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Abstract

In millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, 1 bit analog-to-digital
converters (ADCs) are employed to reduce the impractically high power consumption, which is incurred by the wide
bandwidth and large arrays. In practice, the mmWave band consists of a small number of paths, thereby rendering
sparse virtual channels. Then, the resulting maximum a posteriori (MAP) channel estimation problem is a
sparsity-constrained optimization problem, which is NP-hard to solve. In this paper, iterative approximate MAP channel
estimators for mmWave massive MIMO systems with 1 bit ADCs are proposed, which are based on the gradient
support pursuit (GraSP) and gradient hard thresholding pursuit (GraHTP) algorithms. The GraSP and GraHTP algorithms
iteratively pursue the gradient of the objective function to approximately optimize convex objective functions with
sparsity constraints, which are the generalizations of the compressive sampling matching pursuit (CoSaMP) and hard
thresholding pursuit (HTP) algorithms, respectively, in compressive sensing (CS). However, the performance of the
GraSP and GraHTP algorithms is not guaranteed when the objective function is ill-conditioned, which may be incurred
by the highly coherent sensing matrix. In this paper, the band maximum selecting (BMS) hard thresholding technique
is proposed to modify the GraSP and GraHTP algorithms, namely, the BMSGraSP and BMSGraHTP algorithms,
respectively. The BMSGraSP and BMSGraHTP algorithms pursue the gradient of the objective function based on the
band maximum criterion instead of the naive hard thresholding. In addition, a fast Fourier transform-based
(FFT-based) fast implementation is developed to reduce the complexity. The BMSGraSP and BMSGraHTP algorithms
are shown to be both accurate and efficient, whose performance is verified through extensive simulations.

Keywords: MmWave, Massive MIMO, 1 bit ADC, MAP channel estimation, GraSP, GraHTP, CoSaMP, HTP, CS, BMS hard
thresholding technique, FFT

1 Introduction
In millimeter wave (mmWave) massive multiple-input
multiple-output (MIMO) systems, the wide bandwidth of
the mmWave band in the range of 30–300 GHz offers a
high data rate, which guarantees a significant performance
gain [1–4]. However, the power consumption of analog-
to-digital converters (ADCs) is scaled quadratically with
the sampling rate and exponentially with the ADC reso-
lution, which renders high-resolution ADCs impractical
for mmWave systems [5]. To reduce the power consump-
tion, low-resolution ADCs were suggested as a possible
solution, which recently gained popularity [6–9]. Coarsely
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quantizing the received signal using low-resolution ADCs
results in an irreversible loss of information, which might
cause a significant performance degradation. In this paper,
we consider the extreme scenario of using 1 bit ADCs for
mmWave systems.
In practice, the mmWave band consists of a small num-

ber of propagation paths, which results in sparse virtual
channels. In the channel estimation point of view, sparse
channels are favorable because the required complexity
and measurements can be reduced. Sparsity-constrained
channel distributions, however, cannot be described in
closed forms, which makes it difficult to exploit Bayesian
channel estimation. In [10, 11], channel estimators for
massive MIMO systems with 1 bit ADCs were proposed,
which account for the effect of the coarse quantization.
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The near maximum likelihood (nML) channel estimator
[10] selects the maximizer of the likelihood function sub-
ject to the L2-norm constraint as the estimate of the chan-
nel, which is solved using the projected gradient descent
method [12]. However, the channel sparsity was not con-
sidered in [10]. In [11], the Bussgang linear minimum
mean squared error (BLMMSE) channel estimator was
derived by linearizing 1 bit ADCs based on the Bussgang
decomposition [13]. The BLMMSE channel estimator is
an LMMSE channel estimator for massive MIMO systems
with 1 bit ADCs, whose assumption is that the channel
is Gaussian. Therefore, the sparsity of the channel is not
taken into account in [11] either.
To take the channel sparsity into account, iterative

approximate MMSE estimators for mmWave massive
MIMO systems with 1 bit ADCs were proposed in [14,
15]. The generalized expectation consistent signal recov-
ery (GEC-SR) algorithm in [14] is an iterative approximate
MMSE estimator based on the turbo principle [16], which
can be applied to any nonlinear function of the linearly
mapped signal to be estimated. Furthermore, the only
constraint on the distribution of the signal to be estimated
is that its elements must be independent and identi-
cally distributed (i.i.d.) random variables. Therefore, the
GEC-SR algorithm can be used as an approximate MMSE
channel estimator for any ADC resolutions ranging from
1 bit to high-resolution ADCs. However, the inverse of
the sensing matrix is required at each iteration, which is
impractical in massive MIMO systems in the complexity
point of view.
The generalized approximate message passing-based

(GAMP-based) channel estimator for mmWave massive
MIMO systems with low-resolution ADCs was proposed
in [15], which is another iterative approximate MMSE
channel estimator. In contrast to the GEC-SR algorithm,
only matrix-vector multiplications are required at each
iteration, which is favorable in the complexity point of
view. As in the GEC-SR algorithm, the GAMP-based algo-
rithm can be applied to any ADC resolutions and any
channel distributions as long as the elements of channel
are i.i.d. random variable. The performance of the GEC-
SR andGAMP algorithms, however, cannot be guaranteed
when the sensing matrix is ill-conditioned, which fre-
quently occurs in the mmWave band. To prevent the sens-
ing matrix from becoming ill-conditioned, the GAMP-
based channel estimator constructs the virtual channel
representation using discrete Fourier transform (DFT)
matrices, whose columns are orthogonal. However, such
virtual channel representation results in a large gridding
error, which leads to performance degradation.
Our goal is to propose an iterative approximate maxi-

mum a posteriori (MAP) channel estimator for mmWave
massive MIMO systems with 1 bit ADCs. Due to the
sparse nature, the MAP channel estimation problem is

converted to a sparsity-constrained optimization prob-
lem, which is NP-hard to solve [17]. To approximately
solve such problems iteratively, the gradient support
pursuit (GraSP) and gradient hard thresholding pursuit
(GraHTP) algorithms were proposed in [17] and [18],
respectively. The GraSP and GraHTP algorithms pursue
the gradient of the objective function at each iteration
by hard thresholding. These algorithms are the general-
izations of the compressive sampling matching pursuit
(CoSaMP) [19] and hard thresholding pursuit (HTP) [20]
algorithms, respectively, in compressive sensing (CS).
With highly coherent sensing matrix, however, the

GraSP and GraHTP algorithms do not perform appropri-
ately since the objective function becomes ill-conditioned.
To remedy such break down, we exploit the band maxi-
mum selecting (BMS) hard thresholding technique, which
is then applied to the GraSP and GraHTP algorithms
to propose the BMSGraSP and BMSGraHTP algorithms,
respectively. The proposed BMS-based algorithms per-
form hard thresholding for the gradient of the objective
function based on the proposed bandmaximum criterion,
which tests whether an index is the ground truth index or
the by-product of another index. To reduce the complexity
of the BMS-based algorithms, a fast Fourier transform-
based (FFT-based) fast implementation of the objective
function and gradient is proposed. The BMS-based algo-
rithms are shown to be both accurate and efficient, which
is verified through extensive simulations.
The rest of this paper is organized as follows. In

Section 2, mmWave massive MIMO systems with 1 bit
ADCs are described. In Section 3, the MAP channel esti-
mation framework is formulated. In Section 4, the BMS
hard thresholding technique is proposed, which is applied
to the GraSP and GraHTP algorithms. In addition, an
FFT-based fast implementation is proposed. In Section 5,
the results and discussion are presented, and the conclu-
sions are followed in Section 6.
Notation: a, a, andA denote a scalar, vector, andmatrix,

respectively. ‖a‖0, ‖a‖1, and ‖a‖ represent the L0-, L1-
, and L2-norm of a, respectively. ‖A‖F is the Frobenius
norm of A. The transpose, conjugate transpose, and con-
jugate of A are denoted as AT, AH, and A, respectively.
The element-wise vector multiplication and division of a
and b are denoted as a � b and a � b, respectively. The
sum of all of the elements of a is denoted as sum(a). The
vectorization of A is denoted as vec(A), which is formed
by stacking all of the columns of A. The unvectorization
of a is denoted as unvec(a), which is the inverse of vec(A).
The Kronecker product of A and B is denoted as A ⊗ B.
The support of a is denoted as supp(a), which is the set
of indices formed by collecting all of the indices of the
non-zero elements of a. The best s-term approximation of
a is denoted as a|s, which is formed by leaving only the
s largest (in absolute value) elements of a and replacing
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the other elements with 0. Similarly, the vector obtained
by leaving only the elements of a indexed by the set A
and replacing the other elements with 0 is denoted as a|A.
The absolute value of a scalar a and cardinality of a set
A are denoted as |a| and |A|, respectively. The set differ-
ence between the setsA and B, namely,A∩Bc, is denoted
as A \ B. φ(a) and �(a) are element-wise standard nor-
mal PDF and CDF functions of a, whose ith elements are
1√
2π e

− a2i
2 and

∫ ai
−∞

1√
2π e

− x2
2 dx, respectively. The m × 1

zero vector and m × m identity matrix are denoted as 0m
and Im, respectively.

2 mmWavemassive MIMO systems with 1 bit
ADCs

2.1 Systemmodel
As shown in Fig. 1, consider a mmWave massive
MIMO system with uniform linear arrays (ULAs) at
the transmitter and receiver. The N-antenna transmit-
ter transmits a training sequence of length T to the
M-antenna receiver. Therefore, the received signal Y =
[ y[ 1] y[ 2] · · · y[T] ]∈ C

M×T is

Y = √
ρHS + N, (1)

which is the collection of the t-th received signal y[ t]∈
C
M over t ∈ {1, . . . ,T}. In the mmWave band, the chan-

nelH ∈ C
M×N consists of a small number of paths, whose

parameters are the path gains, angle-of-arrivals (AoAs),
and angle-of-departures (AoDs) [21]. Therefore,H is

H =
L∑

�=1
α�aRX(θRX,�)aTX(θTX,�)

H (2)

where L is the number of paths, α� ∈ C is the path gain
of the �-th path, and θRX,� ∈[−π/2,π/2] and θTX,� ∈
[−π/2,π/2] are the AoA and AoD of the �th path,
respectively. The steering vectors aRX(θRX,�) ∈ C

M and
aTX(θTX,�) ∈ C

N are

aRX(θRX,�) = 1√
M

[
1 · · · e−jπ(M−1) sin(θRX,�)

]T , (3)

aTX(θTX,�) = 1√
N

[
1 · · · e−jπ(N−1) sin(θTX,�)

]T (4)

where the inter-element spacing is half-wavelength. The
training sequence S =[ s[ 1] s[ 2] · · · s[T] ]∈ C

N×T

is the collection of the tth training sequence s[ t]∈ C
N

over t ∈ {1, . . . ,T}, whose power constraint is ‖s[ t] ‖2 =
N . The additive white Gaussian noise (AWGN) N =
[n[ 1] n[ 2] · · · n[T] ]∈ C

M×T is the collection of
the tth AWGN n[ t]∈ C

M over t ∈ {1, . . . ,T}, which is
distributed as vec(N) ∼ CN (0MT , IMT ). The signal-to-
noise ratio (SNR) is defined as ρ.
At the receiver, the real and imaginary parts of the

received signal are quantized by 1 bit ADCs. The quan-
tized received signal Ŷ is

Ŷ = Q(Y)

= Q(
√

ρHS + N) (5)

where Q(·) is the 1 bit quantization function, whose
threshold is 0. Therefore, Q(Y) is

Q(Y) = sign(Re(Y)) + jsign(Im(Y)) (6)

where sign(·) is the element-wise sign function. The goal
is to estimate H by estimating {α�}L�=1, {θRX,�}L�=1, and
{θTX,�}L�=1 from Ŷ.

Fig. 1 A mmWave massive MIMO system with an N-antenna transmitter andM-antenna receiver. The real and imaginary parts of the received signal
are quantized by 1 bit ADCs
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2.2 Virtual channel representation
In the mmWave channel model in (2), {θRX,�}L�=1
and {θTX,�}L�=1 are hidden in {aRX(θRX,�)}L�=1 and
{aTX(θTX,�)}L�=1, respectively. The non-linear mapping
of {θRX,�}L�=1 and {θTX,�}L�=1 to Y renders a non-linear
channel estimation problem. To convert the non-
linear channel estimation problem to a linear channel
estimation problem, we adopt the virtual channel
representation [22].
The virtual channel representation ofH is

H ≈ ARXX∗AH
TX (7)

where the dictionary pair ARX ∈ C
M×BRX and ATX ∈

C
N×BTX is the collection of BRX ≥ M steering vectors and

BTX ≥ N steering vectors, respectively. Therefore, ARX
and ATX are

ARX = [
aRX(ωRX,1) · · · aRX(ωRX,BRX)

]
, (8)

ATX = [
aTX(ωTX,1) · · · aTX(ωTX,BTX)

]
, (9)

whose gridding AoAs {ωRX,i}BRXi=1 and AoDs {ωTX,j}BTXj=1 are
selected so as to form overcomplete DFT matrices. The
gridding AoAs and AoDs are the BRX and BTX points
from [−π/2,π/2], respectively, to discretize the AoAs
and AoDs because the ground truth AoAs and AoDs are
unknown. To make a dictionary pair of the overcom-
plete DFT matrix form, the gridding AoAs and AoDs
are given as ωRX,i = sin−1(−1 + 2/BRX · (i − 1)) and
ωRX,j = sin−1(−1 + 2/BTX · (j − 1)), respectively. We
prefer overcomplete DFT matrices because they are rela-
tively well-conditioned, and DFT matrices are friendly to
the FFT-based implementation, which will be discussed in
Section 4. The virtual channel X∗ ∈ C

BRX×BTX is the col-
lection of {α�}L�=1, whose (i, j)th element is α� whenever
(ωRX,i,ωTX,j) is the nearest to (θRX,�, θTX,�) but 0 other-
wise. In general, the error between H and ARXX∗AH

TX is
inversely proportional to BRX and BTX. To approximateH
using (7) with negligible error, the dictionary pair must be
dense, namely, BRX � M and BTX � N .
Before we proceed, we provide a supplementary expla-

nation on the approximation in (7). In this work, we
attempt to estimate the L-sparse X∗ in (7) because
the sparse assumption on X∗ is favorable when the
goal is to formulate the channel estimation problem
as a sparsity-constrained problem. The cost of assum-
ing that X∗ is L-sparse is, as evident, the approxima-
tion error shown in (7). Alternatively, the approxima-
tion error can be perfectly removed by considering X∗
satisfying H = ARXX∗AH

TX, i.e., equality instead of
approximation. One well-known X∗ satisfying the equal-
ity is the minimum Frobenius norm solution, i.e., X∗ =
AH
RX(ARXAH

RX)−1H(ATXAH
TX)−1ATX. Such X∗, however,

has no evident structure to exploit in channel estima-
tion, which is the reason why we assume that X∗ is
L-sparse at the cost of the approximation error in (7).
In practice, the arrays at the transmitter and receiver are

typically large to compensate the path loss in the mmWave
band, whereas the number of line-of-sight (LOS) and near
LOS paths is small [23]. Therefore, X∗ is sparse when the
dictionary pair is dense because only L elements among
BRXBTX elements are non-zero where L � MN �
BRXBTX. In the sequel, we use the shorthand notation
B = BRXBTX.
To facilitate the channel estimation framework, we

vectorize (1) and (5) in conjunction with (7). First,
note that

Y = √
ρARXX∗AH

TXS + N + E (10)

where the gridding error E ∈ C
M×T represents the mis-

match in (7).1 Then, the vectorized received signal y =
vec(Y) ∈ C

MT is

y = √
ρAx∗ + n + e (11)

where

A = STATX ⊗ ARX

= [
a1 a2 · · · aB

]
, (12)

x∗ = vec(X∗)

= [
x∗
1 x∗

2 · · · x∗
B

]T , (13)
n = vec(N), (14)
e = vec(E). (15)

The vectorized quantized received signal ŷ = vec(Ŷ) ∈
C
MT is

ŷ = Q(y)
= Q(

√
ρAx∗ + n + e). (16)

The goal is to estimate L-sparse x∗ from ŷ.

3 Problem formulation
In this section, we formulate the channel estimation prob-
lem using the MAP criterion. To facilitate the MAP chan-
nel estimation framework, the real counterparts of the
complex forms in (16) are introduced. Then, the likelihood
function of x∗ is derived.
The real counterparts are the collections of the real and

imaginary parts of the complex forms. Therefore, the real
counterparts ŷR ∈ R

2MT , AR ∈ R
2MT×2B, and x∗

R ∈ R
2B

are

1In practice, X∗ may be either approximately sparse or exactly sparse to
formulate (10). If X∗ is approximately sparse, the leakage effect is taken into
account so the mismatch in (7) becomes 0, namely, vec(E) = 0MT . In contrast,
the mismatch in (7) must be taken into account with a non-zero E when X∗ is
exactly sparse. Fortunately, E is inversely proportional to BRX and BTX.
Therefore, we adopt the latter definition of X∗ and propose our algorithm
ignoring E assuming that BRX � M and BTX � N . The performance
degradation from E will become less as BRX and BTX become sufficiently large.
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ŷR = [
Re(ŷ)T Im(ŷ)T

]T

= [
ŷR,1 ŷR,2 · · · ŷR,2MT

]T , (17)

AR =
[
Re(A) −Im(A)

Im(A) Re(A)

]

= [
aR,1 aR,2 · · · aR,2MT

]T , (18)

x∗
R = [

Re(x∗)T Im(x∗)T
]T

= [
x∗
R,1 x∗

R,2 · · · x∗
R,2B

]T , (19)

which are the collections of the real and imaginary parts
of ŷ,A, and x∗, respectively. In the sequel, we use the com-
plex forms and the real counterparts interchangeably. For
example, x∗ and x∗

R refer to the same entity.
Before we formulate the likelihood function of x∗, note

that e is hard to analyze. However, e is negligible when
the dictionary pair is dense. Therefore, we formulate the
likelihood function of x∗ without e. The price of such over-
simplification is negligible when BRX � M and BTX � N ,
which is to be shown in Section 5 where e �= 0MT . To
derive the likelihood function of x∗, note that

√
ρAx∗ + n ∼ CN (

√
ρAx∗, IMT ) (20)

given x∗. Then, from (20) in conjunction with (16), the log-
likelihood function f (x) is [10]

f (x) = log Pr
[
ŷ = Q(

√
ρAx + n) | x ]

=
2MT∑

i=1
log�

(√
2ρŷR,iaTR,ixR

)
. (21)

If the distribution of x∗ is known, the MAP estimate of
x∗ is

argmax
x∈CB

(f (x) + gMAP(x)) (22)

where gMAP(x) is the logarithm of the PDF of x∗. In
practice, however, gMAP(x) is unknown. Therefore, we for-
mulate the MAP channel estimation framework based on
{α�}L�=1, {θRX,�}L�=1, and {θTX,�}L�=1 where we assume the
followings:

1. α� ∼ CN (0, 1) for all �
2. θRX,� ∼ unif([−π/2,π/2] ) for all �
3. θTX,� ∼ unif([−π/2,π/2] ) for all �
4. {α�}L�=1, {θRX,�}L�=1, and {θTX,�}L�=1 are independent.

Then, the MAP estimate of x∗ considering the channel
sparsity is

argmax
x∈CB

(f (x) + g(x)) s.t. ‖x‖0 ≤ L (23)

where g(x) = −‖xR‖2 is the logarithm of the PDF of
CN (0B, IB) ignoring the constant factor. However, note
that only the optimization problems (22) and (23) are
equivalent in the sense that their solutions are the same,

not gMAP(x) and g(x). In the ML channel estimation
framework, the ML estimate of x∗ is

argmax
x∈CB

f (x) s.t. ‖x‖0 ≤ L. (24)

In the sequel, we focus on solving (23) because (23)
reduces to (24) when g(x) = 0. In addition, we denote
the objective function and the gradient in (23) as h(x) and
∇h(x), respectively. Therefore,

h(x) = f (x) + g(x), (25)
∇h(x) = ∇f (x) + ∇g(x)

= [ ∇h(x1) ∇h(x2) · · · ∇h(xB)
]T (26)

where the differentiation is with respect to x.

4 Channel estimation via gradient pursuit
In this section, we propose the BMSGraSP and BMS-
GraHTP algorithms to solve (23), which are the variants of
the GraSP [17] and GraHTP [18] algorithms, respectively.
Then, an FFT-based fast implementation is proposed. In
addition, we investigate the limit of the BMSGraSP and
BMSGraHTP algorithms in the high SNR regime in 1 bit
ADCs.

4.1 Proposed BMSGraSP and BMSGraHTP algorithms
Note that h(x) in (23) is concave because f (x) and g(x) are
the sums of the logarithms of �(·) and φ(·), respectively,
which are log-concave [24]. However, (23) is not a convex
optimization problem because the sparsity constraint is
not convex. Furthermore, solving (23) is NP-hard because
of its combinatorial complexity. To approximately opti-
mize convex objective functions with sparsity constraints
iteratively by pursuing the gradient of the objective func-
tion, the GraSP and GraHTP algorithms were proposed in
[17] and [18], respectively.
To solve (23), the GraSP and GraHTP algorithms

roughly proceed as follows at each iteration when x is the
current estimate of x∗ where the iteration index is omit-
ted for simplicity. First, the best L-term approximation of
∇h(x) is computed, which is

TL(∇h(x)) = ∇h(x)|L (27)

where TL(·) is the L-term hard thresholding function.
Here, TL(·) leaves only the L largest elements (in absolute
value) of ∇h(x), and sets all the other remaining elements
to 0. Then, after the estimate of supp(x∗) is updated by
selecting

I = supp(TL(∇h(x))), (28)

i.e., I is the set of indices formed by collecting the L
indices of ∇h(x) corresponding to its L largest elements
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(in absolute value), the estimate of x∗ is updated by solving
the following optimization problem

argmax
x∈CB

h(x) s.t. supp(x) ⊆ I , (29)

which can be solved using convex optimization because
the support constraint is convex [24]. The GraSP
and GraHTP algorithms are the generalizations of the
CoSaMP [19] and HTP [20] algorithms, respectively. This
follows because the gradient of the squared error is the
scaled proxy of the residual.
To solve (23) using the GraSP and GraHTP algo-

rithms, h(x) is required either to have a stable restricted
Hessian [17] or to be strongly convex and smooth [18].
These conditions are the generalizations of the restricted
isometry property (RIP) in CS [25], which means that
h(x) is likely to satisfy these conditions when A is either
a restricted isometry, well-conditioned, or incoherent. In
practice, however, A is highly coherent because the dic-
tionary pair is typically dense to reduce the mismatch
in (7).
To illustrate how the GraSP and GraHTP algorithms

fail to solve (23) when A is highly coherent, consider
the real counterpart of ∇h(x). The real counterpart
∇h(xR) ∈ R

2B is

∇h(xR)

= [
Re(∇h(x))T Im(∇h(x))T

]T

=
2MT∑

i=1
λ

(√
2ρŷR,iaTR,ixR

) √
2ρŷR,iaR,i − 2xR, (30)

which follows from ∇ log�(aTRxR) = λ(aTRxR)aR and
∇‖xR‖2 = 2xR where λ(·) = φ(·) � �(·) is the inverse
Mills ratio function2. Then, the following observation
holds from directly computing ∇h(xi), whose real and
imaginary parts are the i-th and (i + B)-th elements of
∇h(xR), respectively.

Observation 1 ∇h(xi) = ∇h(xj) if ai = aj and xi = xj.

However, Observation 1 is meaningless because ai �= aj
unless i = j. To establish a meaningful observation, con-
sider the coherence between ai and aj, which reflects the
proximity between ai and aj according to [26, 27]

μ(i, j) = |aHi aj|
‖ai‖‖aj‖ . (31)

Then, using the η-coherence band, which is [26]

Bη(i) = {j | μ(i, j) ≥ η} (32)

2The element-wise vector division in the inverse Mills ratio function is
meaningless because the arguments of the inverse Mills ratio function are
scalars in (30). The reason we use the element-wise vector division in the
inverse Mills ratio function will become clear in (37), whose arguments are
vectors.

where η ∈ (0, 1), we establish the following conjecture
when η is sufficiently large.

Conjecture 1 ∇h(xi) ≈ ∇h(xj) if j ∈ Bη(i) and xi = xj.

At this point, we use Conjecture 1 to illustrate how the
GraSP and GraHTP algorithms fail to estimate supp(x∗)
from (28) by naive hard thresholding when A is highly
coherent. To proceed, consider the following example,
which assumes that x∗ and ŷ are realized with x represent-
ing the current estimate of x∗ so as to satisfy

1) i = argmax
k∈{1,2,...,B}

|x∗
k |

2) i = argmax
k∈{1,2,...,B}

|∇h(xk)|
3) J ∩ supp(x∗) = ∅

where i is the index corresponding to the largest element
of the ground truth3 virtual channel x∗, and

J = {j | j ∈ Bη(i), xi = xj} \ {i} (33)

is the by-product of i. Here, J is called the by-product of
i because

|∇h(xj)| ≈ |∇h(xi)|
= max

k∈{1,2,...,B}
|∇h(xk)|, (34)

which follows from Conjecture 1, holds despite x∗
j = 0

for all j ∈ J . In other words, the by-product of i refers
to the fact that ∇h(xi) and ∇h(xj) are indistinguishable
for all j ∈ J according to (34), but the elements of x∗
indexed by J are 0 according to 3). Therefore, when we
attempt to estimate supp(x∗) by hard thresholding ∇h(x),
the indices in J will likely be erroneously selected as the
estimate of supp(x∗) because ∇h(xj) and the maximum
element of ∇h(x), which is ∇h(xi) according to 2), are
indistinguishable for all j ∈ J .
To illustrate how (28) cannot estimate supp(x∗) when A

is highly coherent, consider another example where∇h(x)
and TL(∇h(x)) are shown in Figs. 2 and 3, respectively. In
this example, supp(x∗) is widely spread, whereas most of
supp(TL(∇h(x))) are in the coherence band of the index
of the maximum element of ∇h(x). This shows that hard
thresholding∇h(x) is not sufficient to distinguish whether
an index is the ground truth index or the by-product of
another index. To solve this problem, we propose the BMS
hard thresholding technique.
The BMS hard thresholding function TBMS,L(·) is an L-

term hard thresholding function, which is proposed based
on Conjecture 1. The BMS hard thresholding technique is
presented in Algorithm 1. Line 3 selects the index of the

3We use the term “ground truth” to emphasize that the ground truth x∗ is the
true virtual channel which actually gives the quantized received signal ŷ from
(16), whereas xmerely represents the point where ∇h(x) is computed to
estimate supp(x∗) via hard thresholding.
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Fig. 2 The magnitude of unvec(∇h(x)) ∈ C
BRX×BTX at x = 0B , namely, before hard thresholding

maximum element of ∇h(x) from the unchecked index
set as the current index. Line 4 constructs the by-product
testing set. Line 5 checks whether the current index is
greater than the by-product testing set. In this paper, Line
5 is referred to as the band maximum criterion. If the
band maximum criterion is satisfied, the current index
is selected as the estimate of supp(x∗) in Line 6. Other-
wise, the current index is not selected as the estimate of

supp(x∗) because the current index is likely to be the by-
product of another index rather than the ground truth
index. Line 8 updates the unchecked index set.
Note that Algorithm 1 is a hard thresholding technique

applied to ∇h(x). If the BMS hard thresholding technique
is applied to x + κ∇h(x) where κ is the step size, ∇h(x)
is replaced by x + κ∇h(x) in the input, output, and Lines
3, 5, and 10 of Algorithm 1. This can be derived using the

Fig. 3 The magnitude of unvec(TL(∇h(x))) ∈ C
BRX×BTX at x = 0B , namely, after hard thresholding. This shows how hard thresholding on ∇h(x)

results in an incorrect estimate of supp(x∗) when A is highly coherent. In this example,M = N = 16, BRX = BTX = 64, T = 20, L = 4, SNR = 20 dB,
and supp(x∗) is widely spread
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Algorithm 1 BMS hard thresholding technique
Input: x, ∇h(x), L
Output: TBMS,L(∇h(x))
1: S = ∅, I = {1, 2, . . . ,B}
2: while |S| < L do
3: i = argmax

j∈I
|∇h(xj)|

4: J = {j | j ∈ Bη(i), xi = xj} \ {i}
5: if |∇h(xi)| > max

j∈J |∇h(xj)| then
6: S = S ∪ {i}
7: end if
8: I = I \ {i}
9: end while

10: TBMS,L(∇h(x)) = ∇h(x)|S

same logic based on Conjecture 1. Now, we propose the
BMSGraSP and BMSGraHTP algorithms to solve (23).
The BMSGraSP and BMSGraHTP algorithms are the

variants of the GraSP and GraHTP algorithms, respec-
tively. The difference between the BMS-based and non-
BMS-based algorithms is that the hard thresholding func-
tion is TBMS,L(·) instead of TL(·). The BMSGraSP and
BMSGraHTP algorithms are presented in Algorithms 2
and 3, respectively. Lines 3, 4, and 5 of Algorithms 2 and
3 roughly proceed based on the same logic. Line 3 com-
putes the gradient of the objective function. Line 4 selects
I from the support of the hard thresholded gradient of
the objective function. Line 5 maximizes the objective
function subject to the support constraint. This can be
solved using convex optimization because the objective
function and support constraint are concave and convex,
respectively. In addition, b is hard thresholded in Line 6
of Algorithm 2 because b is at most 3L-sparse. A natural
halting condition of Algorithms 2 and 3 is to halt when
the current and previous supp(x̃) are the same. The read-
ers who are interested in a more in-depth analyses of the
GraSP and GraHTP algorithms are referred to [17] and
[18], respectively.

Algorithm 2 BMSGraSP algorithm
Input: h(·), L
Output: x̃
1: x̃ = 0B
2: while halting condition do
3: z = ∇h(x̃)
4: I = supp(TBMS,2L(z)) ∪ supp(x̃)
5: b = argmax

x∈CB
h(x) s.t. supp(x) ⊆ I

6: x̃ = TL(b)

7: end while

Algorithm 3 BMSGraHTP algorithm
Input: h(·), L
Output: x̃
1: x̃ = 0B
2: while halting condition do
3: z = x̃ + κ∇h(x̃)
4: I = supp(TBMS,L(z))
5: x̃ = argmax

x∈CB
h(x) s.t. supp(x) ⊆ I

6: end while

Remark 1 Instead of hard thresholding b, we can solve

x̃ = argmax
x∈CB

h(x) s.t. supp(x) ⊆ supp(TL(b)), (35)

which is a convex optimization problem, to obtain x̃ in
Line 6 of Algorithm 2. This is the debiasing variant of
Algorithm 2 [17]. The advantage of the debiasing variant of
Algorithm 2 is a more accurate estimate of x∗. However, the
complexity is increased, which is incurred by solving (35).

Remark 2 In this paper, we assume that only h(x) and
∇h(x) are required at each iteration to solve (23) using
Algorithms 2 and 3, which can be accomplished when the
first order method is used to solve convex optimization
problems in Line 5 of Algorithms 2 and 3. An example of
such first order method is the gradient descent method with
the backtracking line search [24].

4.2 Fast implementation via FFT
In practice, the complexity of Algorithms 2 and 3 is
demanding because h(x) and ∇h(x) are required at each
iteration, which are high-dimensional functions defined
on C

B where B � MN . In recent works on chan-
nel estimation and data detection in the mmWave band
[14, 15, 28], the FFT-based implementation is widely used
becauseH can be approximated by (7) using overcomplete
DFTmatrices. In this paper, an FFT-based fast implemen-
tation of h(x) and ∇h(x) is proposed, which is motivated
by [14, 15, 28].
To facilitate the analysis, we convert the summations

in h(x) and ∇h(xR) to matrix-vector multiplications by
algebraically manipulating (21) and (30). Then, we obtain

h(x)

=sum(log�(
√
2ρŷR � ARxR)) − ‖xR‖2, (36)

∇h(xR)

=AT
R(λ(

√
2ρŷR � ARxR) � √

2ρŷR) − 2xR (37)

where we see that the bottlenecks of h(x) and ∇h(x) come
from the matrix-vector multiplications involving AR and
AT
R resulting from the large size ofA. For example, the size

of A is 5120 × 65536 in Section 5 where M = N = 64,
BRX = BTX = 256, and T = 80.
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To develop an FFT-based fast implementation of the
matrix-vector multiplications involvingAR andAT

R, define
cR ∈ R

2MT as cR = λ(
√
2ρŷR �ARxR)�√

2ρŷR from (37)
with c ∈ C

MT being the complex form of cR. From the fact
that

ARxR = [
Re(Ax)T Im(Ax)T

]T , (38)

AT
RcR = [

Re(AHc)T Im(AHc)T
]T , (39)

we now attempt to compute Ax and AHc via the FFT.
Then, Ax and AHc are unvectorized according to

unvec(Ax) = ARXXAH
TXS

= ARX(SH(ATXXH
︸ ︷︷ ︸

FFT

)

︸ ︷︷ ︸
IFFT

)H

︸ ︷︷ ︸
FFT

, (40)

unvec(AHc) = AH
RXCS

HATX

= AH
RX(AH

TX(SCH
︸︷︷︸
FFT

)

︸ ︷︷ ︸
IFFT

)H

︸ ︷︷ ︸
IFFT

(41)

where X = unvec(x) ∈ C
BRX×BTX and C = unvec(c) ∈

C
M×T . If the matrix multiplication involving S can be

implemented using the FFT, e.g., Zadoff-Chu (ZC) [29] or
DFT [11] training sequence, (40) and (41) can be imple-
mented using the FFT becauseARX andATX are overcom-
plete DFT matrices. For example, each column of ATXXH

in (40) can be computed using the BTX-point FFT with
pruned outputs, i.e., retaining onlyN outputs, because we
constructed ATX as an overcomplete DFT matrix.
In particular, the matrix multiplications involving ATX,

SH, and ARX in (40) can be implemented with BTX-
point FFT with pruned outputs repeated BRX times, T-
point IFFT with pruned inputs repeated BRX times, and
BRX-point FFT with pruned outputs repeated T times,
respectively.4 Using the same logic, the matrix multi-
plications involving S, AH

TX, and AH
RX in (41) can be

implemented using T-point FFT with pruned outputs
repeated M times, BTX-point IFFT with pruned inputs
repeated M times, and BRX-point IFFT with pruned
inputs repeated BTX times, respectively. Therefore, the
complexity of the FFT-based implementation of (40) and
(41) is O(BRXBTX logBTX + BRXT logT + TBRX logBRX)

and O(MT logT + MBTX logBTX + BTXBRX logBRX),
respectively.
To illustrate the efficiency of the FFT-based implemen-

tation of (40) and (41), M/N , M/BRX, M/BTX, and M/T
are assumed to be fixed. Then, the complexity of the FFT-
based implementation of Ax and AHc is O(M2 logM),

4The inputs and outputs are pruned because ARX, ATX, and S are rectangular,
not square. The details of the pruned FFT are presented in [30–32].

whereas the complexity of directly computingAx andAHc
is O(M4). Therefore, the complexity of Algorithms 2 and
3 is reduced when h(x) and ∇h(x) are implemented using
the FFT operations.

Remark 3 Line 5 of Algorithms 2 and 3 is equivalent to
solving

argmax
xI∈C|I|

hI(xI) = argmax
xI∈C|I|

(fI(xI) + gI(xI)) (42)

where

fI(xI) = logPr
[
ŷ = Q(

√
ρAIxI + n) | xI

]
, (43)

gI(xI) = −‖xI‖2, (44)

and AI ∈ C
MT×|I| is the collection of ai with i ∈ I . There-

fore, only hI(xI) and ∇hI(xI) are required in Line 5 of
Algorithms 2 and 3, which are low-dimensional functions
defined on C

|I| where |I| = O(L). If hI(xI) and ∇hI(xI)

are computed based on the same logic in (40) and (41) but
A replaced by AI , the complexity of Algorithms 2 and 3 is
reduced further because the size of the FFT is reduced in
Line 5.

5 Results and discussion
In this section, we evaluate the performance of Algo-
rithms 2 and 3 from different aspects in terms of the
accuracy, achievable rate, and complexity. Throughout
this section, we consider a mmWave massive MIMO sys-
tem with 1 bit ADCs, whose parameters are M = N =
64 and T = 80. The rest vary from simulation to sim-
ulation, which consist of BRX, BTX, and L. In addition,
we consider S, whose rows are the circular shifts of the
ZC training sequence of length T as in [15, 33]. Fur-
thermore, H is either random or deterministic. If H is
random, α� ∼ CN (0, 1), θRX,� ∼ unif([−π/2,π/2] ), and
θTX,� ∼ unif([−π/2,π/2] ) are independent. Otherwise,
we consider differentH from simulation to simulation.
The MSEs of {α�}L�=1, {θRX,�}L�=1, and {θTX,�}L�=1 are

MSE({α�}L�=1) = E

{
1
L

L∑

�=1
|α̃� − α�|2

}

, (45)

MSE({θRX,�}L�=1) = E

{
1
L

L∑

�=1
(θ̃RX,� − θRX,�)

2
}

, (46)

MSE({θTX,�}L�=1) = E

{
1
L

L∑

�=1
(θ̃TX,� − θTX,�)

2
}

(47)

where (α̃�, θ̃RX,�, θ̃TX,�) corresponds to some non-zero ele-
ment of X̃ = unvec(x̃) ∈ C

BRX×BTX . The normalized MSE
(NMSE) ofH is

NMSE(H) = E

{
‖H̃ − H‖2F

‖H‖2F

}

(48)
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where H̃ = ARXX̃ATX. In (45)–(48), the symbol ˜ is used
to emphasize that the quantity is an estimate.
Throughout this section, we consider the debiasing vari-

ant of Algorithm 2. The halting condition of Algorithms 2
and 3 is to halt when the current and previous supp(x̃) are
the same. The gradient descent method is used to solve
convex optimization problems, which consist of (35) and
Line 5 of Algorithms 2 and 3. The backtracking line search
is used to compute the step size in the gradient descent
method and κ in Line 3 of Algorithm 3. In addition, η is
selected so that Conjecture 1 is satisfied. In this paper, we
select the maximum η satisfying

min
i∈{1,2,...,B} |Bη(i)| > 1. (49)

For example, the maximum η satisfying (49) is η = 0.6367
when BRX = 2M and BTX = 2N . The channel estima-
tion criterion of Algorithms 2 and 3 is either MAP or
ML, which depends on whetherH is random or determin-
istic. To compare the BMS-based and non-BMS-based

algorithms, the performance of the GraSP and GraHTP
algorithms is shown as a reference in Figs. 4, 5, 6, and
7. The GraSP and GraHTP algorithms forbid BRX � M
and BTX � N because the GraSP and GraHTP algo-
rithms diverge when A is highly coherent. Therefore, the
parameters are selected as BRX = M and BTX = N when
the GraSP and GraHTP algorithms are implemented.
Such BRX and BTX, however, are problematic because
the mismatch in (7) is inversely proportional to BRX
and BTX.
In Figs. 4 and 5, we compare the accuracy of the BMS-

based and band excluding-based (BE-based) algorithms
at different SNRs using MSE({α�}L�=1), MSE({θRX,�}L�=1),
MSE({θTX,�}L�=1), and NMSE(H). The BE hard threshold-
ing technique was proposed in [26], which was applied to
the orthogonal matching pursuit (OMP) algorithm [34]. In
this paper, we apply the BE hard thresholding technique
to the GraSP algorithm, which results in the BEGraSP
algorithm. In this example, BRX = BTX = 256 for the
BMS-based and BE-based algorithms. We assume that

Fig. 4MSEs of the BMS-based and BE-based GraSP algorithms for widely spread θRX,� = θTX,� = π
18 (� − 1) withM = N = 64, T = 80, L = 8, and

α� = (0.8 + 0.1(� − 1))ej
π
4 (�−1) . The CRB is provided as a reference, which was derived in [36]
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Fig. 5MSEs of the BMS-based and BE-based GraSP algorithms for closely spread θRX,� = θTX,� = π
36 (� − 1) withM = N = 64, T = 80, L = 8, and

α� = (0.8 + 0.1(� − 1))ej
π
4 (�−1) . The CRB is provided as a reference, which was derived in [36]

L = 8 and H is deterministic where α� = (0.8 +
0.1(� − 1))ej

π
4 (�−1). However, {θRX,�}L�=1 and {θTX,�}L�=1

vary from simulation to simulation, which are either
widely spread (Fig. 4) or closely spread (Fig. 5). In Figs. 4
and 5, the notion of widely and closely spread paths
refer to the fact that the minimum 2-norm distance
between the paths are either relatively far or close, i.e.,
mini�=j ‖(θRX,i − θRX,j, θTX,i − θTX,j)‖2 of Fig. 4, which is√

(π/18)2 + (π/18)2, is greater than that of Fig. 5, which is√
(π/36)2 + (π/36)2. The path gains, AoAs, and AoDs are

assumed to be deterministic because the CRB is defined
for deterministic parameters only [35]. A variant of the
CRB for random parameters is known as the Bayesian
CRB, but adding the Bayesian CRB to our work is left
as a future work because applying the Bayesian CRB
to non-linear measurements, e.g., 1 bit ADCs, is not as
straightforward.
According to Figs. 4 and 5, the BMS-based algorithms

succeed to estimate both widely spread and closely spread

paths, whereas the BE-based algorithms fail to esti-
mate closely spread paths. This follows because the BE
hard thresholding technique was derived based on the
assumption that supp(x∗) is widely spread. In contrast,
the BMS hard thresholding technique is proposed based
on Conjecture 1 without any assumption on supp(x∗).
This means that when supp(x∗) is closely spread, the
BE hard thresholding technique cannot properly esti-
mate supp(x∗) because the BE hard thresholding tech-
nique, by its nature, excludes the elements near the
maximum element of x∗ from its potential candidate.
The BMS hard thresholding technique, in contrast, uses
the elements near the maximum element of x∗ to con-
struct the by-product testing set only, i.e., Line 4 of
Algorithm 1. Therefore, the BMS-based algorithms are
superior to the BE-based algorithms when the paths
are closely spread. The Cramér-Rao bounds (CRBs) of
MSE({α�}L�=1), MSE({θRX,�}L�=1), and MSE({θTX,�}L�=1) are
provided, which were derived in [36]. The gaps between
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Fig. 6 NMSE vs. SNR whereM = N = 64, T = 80, and L = 4 with varying BRX and BTX from algorithm to algorithm

Fig. 7 Achievable rate lower bound [15] vs. SNR whereM = N = 64, T = 80, and L = 4 with varying BRX and BTX from algorithm to algorithm
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the MSEs and their corresponding CRBs can be inter-
preted as a performance limit incurred by the discretized
AoAs and AoDs. To overcome such limit, the AoAs and
AoDs must be estimated based on the off-grid method,
which is beyond the scope of this paper.
In addition, note that MSE({α�}L�=1) and NMSE(H)

worsen as the SNR enters the high SNR regime. To illus-
trate why x∗ cannot be estimated in the high SNR regime
in 1 bit ADCs, note that

Q(
√

ρAx∗ + n) ≈ Q(
√

ρAx∗)
= Q(

√
ρAcx∗) (50)

in the high SNR regime with c > 0, which means
that x∗ and cx∗ are indistinguishable because the magni-
tude information is lost by 1 bit ADCs. The degradation
of the recovery accuracy in the high SNR regime with
1 bit ADCs is an inevitable phenomenon, as observed
from other previous works on low-resolution ADCs
[11, 14, 15, 33, 37].
In Figs. 6 and 7, we compare the performance of

Algorithms 2 and 3, and other estimators when H is ran-
dom. The Bernoulli Gaussian-GAMP (BG-GAMP) algo-
rithm [15] is an iterative approximate MMSE estimator
of x∗, which was derived based on the assumption that
x∗
i is distributed as CN (0, 1) with probability L/B but 0
otherwise, namely, the BG distribution. The fast iterative
shrinkage-thresholding algorithm (FISTA) [38] is an iter-
ative MAP estimator of x∗, which was derived based on
the assumption that the logarithm of the PDF of x∗ is
gFISTA(x) = −γ ‖x‖1 ignoring the constant factor, namely,
the Laplace distribution. Therefore, the estimate of x∗ is

argmax
x∈CB

(f (x) + gFISTA(x)), (51)

which is solved using the accelerated proximal gradient
descent method [38]. The regularization parameter γ is
selected so that the expected sparsity of (51) is 3L for a fair
comparison, which was suggested in [17]. In this exam-
ple, L = 4, whereas BRX and BTX vary from algorithm to
algorithm. In particular, we select BRX = BTX = 256 for
Algorithms 2, 3, and the FISTA, whereas BRX = M and
BTX = N for the BG-GAMP algorithm.
In Fig. 6, we compare the accuracy of Algorithms 2, 3,

and other estimators at different SNRs using NMSE(H).
According to Fig. 6, Algorithms 2 and 3 outperform the
BG-GAMP algorithm and FISTA as the SNR enters the
medium SNR regime. The accuracy of the BG-GAMP
algorithm is disappointing because the mismatch in (7) is
inversely proportional to BRX and BTX. However, increas-
ing BRX and BTX is forbidden because the BG-GAMP
algorithm diverges when A is highly coherent. The accu-
racy of the FISTA is disappointing because the Laplace
distribution does not match the distribution of x∗. Note
that (23), which is the basis of Algorithms 2 and 3, is

indeed the MAP estimate of x∗, which is in contrast to the
FISTA. According to Fig. 6, NMSE(H)worsens as the SNR
enters the high SNR regime, which follows from the same
reason as in Figs. 4 and 5.
In Fig. 7, we compare the achievable rate lower bound

of Algorithms 2, 3, and other estimators at different SNRs
when the precoders and combiners are selected based on
H̃. The achievable rate lower bound shown in Fig. 7 is
presented in [15], which was derived based on the Buss-
gang decomposition [13] in conjunction with the fact that
the worst-case noise is Gaussian. According to Fig. 7,
Algorithms 2 and 3 outperform the BG-GAMP algo-
rithm and FISTA, which is consistent with the result in
Fig. 6.
In Fig. 8, we compare the complexity of Algorithms 2,

3, and other estimators at different BRX and BTX when
H is random. To analyze the complexity, note that Algo-
rithms 2, 3, and the FISTA require h(x) and ∇h(x) at
each iteration, whose bottlenecks areAx andAHc, respec-
tively, while the BG-GAMP algorithm requires Ax and
AHc at each iteration. Therefore, the complexity is mea-
sured based on the number of complex multiplications
performed to compute Ax and AHc, which are imple-
mented based on the FFT. In this example, L = 4, whereas
SNR is either 0 dB or 10 dB.
In this paper, the complexity of the BG-GAMP algo-

rithm is used as a baseline because the BG-GAMP
algorithm is widely used. The normalized complexity is
defined as the number of complex multiplications per-
formed divided by the per-iteration complexity of the
BG-GAMP. For example, the normalized complexity of
the FISTA with BRX = BTX = 256 is 160 when the
complexity of the FISTA with BRX = BTX = 256 is
equivalent to the complexity of the 160-iteration BG-
GAMP algorithm with BRX = BTX = 256. In prac-
tice, the BG-GAMP algorithm converges in 15 iterations
when A is incoherent [39]. In this paper, an algorithm is
said to be as efficient as the BG-GAMP algorithm when
the normalized complexity is below the target thresh-
old, which is 15. As a sidenote, our algorithms, namely,
the BMSGraSP and BMSGraHTP, requires 2.1710 and
2.0043 iterations in average, respectively, across the entire
SNR range.
According to Fig. 8, the complexity of the FISTA is

impractical because the objective function of (51) is a
high-dimensional function defined on C

B where B �
MN . In contrast, the complexity of Algorithms 2 and 3
is dominated by (42), whose objective function is a low-
dimensional function defined on C

|I| where |I| = O(L).
The normalized complexity of Algorithms 2 and 3 is below
the target threshold when BRX ≥ 192 and BTX ≥ 192.
Therefore, we conclude that Algorithms 2 and 3 are as effi-
cient as the BG-GAMP algorithm when BRX � M and
BTX � N .
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Fig. 8 Normalized complexity vs. BRX = BTX whereM = N = 64, T = 80, and L = 4 at SNR = 0 dB and SNR = 10 dB

6 Conclusions
In the mmWave band, the channel estimation problem
is converted to a sparsity-constrained optimization prob-
lem, which is NP-hard to solve. To approximately solve
sparsity-constrained optimization problems, the GraSP
and GraHTP algorithms were proposed in CS, which pur-
sue the gradient of the objective function. The GraSP
and GraHTP algorithms, however, break down when the
objective function is ill-conditioned, which is incurred by
the highly coherent sensing matrix. To remedy such break
down, we proposed the BMS hard thresholding technique,
which is applied to the GraSP and GraHTP algorithms,
namely, the BMSGraSP and BMSGraHTP algorithms,
respectively. Instead of directly hard thresholding the gra-
dient of the objective function, the BMS-based algorithms
test whether an index is the ground truth index or the
by-product of another index. We also proposed an FFT-
based fast implementation of the BMS-based algorithms,
whose complexity is reduced fromO(M4) toO(M2 logM).
In the simulation, we compared the performance of the
BMS-based, BE-based, BG-GAMP, and FISTA algorithms
from different aspects in terms of the accuracy, achievable
rate, and complexity. The BMS-based algorithms were
shown to outperform other estimators, which proved to
be both accurate and efficient. Our algorithms, however,
addressed only the flat fading scenario, so an interest-
ing future work would be to propose a low-complexity

channel estimator capable of dealing with the wideband
scenario.

7 Methods/experimental
The aim of this study is to propose an accurate yet efficient
channel estimator for mmWave massive MIMO systems
with 1 bit ADCs. Our channel estimator was proposed
based on theoretical analysis. To be specific, we adopted
and modified CS algorithms to exploit the sparse nature
of the mmWave virtual channels. In addition, we care-
fully analyzed the proposed channel estimator to reduce
the complexity. To verify the accuracy and complexity of
the proposed channel estimator, we conducted extensive
(Monte-Carlo) simulations.
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