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Abstract

Based on the characteristics and data security requirements of the cloud environment, we present a scheme for a
multi-security-level cloud storage system that is combined with AES symmetric encryption and an improved
identity-based proxy re-encryption (PRE) algorithm. Our optimization includes support for fine-grained control and
performance optimization. Through a combination of attribute-based encryption methods, we add a fine-grained
control factor to our algorithm in which each authorization operation is only valid for a single factor. By reducing the
number of bilinear mappings, which are the most time-consuming processes, we achieve our aim of optimizing
performance. Last but not least, we implement secure data sharing among heterogeneous cloud systems. As shown
in experiment, our proposed multi-security-level cloud storage system implements services such as the direct storage
of data, transparent AES encryption, PRE protection that supports fine-grained and ciphertext heterogeneous
transformation, and other functions such as authentication and data management. In terms of performance, we
achieve time-cost reductions of 29.8% for the entire process, 48.3% for delegation and 47.2% for decryption.
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1 Introduction
1.1 Motivation
Cloud computing has provided very important support
for information use by government agencies and enter-
prises. Security issues have restricted the development
of public cloud services[1], and in particular, the prob-
lem of how to protect the privacy of users has become a
significant factor in their reluctance to adopt cloud com-
puting[2, 3]. Most existing solutions only focus on a single
type of threat, and this has given rise to certain problems.
Recently, the protection of data privacy for users of

cloud storage has become one of the most critical issues
in public cloud applications and has impeded the rapid
development of cloud services. There are still many weak-
nesses in the current methods for the protection of pri-
vate user data in cloud environments [4, 5]. Theoretical
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research has developed many algorithms for cloud stor-
age security requirements, such as distributed systems
with information flow control (DIFC) [6], attribute-based
encryption (ABE) [7], proxy re-encryption (PRE) [8],
fully homomorphic encryption [9], ciphertext search algo-
rithms, and so on. However, the most common way to
share stored ciphertext is to download the ciphertext data,
decrypt it into plaintext, and then re-encrypt it before
sending it to users to share. This process consumes a lot of
network and computing resources and loses the advantage
of cloud storage [10, 11].
With regard to the security issues around the privacy

of users’ data in the cloud environment [6], and after
investigation and study of the inadequacy of the existing
solutions, we aim to develop a scheme that can pro-
tect data privacy in the cloud environment. This scheme
should be able to resolve the core issues preventing users
from trusting cloud services; in other words, we aim to
allow the users themselves to have control over their data
file. Simultaneously, from a practical point of view, basic
fine-grained control must be implemented, and there is
also a need to carry out optimization to achieve good
performance and compatibility [12–14].
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1.2 Methodology
We observe that all of the existing methods of protect-
ing a user’s data in a cloud environment have limitations
to a greater or lesser extent, and we therefore propose a
scheme that can resolve all of these problems, including
key control, fine-grained control, revoking of permissions,
performance optimization, and compatibility.
Firstly, in our scheme, each user has a pair of identity-

based encryption (IBE)-type private and public keys, and
some users may also have another pair of public key
encryption (PKE)-type private and public keys. These are
all generated by a trusted third party, and all private keys
are kept by users themselves. There is never a need to
tell other users the private key. When a user updates data
in the cloud, he or she can encrypt these data using the
IBE-type public key and can compute a re-encryption key
that does not leak the user’s secret key. The proxy also
cannot obtain the plaintext during re-encryption. We also
add fine-grained control, since each time the user com-
putes the re-encryption key, this applies only to the data
of the designated type. The proxy cannot transform data
of one type to a ciphertext using a re-encryption key of the
wrong type.
Secondly, our scheme can transform IBE-type cipher-

text to PKE-type ciphertext; this feature means that
our scheme has good compatibility, and it is straight-
forward to integrate our scheme with existing sys-
tems. Using optimization, we can reduce the use of
bilinear mapping, which is a major influence on the
performance of an algorithm, and our scheme there-
fore gives acceptable performance in real-world sys-
tems. We will describe this optimization in a later
section.
Thirdly, we explicitly describe how to change and revoke

permissions; when users do not want others to use data
that were previously shared, the permissions can be con-
veniently changed.
We integrate all of these capabilities into a single

scheme. Our main design goal is to help users achieve
fine-grained access control to the storage and sharing of
files in a cloud environment. Specifically, we aim to ensure
that data are under the control of data owners, rather than
cloud service providers. We also aim to create a scheme
that has excellent performance and has all the relevant
functions, such as permission revoking, type changing,
data searches, and so on, to be appropriate for a real-world
system.
This paper proposes an improved PRE algorithm to sup-

port fine-grained control and ciphertext heterogeneous
transformation. A multi-security-level cloud storage sys-
tem is designed that involves AES symmetric encryption
and other algorithms. The user’s private data are pro-
tected, while control over the data remains in the hands of
the user.

This paper is organized as follows. In Section 2, we
introduce related work on data protection using PRE in
the public cloud. We carry out a formal analysis of the
modeling and the macro definition of our scheme in
Section 3. In Section 4, we introduce the associated imple-
mentation issues, including the system architecture and
feature model. In Section 5,we conducted a safety anal-
ysis of our scheme. Section 6 presents an evaluation of
our scheme. Finally, Section 7 concludes the paper and
discusses future work.

2 Related work
Encryption is one of the most commonly used methods
for traditional privacy data protection. Typical research
results for cloud data security protection methods based
on cryptography algorithms can be divided into symmet-
ric and public key encryption classes, according to the
type of encryption used.
Based on a symmetric encryption system, Li et al. [7]

realized secure storage of cloud data and isolation of
encrypted cloud data by adopting a method involving
multiple keys and file partitioning. Sookhak et al. [8] com-
bined the “lazy undo”, “keychain” and “broadcast encryp-
tion” operations to achieve more secure updating and
permission transformation of cloud data. Liu et al. pro-
posed the TrustStore method and introduced a special key
management service provider to realize different forms of
key encryption for different files. These authors also veri-
fied the integrity of cloud data by creating hash checking
information [9]. Although this scheme solved the prob-
lem of secure storage and access control over cloud data
to a certain extent, symmetric encryption lacks flexibility
when used in key management and an encryption algo-
rithm. Therefore, in a cloud computing environment with
fine-grainedmulti-tenant dynamic sharing and large-scale
networks, this type of method has drawbacks.
In an asymmetric encryption system, the core idea of

ABE is to realize public key encryption of data by using
the attributes of the data as the public key. In addition,
the Boolean paradigm of data attributes can be used to
realize fine-grained access control based on cryptography.
Wu proposed a mixed scheme using ABE and symmet-
ric encryption, and achieved secure encrypted storage and
fine-grained access control for cloud data [15]. The work
in [16] uses an ABE scheme to realize the secure sharing of
health documents in the cloud. In addition to ABE, PRE is
also used to implement secure storage and access control
for cloud data. The core idea of PRE is that a third party
can be authorized to re-encrypt the encrypted stored
data to achieve secure access to the encrypted data [17].
The fine-grained scheme proposed by Zhang is based on
a pre-identity scheme with a pre-interactive conditional
scheme and solves the problem of the early pre-scheme
being unable to realize fine-grained access control over
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the encrypted cloud data [18]. Jiang and Guo [19] pro-
posed a PRE scheme for realizing the confidentiality of
the data access control conditions of the encryption cloud.
Zuo [20] proposed a PRE scheme that can be used one
way and re-encrypted many times, thus realizing multi-
tenant sharing of cloud data that can be transmitted. Li et
al. [21] proposed an attribute-based, fine-grained autho-
rization keyword search scheme for cloud computing, and
Ding et al. [22] proposed a multi-keyword fuzzy search
scheme, thus realizing privacy protection for encrypted
data in cloud.
A symmetric, searchable encryption algorithm was pro-

posed by Shen et al. [23]. Xu et al. [24] improved this
scheme and gave the security definition. This scenario
applies to both the data searcher and the data producer,
with the main drawback being that existing solutions
find a compromise between performance and functional-
ity. An asymmetric searchable encryption algorithm was
proposed by Ni et al. [25] and was improved by [26].
The disadvantage of this scheme is that existing asym-
metric searchable encryption algorithms require ellip-
tic curve pairing, which performs worse than a hash
function or block cipher. The fast asymmetric search-
able encryption algorithm proposed by Masayuki [27]
improves the performance of the asymmetric searchable
encryption algorithm but is also vulnerable to a dictio-
nary attack. Guo [28] proposed a multi-user, symmetric,
searchable encryption algorithm that is mainly aimed at
the scenario in which encrypted data are generated by a
single producer and multiple parties search these data.
This not only supports the encryption of indices and
the generation of search tokens, but also allows the data
owner to add and revoke search rights to the data for
certain users.
No complete solution exists for the dynamic protection

of the user’s data privacy. Crypt DB uses an onion-based
security scheme to ensure different levels of data privacy.
At the same time, this method uses homomorphic encryp-
tion to enable ciphertext to directly perform some simple
operations, such as query and comparison, ensuring that
data with a high privacy level is stored in memory as
ciphertext. Holomorphic encryption refers to any oper-
ation that can be performed on plaintext on encrypted
data without decryption [29]. Gasti et al. [30] proposed
a feasible method for full mathematically homomorphic
encryption, and this represented a decisive breakthrough
in this technology. At present, software algorithms can-
not perform complex calculations using ciphertext, so in
order to encrypt the data in memory, many researchers
have used hardware to ensure the privacy of dynamic
data. XOM [31] guarantees that private data are still
stored in memory as ciphertext and that data are
decrypted by special hardware when entering the CPU for
calculation.

3 Multi-security-level cloud storage system
Due to the diversity of tenants in the cloud environment,
different tenants have different requirements for the secu-
rity protection level of data, and even the same tenant
has different requirements for the different data they own.
In the cloud, user data exist in two forms: dynamic and
static data. Static data refers to the information that does
not participate in calculation and is mainly used for mass
storage and convenient access, such as documents, pic-
tures, video, reports, materials and so on stored by users
for a long time. Dynamic data refers to the data that needs
dynamic verification or participation in calculation, such
as database files, program files, configuration files, etc.
Our scheme for the protection of users data privacy in
cloud storage includes the following: (1) normal inter-
face and security interface: normal interface is used when
users access public data, and security interface is used
when they access data with a certain level of security;
(2) security-level-based encrypted storage for static data,
by applying encryption policies with different strengths
to different user data, thus ensuring the user data confi-
dentiality and high performance for the whole system; (3)
a fine-grained access control mechanism for static data
that combines PRE algorithms to support fine granular-
ity and ciphertext heterogeneous conversion, web services
technology, and secure plugging in client to protect the
user’s privacy; (4) security-level-based segmentation stor-
age for dynamic data that provides segmentation stor-
age for different user data, based on sensitivity; and (5)
secure search technology for dynamic data, thus providing
secure search services without exposing the data infor-
mation to the cloud platform. The scheme is illustrated
in Fig. 1.
In this paper, we focus solely on static data. The func-

tional architecture based on multiple security levels is
shown in Fig. 2. The functions on the front-end nodes of
the system includes: (1) a user authentication module, (2)
a client security plug-in module, (3) a multi-security-level
encryption module, and (4) a data storage module. The
PRE server includes the PRE service module and the client
security plug-in module and provides a client security
interface for users.

3.1 Enhanced RBAC
In order to solve the data security problem of the medical
cloud platform, it is necessary to combine the access con-
trol policy with the encryption mechanism to deal with
the privacy leakage problem of data storage procedures
in the cloud environment. On the one hand, the access
control policy authenticates the user’s identity, which can
ensure the confidentiality of the data (but the data stored
in plaintext can be accessed by CSP, which cannot protect
the privacy of the data). On the other hand, the data can be
encrypted by encryption mechanism, and access control
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Fig. 1 The multi-security-level cloud storage system

can be further strengthened by controlling the distribu-
tions of secret key. The access control model of medical
cloud platform is shown in Fig. 3.
The platform realizes the access control and authoriza-

tion for legal users of the system based on RBAC model.
On the other hand, encryption is adopted to ensure the
confidentiality of data in the cloud platform. The specific
workflow is shown in Fig. 4.
The system management module is operated in the sys-

tem initialization stage to realize the creation of users and
roles and generate the corresponding public information
MppR to the roles and the secret keys of the users and
roles.

The user corresponding to each role in the Role Man-
agement Module Management System will establish the
relationship between the user and the role to realize the
addition and deletion of users in the role. The general
permission distribution corresponding to the role is ini-
tialized by the system management.
MppR, the public parameter that belongs to the date

owners, is used to encrypt and store the date. Meanwhile,
the date owners request the role management module to
encrypt the data onto the corresponding role. The role
managementmodule determines which users are assigned
to roles and which are excluded from its function to
control user-to-role mapping.

Fig. 2 Architecture of the static data storage system
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Fig. 3 The access control enhancement model of medical cloud platform

The data requester uses the decryption key DKU pro-
vided by the system and the public information MppR
of the role to decrypt the ciphertext from the cloud.
It can be decrypted correctly when the data requester
is a member of the data encryption or the role to
which the data requester belongs inherit the ciphertext
encryption role.

3.2 Design of the scheme
In this paper, the improved PRE algorithm supports
fine-grained and ciphertext heterogeneous transforma-
tion. Based on the traditional identity-based PRE algo-
rithm, fine-grained control and ciphertext heterogeneous
transformation are added to allow fine-grained control
of proxy authorization. Meanwhile, using the traditional

Fig. 4 Access control model workflow in medical cloud platform
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public key system, the re-encrypted ciphertext can be
decrypted.
IBE algorithm consists of four main functions:

(1) SetupIBE(k): This algorithm generates system
parameter pairs (params, mk), where k is a security
parameter, and params is a collection of system
parameters. This parameter will be used in later
functions. mk is the system master security key, and
is related to the security of the overall system.

(2) KeyGenIBE(mk, params, ID): mk is the system master
security key, params is the system parameter set, and
ID is the user’s identity information. ID may include a
mailbox, IP, ID number or other information. This
algorithm generates the private key skID .

(3) EncIBE(ID,params,M, t): For plaintext data M , we
use the system parameter set params, identity
information ID (public key), and a type value for
fine-grained control t to compute M, which
corresponds to the original ciphertext.

(4) DecIBE(skID, params,CID): If the proxy authorizer
needs to decrypt and view encrypted data, the system
parameter set params and the private key he holds
can be used to decrypt the original cipher.

The Setup and KeyGen algorithms are executed by
a trusted third-party key generation center (KGC)
during the initialization phase of the system. The sys-
tem parameters are generated and sent to the sys-
tem through a secure channel for later use, while
users can use their identity information to apply
for the private key corresponding to the identity in
the KGC.
The traditional public-key cryptographic algorithm

consists of three functions (KeyGenPKE, EncPKE, DecPKE):

(1) KeyGenPKE(k, aux): k is the security parameter, and
aux is the corresponding parameter. This algorithm
generates a pair of public and private key pairs
(pk, sk), where pk is the public key, and sk is the
private key.

(2) EncPKE(pk, aux,M): pk and aux are used to encrypt
the plaintext M to get the ciphertext Cpk .

(3) DecPKE(sk, aux,CPK): Using sk and aux , the
ciphertext Cpk is decrypted to get the plaintext M.

This part of the function is used when convert-
ing the original ciphertext encrypted by the identity-
based encryption algorithm into ciphertext that can be
decrypted by the traditional algorithm, thus ensuring that
the conversion process will not be affected by security
problems.
The functions related to proxy re-encryption are

KeyGenPRO() , ReEnc() , ReDec() and ChaType():

(1) KeyGenPRO(skID, ski, pkj, t, params): This uses the
system parameter set params, the fine-grained
parameter t, the identity-based private key skID of the
proxy authorizer, the private key ski of the traditional
public key system, and the public key pkj of the
traditional public key system. This algorithm
generates the PRE key rkID and sends it to the PRE
server for storage.

(2) ReEnc(rkID, params,CID): This is the re-encryption
function. Using rkID and the corresponding system
parameters, the original ciphertext CID encrypted by
IBE is re-encrypted into the ciphertext Cpk of the
traditional public key system.

(3) ReDec(CPK, params, skj): The decryption function of
the re-encrypted ciphertext, using the private key skj
of the agent receiver and the corresponding system
parameters, is used to decrypt the ciphertext Cpk
generated by re-encryption to the data plaintext M .

(4) ChaType(CID, params, t′): This is the fine-grained
dynamic change function. Using the changed
fine-grained t′ and system parameters, the
fine-grained information of ciphertext CID is
changed, and the fine-grained t of ciphertext CID is
changed to the fine-grained t′ of ciphertext C′

ID .

3.3 Implementation of the scheme
The basic structure described in the previous section is
used for a detailed overview of the proposed algorithm:

(1) SetIBE(k): This algorithm is run by the KGC, and
generates a public parameter:

params = (G1,GT , p, g,H1,H2, ê, pk) (1)

where pk = ga,is the public key for the KGC. The
security parameter k is generated by a random
algorithm in this system. p is a prime, producing the
multiplication groups G1 and GT of order q. g is a
generator of G1 , and a number α ∈ Z∗

q is randomly
generated as the main safety parameter mk. A
bilinear mapping function ê : G1 × G2 → GT and
two hash function
H1 : {0, 1}∗ → G1,H2 : {0, 1}∗ → Z∗

P are used.
(2) KeyGenIBE(mk, params, id): When the user logs in,

the KGC obtains the user’s legitimate identity
information id , and uses params and the main
security parameter mk to generate the key pair
(pkid, skid) for the user, where

pkid = H1(id), skid = pkα
id (2)

(3) KeyGenPKE(params): This is run by the KGC when
the user submits the application. Like the public and
private keys based on identity type, (pk′

id, sk
′
id) is

generated by generating a random number γ ∈ Z∗
p

and calculating
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pk′
id = gsk

′
id , sk′

id = γ (3)

(4) EncIBE(pkid, skid, params,m, t): This algorithm is
executed when the data owner encrypts the data. The
data owner uses his or her private key pair (pkid, skid)
based on identity type, type information t for
fine-grained control, and a random number γ ∈ Z∗

p .
The data are encrypted in plaintext to cipher
c = (c1, c2, c3) , where

c1 = gr , c2 = m · ê(pkid, pk)r·H2(skid)‖t , c3 = t (4)

(5) DecIBE(skid, params, c): This function is used when
the user decrypts a file that he or she has encrypted.
Of course, the result could be obtained by requesting
authorization and then re-encrypting the data, but
the performance would be affected. When
decrypting, the private key skid of the data owner is
entered, based on the identity type and the relevant
system parameter params , and the cipher text
params can then be decrypted to plaintext m using
the following calculation:

m = c2
ê(PKid, pk)r·H2(skid)‖t (5)

(6) KeyGenPRO(skid, sk′
id, pk

′
id,t, params): When the data

owner authorizes access, this step uses the skidi for
the data owner based on the identity type, sk′

idi of the
traditional type, pk′

idj of the agent receiver’s
traditional type and the fine-grained type t , to
calculate the agent from user i to user j to re-encrypt
and re-encrypt the key.

rkidi→idj = (t, sk−H2(skid‖t) ·H1(pk
′sk′

idi
idj ), pk′

idi) (6)

(7) ReEnc(Ci, rkidi→idj , params): This function is
transparently executed on the server side, and
encrypts the original ciphertext encrypted by user i
into ciphertext that user j can decrypt. The
ciphertext ci = (ci1, ci2, ci3) is encrypted by user i and
the agent of type t from user i to j re-encrypt the key
rkidi→idj and relevant system parameters are used as
input, and the re-encrypted cj = (cj1, cj2, cj3) is the
output after calculation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj1 = ci1

cj2 = ci2 · ê
(

ci1, sk
−H2(skidi cis)
idi · H1

(

pk
′sk′

idi
idi

))

= m · ê(gα , pkγ

idiH2(skidi ‖ t) · ê
(

gγ , sk−H2(skidi ‖t)
idi · H1

(

pk
′sk′

idi
idi

))

= m · ê
(

gγ ,
(

pk
′sk′

idi
idi

))

cj3 = pk′
idi

(7)

(8) DecPKE(cj, sk′
idj , params): The decryption function of

the ciphertext is re-encrypted. After receiving the
ciphertext cj = (cj1, cj2, cj3) sent by the proxy server,

the proxy receiver uses the private key sk′
idi of a

traditional cryptography system to calculate the data
plaintext using the following algorithm:

m′ = cj2

ê(cj1,H1(pk
′sk′

idj
idi ))

=
m · ê(gγ ,H1(pk′

idisk
′
idj))

ê(gγ ,H1)(pk
′sk′

idj
idi )

= m

(8)

(9) ChaType(CID, t′): This function is implemented
when the data owner modifies the type of a file in
order to change the authorization state or revoke
authorization. The original ciphertext c = (c1, c2, c3)
and the new fine-grained control type t′ is used to
calculate the new ciphertext c′ = (c′1, c′2, c′3) using the
following steps:

⎧
⎪⎨

⎪⎩

c′1 = c1,
c′2 = c2(ê(pkid, pk)r·H2(skid‖t)) t′

t

c′3 = c3
(9)

The transformation from c2 to c′2 can also be obtained
using c′2 = m t

t′ · c2 t′t .

4 Implementation
In this section, we introduce the system modules and
functions in detail, and describe their characteristics and
optimization in cloud environments. We use Cassandra as
our distributed network database.

4.1 Overall architecture
The architecture of the improved PRE module is shown
in Fig. 5. The user encrypts the data using key encapsula-
tion via the client, by taking the following steps: (1) using
AES to encrypt user data, (2) using the proxy server to
re-encrypt the symmetric key for the encrypted file, and
(3) storing the data from steps (1) and (2) together as the
original ciphertext in the data center cluster.
Before the data owner stores data in the cloud, the

file must first be encrypted with a symmetric encryption
key (SEK). We call this the ciphertext body. The SEK is
used with the private key in the proposed improved PRE
scheme, to form the ciphertext of the SEK, SEKey, and
the body and the SEKey are then stored together in the
cloud. To share this file with recipients, the data owner
computes re-encryption keys for trusted recipients. The
proxy server is held by the cloud service provider and runs
transparent proxy services. When the user sends a request
to the cloud, the request distribution server sends this
request to the proxy, which checks whether this user has
the authority to access the requested file. If so, the proxy
service obtains the re-encryption key from a database of
re-encryption keys, and fetches the data, including the
body and SEKey, from the data center. The proxy server
then re-encrypts the SEKey to a type of ciphertext that the
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Fig. 5 Architecture of PRE for data protection

recipient can decrypt with his own secret key. All of these
processes taking place on the proxy server are transpar-
ent to the user. In this way, the user receives the required
data files but they do not leave the proxy. When the recip-
ient has gained access to the required files, he or she can
decrypt the data using the client software.
In order to achieve the purpose of the fine-grained con-

trol, we add an element named “type” to the algorithm.
Users can add a file to a type or many files to a single type.
The type is included in the ciphertext when a data file is
encrypted, and each re-encryption key for authorization
is also of the same type, since the proxy cannot re-encrypt
the data file successfully using a re-encryption key and
data that do not match.
In addition, if after recipient has finished processing the

data file need feedback to the user, and the data will then
be used by a user with a different type, this can be achieved
directly by computing c′ = (c′1, c′2, c′3) , where
c′1 = c1, c′2 = mt·t′−1 · ct′·t−1

2 , c′3 = c3
This means that we can sidestep the process of encryp-

tion using the recipient’s public key and sharing with the
user, followed by decryption and sharing again. Any more,
if user wants to recover authority or wants to change the
type, this can be conveniently achieved by computing c′ =
(c′1, c′2, c′3) , where
c′1 = c1, c′2 = c2 · (e(pkid, pk)r·H2(skid‖t)t′ ·t−1

), c′3 = c3

4.2 System processing flow
Key management is always an important issue in sys-
tem implementation. In our system, we implement a KGC
to generate and distribute key pairs. The user’s IBE-type
public key is the email address that was given when reg-
istering, and the IBE-type secret key is generated by KGC
and held by the users themselves. The user’s PKE-type
secret key and public key are generated and distributed by

CA. The search feature in our system was implemented
by using the Cassandra NoSQL database, in which we can
search for a data value by key. We also implement the user
authorization function and friend management scheme in
order to allow sharing of data files.The process used in our
scheme is illustrated in Fig. 6.
The process nouns in Fig. 6 are explained in the

following.

body = symmetricEnc(M, SEK)

SEKey = Encibe(id, params, SEK.t)
rk(idi→idk) = KeyGenpre(sk(idi), sk′

idi , pk
′
(idj), t, params)

REQ = FileAccessREQ(fileKey, userName)
C = body, SEKey = getTuple(REQ)

SEKeyj = ReEnc(Ci, rk(idi→idj), params)
SEK = Decpke(SEKeyj, sk′

idi , params)
M = symmetricDec(M, SEK)

TCkey = e(pkid, pk)r·H2(skid‖t)t′·t−1

REQT = TypeREQ(userName, FileList, TCkey)
C′
i = chaType(Ci, t′)

5 Security analysis
Theorem 1 If the initial ciphertext and private key

are correctly generated and meet the following condi-
tions: C ← EncIBPRE(PPIBPRE,URoleId,m,α), SKUserId

IBPRE ←
ExtractIBPRE(MKIBPRE, UserId), and UserId ∈ URoleId.
Then, the plaintext m can be calculated by executing the
algorithm DecIBPRE(PPIBPRE, UserId, SKUserId

IBPRE ,C,URoleId).

Proof if UserId ∈ URoleId, then we have

(e(c1, h(�γ ,URoleId)) · e(SKUserId
IBPRE , c2))

1
n∏

j=1,j �=i
H1(UserIdj)

= (e(g−k·γ , h�γ (UserId,URoleId)) ·
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Fig. 6 The system processing flow

e(g
1

γ+H1(userId) , h
k·

n∏

j=1
γ+H1(UserIdj)

))

1
n∏

j=1,j �=i
H1(UserIdj)

= (e(g−k·γ , h�γ (UserId,URoleId)) ·

e(g, h)
k·

n∏

j=1
γ+H1(UserIdj)

)

1
n∏

j=1,j �=i
H1(UserIdj)

= (e(g, h)
k·

n∏

j=1
H1(UserIdj)

)

1
n∏

j=1,j �=i
H1(UserIdj)

= vk
m = c3

vk
Now, if UserId ∈ URoleId ,then DecIBPRE(PPIBPRE,

UserId, SKUserId
IBPRE ,URoleId) = m. Similarly, the selected

receiver can decrypt the correctly generated initial cipher-
text into the original plaintext.

Theorem 2 If the ciphertext is correctly gener-
ated by algorithm ReEncIBPRE() : C′ ← ReEncIBPRE
(PPIBPRE,dUserId→U′

RoleId|α′ ,C,URoleId), and private key is correctly

generated by algorithm ExtractIBPRE() : SKUserId′
IBPRE ←

ExtractIBPRE(MKIBPRE,
UserId′),
dUserId→U ′

RoleId|α′ ←
RKExtractIBPRE(PPIBPRE, UserId, SKUserId

IBPRE ,U
′
RoleId,α

′),
C ← EncIBPRE(PPIBPRE,URoleId,m,α), and
SKUserId

IBPRE ← ExtractIBPRE(MKIBPRE, UserId) are all exe-
cuted correctly, and they are valid for any UserId ∈
URoleId,α = α′, and UserId′ ∈ U ′

RoleId. Then, execute

ReDecIBPRE(PPIBPRE, UserId′, SKUserId′
IBPRE ,C′,U ′

RoleId), thus
we would obtain plaintext m.

6 Simulation results and discussion
In this section, we evaluate the performance of the
encryption and decryption by the data owner, re-
encryption by the cloud proxy, and the performance of
decryption by the recipients. These steps are implemented
using the library of miracle on IBE and an elliptic curve
defined on a 512-bit prime field with a generator order
of 160 bits. The embedded degree of the curve is two.
The experimental environment has the following config-
uration: a Ubuntu virtual machine (3.0GHz vCPU, 1GB
RAM) running on a PC (Intel i5 3.0GHz, 8GB RAM).

6.1 Performance of encryption by data owner
The algorithm Enc(pk, aux,M) is executed on the client
side. It does not reduce the use of bilinear mapping, and
the calculation time is not significantly optimized.
Figure 7 shows the computational overhead of the data

owner when performing different frequency encryption
operations on the system. This step is executed when the
data owner uploads a data file; the data must first be
encrypted with a random 128-bit AES symmetric key, and
this key is then encrypted using the encryption algorithm
in our scheme. Our scheme consumes about the same
amount of time as the standard PRE scheme; this step
takes less than 20ms, which is acceptable for a real system.
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Fig. 7 Performance of encryption by data owner

6.2 Performance of decryption by data owner
Decryption of the original ciphertext function is per-
formed by the data owner via the client. The algorithm
DecPKE(sk, aux,CPK) cannot reduce the number of bilin-
ear mappings. Figure 8 shows the computational overhead
of the data owner when performing different frequency
decryption operations on our system. This step is exe-
cuted when the data owner downloads and decrypts data.
In this step, the ciphertext is not transformed by the proxy
server. The proposed scheme consumes about the same
amount of time as the standard PRE scheme; this step
takes less than 15ms, and since this is carried out only
once per file, this is an acceptable value.

6.3 Performance of delegation by data owner
Figure 9 shows the computational overhead due to the
data owner performing different frequency delegation
operations on the system. This step is executed by the data

Fig. 8 Performance of decryption by data owner

Fig. 9 Performance of delegation by data owner

owner after the encrypted data file is uploaded. The dele-
gation progress involves generating a PRE key and sending
it from the data owner to a recipient of the class file of
a given type. The more recipients with whom the data
owner wants to share files, the more times this sharing
step is performed, meaning that this step has a signif-
icant impact on the overall client performance. As we
can see from Fig. 8, our solution takes less than half the
time required by the standard PRE solution; the proposed
solution takes around 20ms, while standard PRE takes
around 45ms, meaning that the optimization of this step
is significant.

6.4 Performance of re-encryption by cloud proxy
Figure 10 shows the computational overhead of the cloud
proxy as it performs different frequency re-encryption
operations in our scheme. This step transforms the
ciphertext from the data owner to the recipients. The time

Fig. 10 Performance of re-encryption
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costs of our scheme in this process are also similar to those
of standard PRE, with an average time of about 12ms.
As is well-known, the computing resources of cloud plat-
forms are abundant, and the development of hardware
is also taking place rapidly. Cloud service providers can
therefore take many measures to speed up this process,
such as dedicatingmore hardware resources or using visu-
alization, meaning that the cost of this step would not be
onerous to the cloud service provider.

6.5 Performance of decryption by recipient
The decryption algorithm is executed when the recipient
decrypts the re-encrypted data shared by the data owner,
and this algorithm is executed by the client. As can be
seen from Fig. 11, our scheme is about 47% better than
the standard PRE scheme. The average times required by
our scheme and the standard PRE scheme are about 21
and 40ms respectively, giving a very high proportion of
optimization.

7 Conclusion
The aim of this paper is to develop an improved PRE
scheme for protecting users’ private data. Our scheme is
unique in that it integrates fine-grained delegation based
on the element of type and heterogeneous features that
can transform ciphertext from IBE-type to PKE-type text.
The fine-grained features mean that the data owner can
share private data using a fine-grained approach, e.g.,
adding a single file or a class of files. The feature of
heterogeneity greatly improves the performance of the
algorithm and at the same time makes it more conve-
nient and compatible with the system developed based
on the traditional PKE encryption algorithm. An inter-
esting direction for future work would be to make this
scheme more secure by supporting other ciphertext secu-
rity schemes and addressing other security issues. We also
need to continue to optimize the performance and make

Fig. 11 Performance for decryption by recipient

this scheme more practical and to carry out research into
dynamic data privacy protection in the cloud.
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