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Abstract

Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) with hybrid precoding is a promising
technology for future 5G wireless communications. Channel estimation for the millimeter-wave (mmWave) MIMO
systems with hybrid precoding can be performed by estimating the path directions of the channel and corresponding path
gains. This paper considers joint measure matrix and channel estimation for a massive MIMO system. By exploiting the sparsity
of a massive MIMO system, a channel estimation scheme based on a Toeplitz-structured measure matrix and complete
complementary sequence (CC-S) is proposed. Moreover, analytic studies show that the measurement matrix based on CC-S
yields either optimal performance or feasibility in practice than an independent identically distributed Gaussian matrix. The
performance of the scheme is shown with numerical examples.
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1 Introduction
Millimeter-wave (mmWave) communication has been
recognized as a promising technology for future 5G wire-
less communications due to the abundant frequency
spectrum resource in a mmWave band [1]. However, the
severe signal propagation loss compared with conven-
tional microwave frequencies makes this band just useful
for indoor scenarios. Fortunately, the combination of
mmWave with short wavelength and massive multiple-
input multiple-output (MIMO) array compensate path
loss and provide a high degree of spatial freedom to sub-
stantially enhance the system’s throughput, spectral effi-
ciency, which makes cellular communication on mmWave
band practical [2, 3]. Unfortunately, the mismatch be-
tween the number of expensive radio frequency (RF) chain
and the large number of antenna makes the conventional
full digital precoding impractical. To reduce the overall
hardware cost and power consumption, a hybrid analog-
digital precoding scheme is proposed, which means that
analog precoding is realized by using phase shifters or

switches in the RF domain and the digital precoding is im-
plemented in the baseband domain as in conventional
MIMO [4–6].
For mmWave massive MIMO system with hybrid precod-

ing, accurate channel state information (CSI) estimation is
indispensable to achieve better system performance. Due to
the spatial sparsity in mmWave channel, traditional channel
model based on rich scattering is not practical, while the
mmWave channel with a limited number of scattering path
can be modeled as a parametric form in terms of the path
angles of arrival/departure (AoAs/AoDs) and the corre-
sponding path gains. As a result, the mmWave channel esti-
mation problem can be solved by estimating the path
direction (AoAs/AoDs) and path gains instead of estimating
the MIMO channel matrix [7, 8].
The construction of orthogonal training sequence of a

massive MIMO system is analyzed; by constructing a
well orthogonal pilot sequence, channel estimation and
interference cancelation can be carried out by using
autocorrelation and cross-correlation. Although the or-
thogonal pilot sequence has good channel estimation
performance, since the pilot overhead increases with the
number of antennas in the massive MIMO system, the
orthogonality of the pilot cannot be satisfied due to the
limited time-frequency resources. Therefore, the non-
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orthogonal pilot has become a research hotspot. In
multi-cell large-scale MIMO systems, when the training
time slot is small enough, the proposed non-orthogonal
pilot can obtain the effect of approximating the orthog-
onal pilot, while the orthogonal pilot is unachievable
when the training time slot is small enough [9]. Non-
orthogonal pilot is applied to solve the collision detec-
tion capacity problem in large-scale connection scenar-
ios, and the channel estimation performance is improved
[10]. Li proposed that when the pilot signal is sufficiently
long, the Procrustes criterion can be used to reconstruct
mutually orthogonal pilot signals; but when the signal is
not long enough, the optimal pilot sequence can be re-
constructed by the Procrustes criterion and additional
block matrix method [11].
In addition to the study of the non-orthogonal pilot,

compressed sensing has been extensively studied for
massive MIMO system estimation. The application of
this theory benefits from the sparsity of the impulse re-
sponse of the wireless communication system in the
delay domain. Research shows that the traditional
method of linearly reconstructing channel state based
on training sequences is suitable for multipath channel
environments with a large number of paths. The phys-
ical environment and simulation analysis results show
that the wireless channel in many actual situations pre-
sents a sparse multipath structure, which can be solved
by the method of compressed sensing. In [12], a distrib-
uted compressed sensing method is used to solve the
sparse channel estimation problem of the MIMO-
OFDM system. Channel estimation performance and
system effectiveness are improved by optimizing pilot
settings and using compressed sensing. The channel
estimation and precoding problems in mmWave com-
munication systems are resolved in mmWave commu-
nication with the idea of compression sensing [13]. In
addition to the typical channel sparsity, mmWave com-
munication also has the problem of angle spread, which
presents a low-rank structure. In summary, the actual
wireless channel presents sparsity or approximate
sparsity, for the future mmWave communication sys-
tems, the characteristics of sparsity can be even directly
used to complete the design of the signal processing
algorithm.
The current measurement matrix is nearly all based

on the Gaussian random matrix. However, compared
with the Gaussian random matrix, the Toeplitz structure
measurement matrix has lower generation complexity
under the premise of satisfying the finite isometric char-
acteristics of the compressed sensing theory [14]. In
addition, in terms of channel estimation performance,
the Toeplitz structure sensing matrix proposed in this
paper can achieve nearly the same effect as the Gaussian
random matrix.

In this paper, we adopt the measurement matrix based
on CC-S to implement the channel estimation in a
massive MIMO system. Specifically, the main contribu-
tions of this paper are as follows:

a) Based on the recursive method, we propose the
construction algorithm of CC-S.

b) We break through the conventional measurement
matrix based on the Gaussian random matrix and
propose the idea of using the Toeplitz structure
measurement matrix based on CC-S.

c) Based on the classical massive MIMO scheme, we
propose the new massive MIMO system with hybrid
precoding. In this way, the complexity can be reduced.

The remainder of this paper is listed as follows. Sec-
tion 2 describes the measurement matrix construction
method based on CC-S. The next section describes the
massive MIMO channel estimation algorithm based on
CC-S. Section 4 analyzes the performance of the Gauss-
ian random matrix and CC-S. And Section 6 concludes
the work.

2 Methods
The implementation framework of compressed sensing
theory includes signal sparse representation, sensing
matrix design, and recovery algorithm design. In a massive
MIMO system based on compressed sensing, the design
of the measurement matrix is important. Therefore, a new
deterministic Toeplitz structure sensing matrix based on
the characteristics of CC-S is developed. At the same time,
it is proved by theoretical analysis that CC-S satisfies the
Spark characteristics. In addition, in terms of channel esti-
mation performance, the orthogonal matching pursuit
(OMP) algorithm using CC-S as a measurement matrix is
developed. The simulation results show that the Toeplitz
structure sensing matrix based on CC-S proposed in this
paper can achieve nearly the same effect as the Gaussian
random matrix.

3 Measurement matrix construction method
based on CC-S
3.1 A construction method of CC-S sets
Given two length-N complex-valued sequences a (or {at},
i.e., at= {a0, a1,⋯, aN− 1}) and b (or {bt}), their aperiodic cor-
relation function of positive time shift τ is defined as:

ψ at; bt ; τð Þ ¼
( XN−1−τ

t¼0

at btþτð Þ�; 0≤τ≤ N−1ð Þ
0 τ≥N

ð1Þ

In this paper, we only consider positive delay for sim-
plicity, without loss of generality, when the negative
delay is τ < 0, we have:
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ψ at; bt ; τð Þ ¼
( XN−1þτ

t¼0

at−τ btð Þ�; 1−Nð Þ≤τ < 0

0 τ≤−N

ð2Þ

When a ≠ b, the above is called aperiodic cross-
correlation function (ACCF); otherwise, it is called aperi-
odic auto-correlation function (AACF). For simplicity,
we denote ψ(a; τ) to represent the AACF of a
Definition 1:.A pair of codes (a, b) is said to be a pair

of complementary sequence if they satisfy:

ψ a; τð Þ þ ψ b; τð Þ ¼ Cδ τð Þ ð3Þ

where C is a positive constant and whose value is the
sum of the length of a and b, and δ(τ) is the Kronecker
delta function.
C(K, M, N) is a family of CC-S and is named CC-S

sets, which contains K CC-S with each size is M ×N and
denoted as C(k), k ∈ {0, 1,⋯, K − 1}. For each CC-S set
C(k), M element sequences ckm with the same code length
N are contained, m ∈ {0, 1,⋯,M − 1}. Hence, C(k) can be
unfolded as a M ×N matrix (Fig. 1).

CðkÞ ¼
cðkÞ0

cðkÞ1
⋮

cðkÞM−1

2
6664

3
7775 ¼

cðkÞ0;0 cðkÞ0;1 ⋯ cðkÞ0;N−1

cðkÞ1;0 cðkÞ1;1 ⋯ cðkÞ1;N−1
⋮ ⋮ ⋱ ⋮

cðkÞM−1;0 cðkÞM−1;1 ⋯ cðkÞM−1;N−1

2
6664

3
7775

where cðkÞm;n is the specific CC-S with bipolar value and

cðkÞm;n∈f1;−1g , while m ∈ {0, 1,⋯,M − 1}, n ∈ {0, 1,⋯,N −
1}, and k ∈ {0, 1,⋯, K − 1}.
The correlation properties of CC-S are characterized by

the complementary aperiodic correlation function, which

is calculated as the sum of the aperiodic correlation func-
tions of all element codes with the same delay τ.

3.2 Design standard of measurement matrix
We have known that in compressed sensing, the signal
is first represented as a sparse form. A signal x of di-
mension N can be represented in the form of another

vector under a set of orthogonal basis vectors fakgNk¼1 ,
and the vector K is sparse. After signal sparseness, the
measurement matrix must be designed. By using the ob-
servation matrix for data processing, we can get a low-
dimensional observation vector y with dimension
M(M≪N):

y ¼ Φx ¼ ΦAS ¼ ΘS ð4Þ

where Φ represents the measurement matrix with di-
mension M ×N, Θ =ΦA is the observation matrix, and
y is the observed low-dimensional vector.
In (4), since the dimension of the Θ matrix is mea-

sured as M ×N , when we get the result of x, the above
equation is an underdetermined equation, and the num-
ber of equations is much smaller than the number of un-
knowns, it is very difficult to solve directly. If the
dimension of the observed sample y and the sparsity of
the original signal in the transform domain can satisfy
M > K, the observation matrix Θ satisfies certain condi-
tions, and the process of sparse vector restoration can be
regarded as solving the optimal ℓ0-norm problem by the
measured value y, which can be expressed as:

Ŝ ¼ argmin Sk k0 s:t:ΘS ¼ y ð5Þ

In the case where the signal S is obtained, if the pos-
ition of the K non-zero elements in S is known, the
equation of the original M ×N can be converted into the
equation of M × K to solve. If the value of K non-zero el-
ements in S can be obtained, the original signal x can be
recovered by the following formula:

x ¼
XN
k¼1

aksk ¼ AS ð6Þ

In this process, the solution with the coefficient M × K
equation is not unique, but the entire compression re-
covery process needs to be guaranteed to be unique, so
the requirements for Θ are imposed. The literature [15]
proposes that Θ needs to meet the restricted isometry
property (RIP) condition to complete the reconstruction
of the sparse signal.
Definition 2: RIP condition: For any vector set c ∈

ℝ∣T∣ and constant δK ∈ (0, 1), if the following formula
holds that Θ is said to satisfy the RIP condition:

Fig. 1 Construction method of CC-S
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1−δKð Þ ck k22≤ ΘTck k22≤ 1þ δKð Þ ck k22 ð7Þ

where T ⊂ {1,⋯,N}, ∣T ∣ ≤ K, and ΘT are sub-
matrices of dimension K × ∣ T∣ formed by index T indi-
cation of the measurement matrix Θ.
In general, for a K-sparse signal S (the position of K

non-zero elements is unknown), the sufficient condition
for reconstructing the signal S from y by Eq. (5) is that
the arbitrary vector set c and the constant δ2K ∈ (0, 1)
satisfy the following formula, that is, satisfy the 2K order
RIP condition:

1−δ2Kð Þ ck k22≤ ΘTck k22≤ 1þ δ2Kð Þ ck k22 ð8Þ

where T ⊂ {1,⋯,N}, ∣T ∣ ≤ 2K.
In the construction of the measurement matrix, the 2K-

order RIP conditions are more difficult to satisfy. The lit-
erature [16] pointed out that the measurement matrix sat-
isfying the RIP condition is equivalent to the
uncorrelation between the observation matrix Φ and the
orthogonal basis A. In other words, it is required that row
ϕj in the matrix Φ cannot be sparsely represented by col-
umn ai in A, and column ai in A cannot be sparsely repre-
sented by the ϕj in Φ. Since the orthogonal basis A is
fixed, the RIP condition of the measurement matrix Φ can
be realized by designing the observation matrix Φ.
Regarding the design of the observation matrix Φ,

when the observation matrix Φ is a Gaussian random
matrix (the dimension is M ×N, and the inner element
value satisfies the independent normal distribution of
N(0, 1/N)), the measurement matrix Φ can satisfy the
RIP condition with a large probability.
In addition, the design types of the observation matrix Φ

include a uniform sphere measurement matrix, a local
Fourier matrix, a local Hadamard measurement matrix,
and a Toeplitz matrix. When the column of the measure-
ment matrix Φ presents independent identically distrib-
uted (i.i.d.) on the ball Sn − 1, and when the number of
measurements M≥OðK lnðNÞÞ , the probability of suc-
cessfully reconstructing the signal is large, and the meas-
urement matrix Φ is referred to as a uniform sphere
measurement matrix. The local Fourier matrix is a random
selection of M rows from the N ×N Fourier matrix, and
then the regularization of the new matrix is obtained. The
advantage is that it can be realized by the fast Fourier
transform; the disadvantage is that whether it can satisfy
the correlation depends on the nature of the sparse signal.
The local Hadamard measurement matrix is obtained by
randomly selecting M rows from the N ×N Fourier matrix.
In the content of research on compressed sensing, a

Gaussian random matrix is generally used. However,
there are application defects in the Gaussian random
matrix, because the random characteristics, matrix gen-
eration, and storage process require a large amount of

storage space and computational complexity. Based on
this, a new Toeplitz observation matrix is proposed in
this paper. By applying the excellent correlation proper-
ties of complete complementary sequences, a Toeplitz
observation matrix based on CC-S is designed. When
applied with compressed sensing channel estimation, it
can obtain similar channel estimation performance from
the traditional Gaussian random matrix, but the meas-
urement matrix implementation is less complex.

4 Massive MIMO channel estimation based on CC-
S
4.1 System model
Figure 2 shows the structure of mmWave massive
MIMO system with hybrid precoding. The base station
(BS) with NBS antennas and NBS

RF chains communicates
with a single mobile station (MS)-equipped NMS anten-
nas and NMS

RF RF chains. The BS and MS communicate
via NS streams and satisfy NS≤NBS

RF≤NBS and NS≤NMS
RF ≤

NMS. In this paper, we focus on the single-cell downlink

transmission. Baseband precoder FBB∈ℂNBS
RF�NS is

followed by RF precoder FRF∈ℂNBS�NBS
RF , while the hybrid

precoder at the transmitter is defined as F ¼ FBB � FRF

∈ℂNBS�NS . The discrete-time transmitted signal is:

x¼Fs ð9Þ

We consider a narrowband block fading channel
model in which the received signal is:

r¼HFsþn ð10Þ

where s is the NS × 1 vector of the transmitted symbol. H
∈ℂNMS�NBS represents the mmWave channel matrix be-
tween the BS and MS, and n∈ℂNMS�1 is the complex
additive white Gaussian noise (AWGN) corresponding
to the MS and follows the distribution CN ð0; σ2nIÞ . At
the MS, the combiner is defined as W ¼ WRF �WBB∈

ℂNS�NMS , where W RF∈ℂNMS�NMS
RF is the RF combiner and

WBB∈ℂNMS
RF �ℓNS is the baseband combiner. After being

processed at the receiver, the received signal is:

y¼WHHFsþWHn ð11Þ
In this paper, a uniform rectangular array (URA) 2D

geometry model is considered, where M and N are the
element number of antennas in the x − y plane, and the
space of adjacent antenna is λ/2, as illustrated in Fig. 3.
Since the mmWave channel model has limited scatter-

ing, we adopt a geometric channel with L scatters. Each
scatter assumed to contribute one single propagation
path between BS and MS. While the channel model can
be written as:
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H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NBSNMS

ρ

s XL
ℓ¼1

gℓAR θℓ;R;ϕℓ;R

� �
AH
T θℓ;T ;ϕℓ;T

� �
ð12Þ

where ρ denotes the average path loss between BS
and MS, and gℓ is the complex gain of the ℓth path
assumed to be Rayleigh distributed gℓ∼Nð0; PÞ with
P the average power gain. The variable ϕℓ, T, ϕℓ,

R ∈ [0, π] denotes the elevation angles, and θℓ, T, θk,
R ∈ [0, 2π] denotes the azimuth angles corresponding
to the ℓth path. AT(θℓ, T, ϕℓ, T) and AR(θℓ, R, ϕℓ, R)
denote the array response at BS and MS,
respectively.
We adopt URAs; hence, the AT(θℓ, T, ϕℓ, T) and AR(θℓ,

R, ϕℓ, R) can be expressed as:

AT θℓ;T ;ϕℓ;T

� � ¼ ay;T θℓ;T ;ϕℓ;T

� �
ο ax;T θℓ;T ;ϕℓ;T

� �
AR θℓ;R;ϕℓ;R

� � ¼ ay;R θℓ;R;ϕℓ;R

� �
ο ax;R θℓ;R;ϕℓ;R

� �
ð13Þ

where

ax;T θℓ;T ;ϕℓ;T

� � ¼ 1ffiffiffiffiffi
M

p 1; e− j2πd sinϕℓ;T cosθℓ;T=λ; ⋯; e− j2π M−1ð Þd sinϕℓ;T cosθℓ;T=λ
h iT

ay;T θℓ;T ;ϕℓ;T

� � ¼ 1ffiffiffiffi
N

p 1; e− j2πd sinϕℓ;T sinθℓ;T=λ; ⋯; e− j2π N−1ð Þd sinϕℓ;T sinθℓ;T=λ
� �T

ð14Þ

They denote the sub-array response in the vertical and
horizontal directions at the BS. Similarly,

ax;R θℓ;R;ϕℓ;R

� � ¼ 1ffiffiffiffiffi
M

p 1; e− j2πd sinϕℓ;R cosθℓ;R=λ; ⋯; e− j2π M−1ð Þd sinϕℓ;R cosθℓ;R=λ
� �T

ay;R θℓ;R;ϕℓ;R

� � ¼ 1ffiffiffiffi
N

p 1; e− j2πd sinϕℓ;R sinθℓ;R=λ; ⋯; e− j2π N−1ð Þd sinϕℓ;R sinθℓ;R=λ
� �T

ð15Þ

They denote the sub-array response in the vertical and
horizontal directions at the MS. o denotes the Khatri-
Rao product. The channel in (12) is written in a more
compact form:

H¼ARΛAH
T ð16Þ

where Λ ∈ℂL × L is the channel complex gain matrix

with elements
ffiffiffiffiffiffiffiffiffiffiffiffiffi
NBSNMS

ρ

q
diag½g1;⋯; gL�.

AT ¼ ay;T θ1;T ;ϕ1;T

� �� ax;T θ1;T ;ϕ1;T

� �
;⋯; ay;T θℓ;T ;ϕℓ;T

� �� ax;T θℓ;T ;ϕℓ;T

� �� �
∈ℂNBS�L

AR ¼ ay;R θ1;R;ϕ1;R

� �� ax;R θ1;R;ϕ1;R

� �
;⋯; ay;R θℓ;R;ϕℓ;R

� �� ax;R θℓ;R;ϕℓ;R

� �� �
∈ℂNMS�L

ð17Þ

where ⊗ denotes the Kronecker product. The deriv-
ation of Eq. (17) is shown in Appendix.

Fig. 2 Illustration of a hybrid analog/digital precoding and combing structure

Fig. 3 Array geometry of URA considered
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4.2 Channel estimation algorithm based on CC-S
The mmWave channels have obvious sparsity perform-
ance in the angular domain when the number of non-
line-of-sight is small. We can transform the frequency
domain into a sparse domain in order to apply the com-
pressed sensing technology through the following DFT
transform matrix:

Hs¼D�
BSHDUE ð18Þ

where DBS and DUE are the DFT matrices at the base
station and user end, respectively. Hsdenotes the sparse
channel matrix in the angle domain. We can obtain the
vector h by vectorizing H:

hs¼vect Hsð Þ ¼ D�
UE

� �T �DBS

h i
h ð19Þ

h¼vect Hð Þ ð20Þ
We can further obtain the received signal as:

y ¼ WHDBSHsD�
UEFsþWHn

¼ D�
UEFs

� �T � WHDBS
� �

hs þ ~n
¼ Φhs þ ~n

ð21Þ

Our purpose is to accurately estimate the channel in-
formation from (21). The sparsity of the massive MIMO
channels helps us to use the compressed sensing tech-
nology to estimate the channel state with reduced pilot
overhead. According to [17], channel H share the same
AOA and AOD; Hs has the structured sparsity. Specific-
ally, we can use a standard DCS algorithm to estimate
the AOA, AOD, and the channel gain information. The
aim of this paper is to verify the performance of
Toeplitz-type observation matrix based on CC-S.
We will compare the performance difference between

the Toeplitz structure measurement matrix based on the
complementary code and the Gaussian random matrix
under the compressed sensing framework. In this sec-
tion, the sparse representation of the signal uses a
discrete Fourier basis. The sensing matrix is a Toeplitz
structural measurement matrix based on complementary
sequences and a Gaussian random matrix. If there is no
special explanation, use Φ ∈ℝ64 × 256; the signal recovery
algorithm adopts the OMP algorithm. The following is a
brief description of the OMP core algorithm steps:

1. Input: measurement matrix Φ, observation vectory,
sparsity K

2. Output: the coefficient of x approximates the vector
x̂

3. Initialization: r0 = y, index set Γ0 = , t = 1
4. Loop through steps 1–5:

(a) Step 1: Find the position i∗ corresponding to the
maximum value of residual yr and column φi

product in the observation matrix isit = arg
maxj = 1...N∣ rt = 1,φj ∣.

(b) Step 2: Update the index set Γt = Γt∪ {it} and
record the set of reconstructed atoms Φt ¼ ½
Φt−1;φit � in the sensing matrix.

(c) Step 3: Calculate x̂t ¼ argminky−Φt x̂k2.
(d) Step 4: Update the residual rt ¼ y−Φt x̂ and t =

t + 1.
(e) Step 5: Determine if t > K is satisfied. If it is

satisfied, stop iteration; if not, go to step 1.

4.3 Compressed sensing channel estimation under a new
observation matrix
In compression sensing, the design of the observation
matrix and the signal recovery algorithm are the focus of
research. The design of the observation matrix needs to
be as practical as possible while meeting the signal re-
covery requirements. According to [18], the elements of
the measurement matrix should follow an i.i.d. Gaussian
distribution in order to get the better performance for
spare domain signal recovery. Since the Gaussian ran-
dom matrix is almost irrelevant to any sparse signal, the
RIP condition can be satisfied with a large probability.
However, there are application defects in the Gaussian
random matrix. Because of the random characteristics,
matrix generation and storage processes require a large
amount of storage space and computational complexity.
Bajwa and Haupt et al. proposed the Toeplitz struc-

tural observation matrix and the cyclic matrix. The Toe-
plitz structural measurement matrix is an ideal choice in
many applications, and it mainly includes the following
three reasons:

(1) The Gaussian random matrix (i.i.d. measurement
matrix) needs to generate OðknÞ independent
random variables, which is not desirable when the
vector dimension is high. In contrast, the Toeplitz-
type measurement matrix only needs to generate O
ðnÞindependent random variables.

(2) During the signal processing process, the i.i.d.
measurement matrix needs to be operated OðknÞ
times when it is “multiplied,” which results in a long
time for the acquisition and reconstruction of large-
dimensional data. The Toeplitz-type measurement
matrix “multiplication” can be realized by fast Fourier
transform with a complexity of Oðn log2ðnÞÞ.

(3) The Toeplitz-type measurement matrix can be ap-
plied to specific fields, such as it matches the linear
time-varying system, but the i.i.d. measurement
matrix does not apply to this kind of scene.

This section presents a Toeplitz structural measure-
ment matrix based on complementary sequences. Since

Li et al. EURASIP Journal on Wireless Communications and Networking        (2019) 2019:293 Page 6 of 11



the complementary sequences have excellent cross-
correlation properties, the non-correlation conditions of
the measurement matrix can be satisfied. At the same
time, the Spark characteristics of the matrix are ana-
lyzed, and it is proved that it can meet the requirements
of the measurement matrix. Subsequently, the Toeplitz-
type measurement matrix is applied to the scene of com-
pressed sensing MIMO channel estimation. The experi-
mental results show that the sensing matrix proposed in
this paper can achieve a similar signal recovery effect
with the Gaussian random matrix. Thanks to its Toeplitz
structure, the new sensing matrix proposed in this sec-
tion is more practical.

4.4 Design of Toeplitz structure measurement matrix
based on CCs
The measurement matrix needs to meet the RIP condi-
tions in order to recover the original signal with a high
probability. In the measurement matrix design, the
Spark (minimum linear correlation columns) value of
the measurement matrix is also the focus of attention.
The definition of the Spark value is given below:
Definition 3: The Spark value of the measurement

matrix Φ is defined as:

Sp Φð Þ ¼ min ωk k0 : ω∈ΦNullspℝ
�

� � ð22Þ
where ΦNullspℝ

� is defined as follows:

ΦNullspℝ
� ¼ ω∈ℝN : Φω ¼ 0;ω≠0

� � ð23Þ
The literature [19] proves that when the Spark value

of the measurement matrix Φ satisfies the following
conditions, the signal estimation value can be obtained
by solving the minimum ℓ0-norm optimization problem
of (5).

Sp Φð Þ≥2K ð24Þ
The traditional i.i.d. Toeplitz matrix has the following

form:

Φ ¼
aN aN−1 ⋯ a2 a1
aNþ1 aN ⋯ a3 a2
⋮ ⋮ ⋱ ⋱ ⋮

aNþM−1 aNþM−2 ⋯ ⋯ aM

2
664

3
775 ð25Þ

The inner element faigNþM−1
i¼1 obeys the i.i.d distribu-

tion with probability P(a) and the column vector
normalization at the same time (the row vector is also
normalized). Taking the first M lines constitutes the
form of the above-mentioned partial Toeplitz matrix.
The i.i.d. Toeplitz matrix whose element selection

obeys the i.i.d distribution with a probability P(a). Due
to the element distribution problem, the atom (the col-
umn vector of the matrix) in the i.i.d. Toeplitz matrix

can satisfy the correlation requirement. Unlike the trad-
itional i.i.d. Toeplitz matrix, the elements of the Toeplitz
structure measurement matrix based on complementary
sequences proposed in this section are deterministic.
The form of the Toeplitz structure measurement

matrix based on complementary sequences is given
below:

Φ ¼
a0 a1 ⋯ aN−2 aN−1

a1 a2 ⋯ aN−1 a0
⋮ ⋮ ⋱ ⋮ ⋮

aN−1 a0 ⋯ aN−3 aN−2

b0 b1 ⋯ bN−2 bN−1

b1 b2 ⋯ bN−1 b0
⋮ ⋮ ⋱ ⋮ ⋮

bN−1 b0 ⋯ bN−3 bN−2

2
664

3
775

ð26Þ

where faigN−1
i¼0 and fbigN−1

i¼0 are a pair of complementary
sequences of length N, and each element takes a value in
the binary domain {1, −1}. As shown in (26), the directly
generated Toeplitz structure based on the complemen-
tary sequence has a dimension of N × 2N, and the sam-
pling rate is 0.5.
Using the complementary sequences, the Toeplitz

structural measurement matrix can be constructed by
the cyclic structure. When we apply the Toeplitz struc-
tural measurement matrix to the compressed sensing
signal recovery, we can obtain the performance similar
to the Gaussian random matrix. We will theoretically
analyze the Toeplitz structural measurement matrix
based on complementary codes and analyze its Spark
characteristics to demonstrate its feasibility as a meas-
urement matrix.

4.5 Analysis of Spark characteristics of new Toeplitz
matrix
When the sparseness of the signal satisfies K ≤ Sp(Φ)/2,
the signal estimate can be obtained by solving the mini-
mum ℓ0-norm optimization problem of (5). However, it
is difficult to calculate the value of matrix Spark. By con-
verting the Spark value into the calculated measurement
matrix correlation value, it is easier to judge whether the
matrix meets the requirements of the compressed sens-
ing measurement matrix. Specifically, the range of the
matrix Spark value can be determined by calculating the
correlation of the measurement matrix. The definition of
the correlation of the measurement matrix is given
below:
Definition 4: For matrix Φ = (φ1, φ2,⋯φN) ∈ℝ

M ×N,
the correlation μ(Φ) is:

μ Φð Þ ¼ max
1≤p≠q ≤N

j φp;φq

D E
j

φp

			 			
2
φq

			 			
2

ð27Þ

where 〈φp,φq〉 =φq
Tφp represents the vector inner

product.
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When the correlation of a matrix is given, the follow-
ing relationship exists:

Sp Φð Þ≥1þ 1=μ Φð Þ ð28Þ
Then, start with the correlation μ(Φ) to analyze the

Spark properties of the Toeplitz structure measurement
matrix based on complementary sequences.

Since both sequences faigN−1
i¼0 and fbigN−1

i¼0 take value
on the binary field {1, −1}, we have:

φp

			 			
2
¼ φq

			 			
2
¼

XN−1

i¼0

a2i

 !1=2

¼
XN−1

i¼0

b2i

 !1=2

¼ N1=2

ð29Þ

7 φp;φq

D E
¼ φq

Tφp ¼ f

XN−1

i¼0

aiaiþ j; φp ¼ aif g;φq ¼ aiþ j
� �

; j≠0

XN−1

i¼0

aibiþ j; φp ¼ aif g;φq ¼ biþ j
� �

;

XN−1

i¼0

bibiþ j; φp ¼ bif g;φq ¼ biþ j
� �

j≠0

ð30Þ
Bring formula (29) and the formula (30) into formula

(27), the correlation value of the matrix can be obtained:

μ Φð Þ ¼ max
1≤p≠q≤N

j φp;φq

D E
j

φp

			 			
2
φq

			 			
2

¼ max
1
N
j
XN−1

i¼0

aiaiþ jj; 1N j
XN−1

i¼0

aibiþ jj; 1N j
XN−1

i¼0

bibiþ jj
 !

ð31Þ
Calculate the above formula to get two values:

μ Φð Þ ¼ max 1; 0f g ð32Þ
The probability of occurrence of {1, 0} two values var-

ies greatly:

P μ Φð Þ ¼ 0f g≫P μ Φð Þ ¼ 1f g ð33Þ
From formula (28) and formula (33), the Spark lower

bound of the Toeplitz structure measurement matrix of
the complementary sequence can be calculated, we have:

Sp Φð Þ≥1þ 1
μ Φð Þ ¼ ∞; 2f g ð34Þ

Definition 5: When the sparsity of the signal satisfies
the following formula, the signal estimate can be ob-
tained by solving the minimum ℓ0-norm optimization
problem of (5):

K ≤Sp Φð Þ=2 ð35Þ
From the above reasoning, K has two values:

When K = 1, the signal estimate can be obtained by
solving the minimum norm optimization problem of (5).
When K > 1, in practice, signal reconstruction can be
achieved by increasing the number of measurements.
When K is not limited, but in the actual compression

sensing problem, K is a finite constant (K ≪ N) com-
pared to the dimension of the original signal vector.
In both cases, the Toeplitz structural measurement

matrix based on the complementary code can recover
the original signal with high probability. Therefore,
through the Spark characteristic analysis, it can be con-
cluded that the Toeplitz structural measurement matrix
can be applied to the compressed sensing as the meas-
urement matrix.

5 Results and discussion
Simulations are carried out based on the data model and
ESPRIT algorithm to investigate channel estimation per-
formance and computational complexity. A NBS =NMS =
64 half-wavelength pacing URAs at BS and MS is con-
sidered. The sparsity K = 8. The number of RF chains
NMS

RF ¼ NMS
RF ¼ 8 . We consider three independent nar-

rowband signals. The directions are generated as θℓ,
T = [10 ° 20 ° 30°], ϕℓ, T = [15 ° 25 ° 35°], and θℓ, R = [20 °
30 ° 40°] and ϕℓ, R = [25 ° 35 ° 45°]. For each SNR, 1000
Monte Carlo simulations are implemented. The dimen-
sion of the measurement matrix is 64 × 256. The modu-
lation type is QPSK. In this paper, to measure AoAs/
AoDs estimation performance, the root mean square
error (RMSE) is drawn into and is expressed as:

RMSET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
QL

XL
ℓ¼1

XQ
q¼1

ϕ̂ℓ;T−ϕℓ;T

� �2 þ θ̂ℓ;T−θℓ;T

 �2� 
vuut

RMSER ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
QL

XL
ℓ¼1

XQ
q¼1

ϕ̂ℓ;R−ϕℓ;R

� �2 þ θ̂ℓ;R−θℓ;R

 �2� 
vuut

ð36Þ
We use normalized mean square error (NMSE) to

measure the accuracy of channel estimation, and the
NMSE is defined as:

NMSE ¼
E
XL
ℓ¼1

H−Ĥ
		 		2" #

E
XL
ℓ¼1

Hk k2
" # ð37Þ

In Fig. 4, we compare the RMSE performance of the
AOAs and AODs in different targets against SNR of the
considered three targets. We can find that the AOAs
and AODs can be estimated correctly. In addition, we
can see in Fig. 4 that the performance with one target is
better than more targets.
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Next, we simulated a scene with noisy signal reconstruc-
tion. We simulated the multipath channel and took the 12
paths with the largest channel gain in Fig. 5. In this experi-
ment, K = 12, the sampling rate is η= 25% , 50%, and the
SNR is set to 20 dB. As can be seen in Fig. 5, the Toeplitz
structure measurement matrix based on the CC-S can recon-
struct the original signal, and the reconstruction error de-
creases with the increase of the sampling rate.
In Fig. 6, we compared the signal reconstruction perform-

ance of the Toeplitz structure measurement matrix based on
CC-S under different compression sampling rates and differ-
ent SNR. As can be seen in Fig. 6, when the sampling rate
continues to increase, the performance of signal reconstruc-
tion is constantly improving. In the same sampling rate,
when the SNR is larger, the effect of compressed-sensing
channel estimation becomes better.
At the last, we compared the signal reconstruction per-

formance of the Toeplitz structure measurement matrix
based on the complementary sequences and Gaussian ran-
dom matrix under the same conditions. As can be seen in
Fig. 7, the two matrices achieve approximate signal recon-
struction performance regardless of the sampling rate of 25%
or 50%. As a PN sequence, the correlation function of CC-S
has similar performance with the Gaussian sequence. How-
ever, the CC-S can be constructed more easily in practice.

6 Conclusion
Aiming at the measurement matrix design problem, this
paper proposes the Toeplitz structure measurement matrix
based on CC-S to solve the complexity problem of com-
pressed sensing algorithms in a massive MIMO system, and
it opens a new direction in the field of measurement matrix
construction. Compared with the classical Gaussian random
matrix, the proposed measurement matrix can reduce a lot
of hardware resources due to the element of CC-S is deter-
ministic. At the same time, the Spark characteristics of the

Fig. 4 AoAs and Aods against SNR

Fig. 5 Reconstruction signal of Toeplitz structure measurement
matrix based on CC-S. a The result with η = 25%. b The result
with η = 50% Fig. 6 Reconstruction performance analysis
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measurement matrix based on CC-S are proved. In addition,
in terms of channel estimation performance, the Toeplitz
structure measurement matrix based on CC-S can obtain
nearly equivalent estimation performance with the Gaussian
random matrix, but its generation and complexity are lower
when applied to the calculation in practice. However, the
drawback of the CC-S is that the length is limited. The CC-S
solution only exists for some restricted length. There are still
many important technologies to be researched in a massive
MIMO system, such as codebook design, angle domain
channel analysis, and pilot pollution and so on.

7 Appendix
We decompose the URA to a sort of sub-array according
to the x axis as a referenced direction. While the array
response of the first sub-array is denoted as ax, T(θℓ, T,
ϕℓ, T). Then, the nth sub-array is formulized as ax;T ðθℓ;T ;
ϕℓ;T ÞFn−1

y . Take the second sub-array as an example:

ax;T θℓ;T ;ϕℓ;T

� �
Fy

¼
1 1 ⋯ 1

e− j2πd sinϕ1;T cosθ1;T=λ e− j2πd sinϕ2;T cosθ2;T =λ ⋯ e− j2πd sinϕℓ;T cosθℓ;T =λ

⋮ ⋮ ⋮ ⋮
e− j2π M−1ð Þd sinϕℓ;T cosθℓ;T=λ e− j2π M−1ð Þd sinϕℓ;T cosθℓ;T =λ ⋯ e− j2π M−1ð Þd sinϕℓ;T cosθℓ;T =λ

2
664

3
775

� diag e− j2πd sinϕ1;T sinθ1;T=λ; ⋯ e− j2πd sinϕℓ;T sinθℓ;T=λ
� �

¼
e− j2πd sinϕ1;T sinθ1;T =λ e− j2πd sinϕ2;T sinθ2;T =λ ⋯ e− j2πd sinϕℓ;T sinθℓ;T =λ

e− j2πd sinϕ1;T cosθ1;Tþ sinθ1;Tð Þ=λ e− j2πd sinϕ2;T cosθ2;Tþ sinθ2;Tð Þ=λ ⋯ e− j2πd sinϕℓ;T cosθℓ;Tþ sinθℓ;Tð Þ=λ
⋮ ⋮ ⋮ ⋮

e− j2πd sinϕ1;T M−1ð Þ cosθ1;Tþ sinθ1;Tð Þ=λ e− j2πd sinϕ2;T M−1ð Þ cosθ2;Tþ sinθ2;Tð Þ=λ ⋯ e− j2πd sinϕℓ;T M−1ð Þ cosθℓ;Tþ sinθℓ;Tð Þ=λ

2
664

3
775

ðA1Þ

ax;T ðθℓ;T ;ϕℓ;T ÞFn−1y ∈ℂM�L is the second sub-array re-

sponse along the horizontal direction. Besides, Eq. (17)
can be also expressed as follows:

AT ¼ ax;T θℓ;T ;ϕℓ;T

� �
; ax;T θℓ;T ;ϕℓ;T

� �
Fy; ⋯; ax;T θℓ;T ;ϕℓ;T

� �
FN−1
y

h iH
∈ℂNBS�L

ðA2Þ

As for Eq. (17):

AT ¼
XL
ℓ¼1

ay;T θℓ;T ;ϕℓ;T

� �
∘ax;T θℓ;T ;ϕℓ;T

� �
¼ ay;T θ1;T ;ϕ1;T

� �� ax;T θ1;T ;ϕ1;T

� �
;⋯; ay;T θℓ;T ;ϕℓ;T

� �� ax;T θL;T ;ϕL;T

� �� �
∈ℂNBS�L

¼
1� ax;T θ1;T ;ϕ1;T

� �
⋯ 1� ax;T θL;T ;ϕL;T

� �
e− j2πd sinϕ1 sinθ1;T λ � ax;T θ1;T ;ϕ1;T

� �
⋯ e− j2πd sinϕℓ sinθℓ;T λ � ax;T θL;T ;ϕL;T

� �
⋮

e− j2πd N−1ð Þ sinϕ1 sinθ1;Tλ � ax;T θ1;T ;ϕ1;T

� � ⋮
⋯

⋮
e− j2πd N−1ð Þ sinϕℓ sinθℓ;T λ � ax;T θL;T ;ϕL;T

� �
2
664

3
775

¼
1� ax;T θ1;T ;ϕ1;T

� �
⋯ 1� ax;T θL;T;ϕL;T

� �
Fy 1ð Þ � ax;T θ1;T ;ϕ1;T

� �
⋯ Fy Lð Þ � ax;T θℓ;T ;ϕℓ;T

� �
⋮ ⋮ ⋮

FN−1
y 1ð Þ � ax;T θ1;T ;ϕ1;T

� �
⋯ FN−1

y Lð Þ � ax;T θL;T ;ϕL;T

� �
2
664

3
775

¼
ax;T θℓ;T ;ϕℓ;T

� �
ax;T θℓ;T ;ϕℓ;T

� �
Fy

⋮
ax;T θℓ;T ;ϕℓ;T

� �
FN−1
y

2
664

3
775∈ℂNBS�L

ðA3Þ

where the Fy(ℓ) denotes the ℓth element of Fy, then we
can get the data model as Eq. (17).

Abbreviation
AACF: Aperiodic auto-correlation function; ACCF: Aperiodic cross-correlation
function; AOAs: Angles of arrival; AODs: Angles of departure; AWGN: Additive
white Gaussian noise; BS: Base station; CC-S: Complete complementary
sequence; CSI: Channel state information; i.i.d: Independent identically
distributed; MIMO: Multiple-input multiple-output; mmWave: Millimeter-wave;
MS: Mobile station; NMSE: Normalized mean square error; OMP: Orthogonal
matching pursuit; RF: Radio frequency; RIP: Restricted isometry property;
RMSE: Root mean square error; URAs: Uniform rectangular arrays
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