types of clusters in the Dinda dataset. axp0: The orange bar, which is listed at the 1st position from left to
right in each method section, is the mean RMSE of five experimental results on the axp0 trace. axp7: The green bar, which is listed at the 2nd position
from left to right in each method section, is the mean RMSE of five experimental results on the axp7 trace. sahara: The purple bar, which is listed at the
3rd position from left to right in each method section, is the mean RMSE of five experimental results on the sahara trace. themis: The purple bar,
which is listed at the 4th position from left to right in each method section, is the mean RMSE of five experimental results on the themis trace

the hidden features when outputting the prediction
value. Our model outperforms GRUED because the at-
tention mechanism enhances the decoder network, i.e.,
the decoder with attention, can evaluate which historical
workload impacts the current computing step most,
which is suitable for the batch workloads.

To study how the actual error at each position in-
creases in the prediction sequence, we calculate the
RMSE at each position in the 12-step prediction se-
quence of our model, GRUED, and LSTM, which is pre-
sented in Fig. 8. Additionally, to give an intuitive view of
the error change, in Fig. 9, we put the ground truth and
the prediction value together and present the prediction
curves of the three methods.

In Fig. 8, there are three polylines, which represent the
RMSE changes of three RNN-based methods at each
position in the 12-step prediction. The RMSE values of
all three methods tend to increase as the position in the
prediction sequence becomes larger. Our model has the
lowest error rate at each position in the prediction
among the three RNN-based methods. Moreover, our
method also has the slowest error growth rate. From the
1st position to the 12th position, the RMSE of our
model increases by approximately 0.52x1072, while
GRUED and LSTM increase by approximately 0.66x10>
and 0.87x1072, respectively. This result proves that the
attention mechanism is effective in mitigating error
amplification in the long-term prediction.

In the three subfigures in Fig. 9, the ground truth workload
and the predicted workload are put together, which are the
black polyline and red polyline, respectively. In Fig. 9a, our
model, the red polyline, is close to the black one, and most
directions of change are predicted correctly. In Fig. 9b, for
GRUED, the deviation of the predicted workload is slightly
larger than that of our model, and a few directions of change
are wrong. In Fig. 9c, LSTM, the red polyline, is almost not
following the black polyline. There are several predictions
with significant deviations, and the prediction of the direc-
tion of change is also unsatisfactory. The two models with
the encoder-decoder architecture, ours, and GRUED have
lower deviations than LSTM, which indicates that the
encoder-decoder architecture is effective in reducing devia-
tions. It demonstrates the effectiveness of the attention
mechanism in that our model has fewer errors when predict-
ing the direction of change compared to GRUED.

To investigate the impact of the prediction sequence
length on the prediction accuracy, we fix the history
window length to 18, and the prediction length varies
from 4 to 24 with a step of 4. Because the ARIMA
model and PSR + EA-GMDH model are weak in pro-
cessing the long historical workload sequence, the ex-
periment only compares the three RNN-based models.
Figure 9 shows the overall RMSE, the mean RMSE of
the entire prediction sequence, of our model, and the
other two RNN-based models as the prediction sequence
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Fig. 8 RMSE of three RNN-based methods at each position in a 12-step prediction sequence. Our method: The black line with square symbols is
the RMSE curve of our method at each position in a 12-step prediction sequence. RMSE is calculated over the entire validation set. GRUED: The
red line with dot symbols is the RMSE curve of GRUED at each position in a 12-step prediction sequence. RMSE is calculated over the entire
validation set. LSTM: The blue line with triangle symbols is the RMSE curve of LSTM at each position in a 12-step prediction sequence. RMSE is
calculated over the entire validation set

J

grows longer from 4 to 24 with an interval of 4, where
24 is 1.5 times the history window length.

From Fig. 10, it is obvious that our method has a flat-
ter growth curve than the other two RNN-based models.
Both GRUED and LSTM have the growth elbow at a
length of 12, and our method begins to show a clear
growth trend at 16. Moreover, the growth trend of our
approach is slower than those of the GRUED and LSTM.
The RMSE values increase between 4-step prediction
and 24-step prediction of our model is 0.58x1072, while

that of GRUED and LSTM is 0.98x10 and 1.11x1072,
respectively.

An explanation of the phenomena in Figs. 8, 9, and 10
is that, when the prediction step gets longer, prediction
error increases with each step, and the current step pre-
diction amplifies the previous error. When the decoder
with attention is decoding, the attention mechanism
gives each workload in the historical sequence a weight
to help decoding; thus, each prediction value sticks to
the history, and the error may not be amplified very

~——ground truth
—— our method

cpu load
°
8
cpu load

—— ground truth’
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o
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Fig. 9 Workload prediction results on a period of traces over the Alibaba dataset. a Our model. The red line in sub-figure (a). The segment between 19
and 30 is the predicted workload value from our method. b GRUED. The red line in sub-figure (b). The segment between 19 and 30 is the predicted
workload value from GRUED. ¢ LSTM. The red line in sub-figure (c). The segment between 19 and 30 is the predicted workload value from LSTM
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Fig. 10 Overall RMSE of three RNN-based models with different prediction sequence lengths on the Alibaba dataset. Our method: The black line
with square symbols is the RMSE when our method is conducted with different prediction sequence lengths. RMSE is calculated over the entire
validation set. GRUED: The red line with dot symbols is the RMSE when LSTM is conducted with different prediction sequence lengths. RMSE is
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quickly. However, when the prediction step is too long,
the prediction value is less relevant to history, and the
attention mechanism will fail to maintain the error rate.

4.6 Discussion of history window length and prediction
sequence length
In Parameter Setting, we introduced how the parameters
of our model are selected in the contrasting experi-
ments. When the prediction sequence length is 12, the
historical sequence length is searched among p € {12,18,
24,30,36,42,48} and the history window length with the
best performance is 18. The best history window length
being 18 does not mean that a longer history window
length will increase the error, but a history window
length of 18 is long enough in predicting a 12-step fu-
ture workload. In terms of machine learning theories, a
longer historical sequence leads to higher overall model
complexity, and then it is easier for the model to get
overfitting. Table 4 shows the RMSE of different history
window lengths for the training set and the validation
set when the prediction sequence length is fixed to 12.
In Table 4, the training set RMSE gradually declines
and finally converges at approximately 1.753x107% how-
ever, the minimum validation set RMSE appears be-
tween the 18th step and the 30th step, and the RMSE
begins to grow after the 30th step. These statistics show

that the well-fitting range of the 12-step prediction
model is between 18 and 30, and then the model is
overfitting.

To study the correlation of the prediction sequence
length and history window length when the model is
well-fitted, more cases are explored in Table 5, where a
history window length is a well-fitting length when its
relative RMSE ratio over the best RMSE is less than 1%.
The grid search is conducted between 1 and 2 times the
prediction sequence length with interval 2.

Table 4 RMSE of different history window lengths for the
training set and validation set when the prediction sequence
length is 12

History window  Trainingx10~  Validationx10™?  Relative ratio over

length the best
12 2.165 4308 421%
18 1.819 4.134 0

24 1.786 4.137 0.07%
30 1.792 4.135 0.02%
36 1.753 4141 0.16%
42 1.757 4.164 0.73%
48 1.751 4.187 1.28%

The RMSE on validation set in italic is the best result
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Table 5 The best-fitting history window length of different
prediction sequence lengths; minimum well-fitting is the history
window length that is the minimum in the well-fitting cases

Prediction sequence Best-fitting Best-fitting Minimum
length RMSEX10~2 well-fitting
12 18 4134 18

16 28 4121 22

20 32 4179 28

24 40 4231 34

From Table 5, compared to the RMSEs in Fig. 10, we
can see that, when predicting the same steps of the fu-
ture workload, the model with a longer historical win-
dow has a lower error rate. Alternately, the values in the
minimum well-fitting column in Table 5 are quite near
to 1.5 times the prediction sequence length, which
means that predicting multistep workload in the future
with our approach only needs a 1.5-times-long historical
sequence.

4.7 Trade-offs of the deep model and attention
mechanism

In this section, we will discuss the trade-offs of the deep
model and attention mechanism. Table 6 shows the
workload prediction error of the four models, the single-
layer model without attention, our proposed attention-
based single-layer model, the deep model without atten-
tion, and the attention-based deep model, where the
deep model consists of a three-layer LSTM encoder and
three-layer LSTM decoder.

The deep models reduce the root mean squared
error by 9.3% and 12% in the Alibaba trace dataset,
respectively, compared to the single-layer model with
and without attention module, which proves the pre-
dictive power of the deep model. However, in the
experimental result of the Dinda themis dataset, a
less complicated workload trace than Alibaba, the
performances of the deep model and single-layer
model are almost the same. Such phenomenon indi-
cates that the complexity of the deep model exceeds
the complexity of the trace prediction task in the
conventional distributed cluster. When comparing
the models with and without attention, we can find

Table 6 Workload prediction RMSE of four models

Model Alibabax10? Dinda themisx10~
Single w/o attention 4972 2217
Single 4.134 2.105
Deep w/o attention 4375 2073
Deep 3.752 2.081
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that the attention-based single-layer model and deep
model have 17% and 16.3% less error, respectively,
for the Alibaba trace dataset than the model without
attention, which proves the effectiveness of the at-
tention mechanism in predicting the workload of
clusters running both long-term applications and
batch workloads. The four models have almost the
same prediction accuracy in the Dinda themis data-
set, which means that the attention mechanism does
not improve the predictive power of the traditional
distributed cluster and does not have a negative im-
pact on the prediction.

Though the deep model has proved itself, the extra
cost of carrying out a deep model requires discussion. In
a three-layer deep model, the calculation is roughly three
times that of a single-layer model. Because the recurrent
neural network is hard to parallelize and the deep model
has difficulty computing each layer in parallel, the
deep model takes approximately three times as much
time as a single-layer one. Furthermore, a deep
model has many more parameters than a single-layer
model, which requires more epochs to converge. The
convergence curves of the four models are presented
in Fig. 11.

From Fig. 11, it is obvious that the models without
attention converge faster. The single-layer model
without attention converges 1 epoch earlier than the
model with attention, and the deep model without
attention converges 3 epochs earlier than its atten-
tive peer. Another phenomenon is that the three-
layer network requires twice the training of the
single-layer network. The single-layer network with
attention converges at approximately the 12th epoch
during the training, and the three-layer network with
attention converges at the 25th epoch, where the
three-layer network requires twice the training of the
single-layer network. Furthermore, more local min-
imums, where, in Fig. 11, the adjacent RMSE change
over the epoch is tiny, are encountered during con-
vergence of the three layers than for the single-layer
network.

4.8 Discussion of scrolling prediction

From the result in Comparison of the Experimental Re-
sults and Discussion, we can see that the RMSE in-
creases when the prediction step grows. To reveal the
increase of the error rate, scroll prediction is proposed.
In scroll prediction, a long prediction sequence is di-
vided into several short sequences, and each sequence is
predicted in order, with the former sequence added to
the historical sequence. For example, if the prediction
sequence is yi, Yo, ..., Y12, we divide it into two se-
quences, ¥1, ¥z, ---» Y6 and ¥z, ¥s, ..., y12. Given the histor-
ical sequence x, x5, ..., 15, the first sequence predicted
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Fig. 11 Loss change in the process of convergence. single att: The black line is the loss curve of the single-layer LSTM encoder-decoder network
with attention. deep att: The red line is the loss curve of the three-layer LSTM encoder-decoder network with attention. single: The blue line is
the loss curve of the single-layer LSTM encoder-decoder network without attention. deep: The green line is the loss curve of the three-layer LSTM
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is ¥1,%5, ..., 7. Then, the first sequence is added to the
historical sequence as x7,xg, ..., %18, Y1, V3, ---» ¥, and the
second sequence is predicted with the new historical
sequence. Table 7 shows the experiment result of
scroll prediction, where 24-step prediction is carried
out with 18-step history, and the 36-step result is
predicted with a history window length setting of 36.

The experimental result shown in Table 7 demon-
strates the effectiveness of the scroll prediction method.
Compared with the RMSE of the long 24-step prediction
with no scrolling, the scroll prediction with 16 steps and
8 steps decreases the error rate by approximately 1.2%.

Table 7 RMSE of scroll prediction with different prediction
modes, where Origin-a means the result of a-step prediction is
carried out with no scrolling and Scroll-b&c[&d] means the
result is predicted by cutting the long sequence into small
sequences with b-step and c-step or b-step, c-step, and d-step

Overall RMSEx1072

Prediction mode

Origrin-24 4.602
Scroll-16&8 4.549
Scroll-12&12 4415
Scroll-8&8&8 4421
Origin-36 5617
Scroll-24&12 5453
Scroll-12&12&12 5231

The scroll prediction with two 16-step and three 8-step
predictions reduces the error rate by approximately 4%.
The error reduction is more obvious in the longer-term
prediction. The scroll with 24-step and 12 step predic-
tion and with three sequence 12-step prediction have ap-
proximately 3% and 6.9% lower RMSE values,
respectively.

To get a more intuitive view of improvements of the
scroll prediction method, we put the prediction work-
load curve and the ground truth workload together in a
graph, as shown in Fig. 12.

From Fig. 12, we can see that, in the first 12-step
prediction segment, the prediction workload curves
of all three modes are close to the ground truth
workload. The trend extends to the next segment in
(b) Scroll-24&12 and (a) Scroll-12&12&12, and (c)
Origin mode starts to loss accuracy. In the last 12-
step segment, it is obvious that (a) Scroll-
12&12&12 outperforms the other two prediction
modes.

5 Conclusion and future work

In this paper, we propose a novel approach for work-
load prediction. The LSTM encoder is used to extract
the hidden features of the historical sequence and
predict the workload. Then, the attention mechanism
is applied to the decoder network to enhance the
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Fig. 12 Workload prediction results with/without the scroll prediction method. a Origin model for 36-step prediction. origin-36: The red line in
sub-figure (a). The origin-36 line shows the predicted values of the origin model for 36-step prediction not using scroll prediction. scroll-24&12:
The red line in sub-figure. b Scroll on two sequences with 24-step and 12-step prediction, respectively. b The scroll-24&12 line shows the pre-
dicted values obtained via scroll prediction by splitting the prediction sequence with a length of 12 into two sequences with lengths of 24 and
12. ¢ Scroll on three sequences with 12-step prediction. ground truth: The black line in all three sub figures. Ground truth is the real work-load in
the dataset. Scroll-12&12&12: The red line in sub-figure (c). The scroll-12&12&12 line shows the predicted values obtained via scroll prediction by
splitting the prediction se-quence with a length of 12 into three sequences with lengths of 12

()

model’s batch workload prediction ability. The pro-
posed model has been evaluated in both a traditional
distributed cluster environment and mixed cloud en-
vironment, and the experimental results demonstrate
that our model achieves state-of-the-art performance.
Moreover, we also propose a scroll prediction method
to reduce the error occurring during long-term pre-
diction, which splits a long-term prediction task into
several small tasks. This approach can be used to re-
lieve the problem of superimposed errors so that they
may be amplified

In future work, we will study the use of batch DAGs
to support the model for batch workload predictions,
through which we would like to see more effective task
scheduling. Moreover, the accuracy of the long-term
forecast will be quantitatively verified by using probabil-
istic model checking considering the factors of nondeter-
minism and time constraints.
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