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Abstract

The performance of centralized and distributed massive MIMO deployments are studied for simulated indoor office
scenarios. The distributed deployments use one of the following precoding methods: (1) local precoding with local
channel state information (CSI) to the user equipments (UEs) that it serves, (2) large-scale MIMO with local CSI to all
UEs in the network, (3) network MIMO with global CSI. For the distributed deployment (3), it is found that using twice
as many base station antennas as data streams provides many of the massive MIMO benefits in terms of spectral
efficiency and fairness. This is in contrast to the centralized and distributed deployments using (1) or (2) where more
antennas are needed. Two main conclusions are that distributing base stations helps to overcome wall penetration
loss; however, a backhaul is required to mitigate inter-cell interference. The effect of estimation errors on the
performance is also quantified.

Keywords: Mobile radio communication, 5G, Indoor communication, Massive MIMO, Network MIMO, Base station
cooperation

1 Introduction
One goal of new mobile radio communication stan-
dards, e.g., 5th generation mobile networks (5G) [1], is to
increase the spectral efficiency (SE) per unit area or vol-
ume. For example, the METIS (Mobile and wireless com-
munications Enablers for the Twenty-twenty Information
Society) project [2] defines target traffic volume densi-
ties for different scenarios. One way to increase SE is by
using multiple-input multiple-output (MIMO) schemes.
MIMO allows one node to transmit several streams to one
or more user equipments (UEs) using spatial degrees of
freedom.
Massive MIMO refers to a “vast” over-provisioning of

base station (BS) antennas as compared to the num-
ber of served single antenna UEs [3]. Massive MIMO is
also known as “Very Large MIMO,” “Hyper MIMO,” “Full
Dimension MIMO,” “Large-Scale Antenna Systems,” or
“ARGOS” [4]. However, the term massive MIMO is not
clearly defined. Massive MIMO may refer to any MIMO
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configuration beyond the largest MIMOmode in the cur-
rent LTE standard (at present 8x8), e.g., 100 antennas or
more [5], or it may simply refer to a “large“ number of
antennas at the BSs. A more precise definition of massive
MIMO is based on the ratio M/K of serving BS antennas
M to the numberK of active UEs. However, the ratioM/K
for which one can speak of massiveMIMOdepends on the
performance metric, the scenario, etc. [6].
Massive MIMO claims several advantages over conven-

tional MIMO [4]:

• Massive MIMO increases capacity by 10 times or
more and simultaneously increases energy efficiency.
The transmit signals are directed precisely to the UEs
through precoding which reduces interference. Each
additional antenna increases the precoding degrees of
freedom assuming no mutual coupling and a
sufficiently complex propagation environment [5, 7].

• Inexpensive, low-power components suffice. A large
number of BS antennas makes the system robust
against noise, fading, and hardware impairments or
even failure of antenna elements. This allows simpler
transmitters and receivers at the BS, e.g., few or one
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bit quantization, hybrid digital-analog precoding, and
constant envelope precoding [6].

• Precoding simplifies. Simple linear precoding has a
vanishing gap to optimal precoding [3, 5, 6]. For
instance, the performance gap between linear
zeroforcing beamforming (ZFBF) [8] and the optimal,
non-linear dirty paper coding (DPC) [9] vanishes with
an increasing number of BS antennas. Maximum ratio
transmission (MRT) is also asymptotically optimal as
the number of BS antennas increases, but for a
smaller number of BS antennas, MRT performs well
only in the low signal-to-noise ratio (SNR) regime [5].

• The multiple-access layer simplifies. The channel
hardens by the law of large numbers [4, 5]. This
means that all subcarriers experience similar
small-scale fading and the UE channel vectors
become orthogonal. Hence, scheduling does not
improve performance because all UEs can be active
on all subcarriers. Only power control is needed to
distribute the power depending on the slowly varying
large-scale fading [6].

• The latency is reduced. Since all UEs can always be
active, UEs need not wait for good fading conditions.

• Massive MIMO is robust to jamming and
interference. The surplus of precoding degrees of
freedom can be used to cancel interference or
jamming.

Most massive MIMO studies consider wide area out-
door scenarios [3, 4, 6]. However, most mobile traffic is
generated by indoor users [10]. We study the downlink
performance of different BS deployments with different
levels of cooperation for the 3rd Generation Partnership
Project (3GPP) indoor office scenario [11] and discuss
the following questions. What ratio M/K is required to
achieve the massive MIMO advantages? How large is
the gain of distributing antennas and of cooperation?
How does cooperation involving outdoor BSs perform?
How much is performance affected by channel estimation
error?
Our approach is as follows. We fix the number of active,

single antenna UEs and sweep the ratioM/K from one to
ten. The BSs use suboptimal transmission schemes and we
study fairness using Jain’s index [12]. Placing a single mas-
sive MIMO BS at the center of a building causes the UEs
to experience large path loss and high wall penetration
loss. Also, it was found that distributed MIMO increases
diversity [13]. We compare a centralized single BS deploy-
ment to distributed BSs with three levels of cooperation:
local precoding with local channel state information (CSI)
to the UEs that it serves, large-scale MIMO (LS-MIMO)
with local CSI to all active UEs, and network MIMO with
global CSI. Like in conventional MIMO, CSI is required
to enable precoding. We assume perfect CSI for the first

parts of the study and then quantify the performance loss
due to channel estimation error.
We find that a ratio of twice as many BS antennas as

served UEs is a good trade-off between number of anten-
nas versus SE. For network MIMO, this ratio provides
most of the massive MIMO benefits while more anten-
nas are needed with local precoding, LS-MIMO, or the
single BS deployment. The performance of the subopti-
mal transmission schemes approaches a capacity upper
bound. Fairness increases with the number of BS anten-
nas, with the level of cooperation between BSs, and with
the distribution of BS antennas (given some cooperation
level between the BSs). We find that distributed indoor
BSs with cooperation achieve a substantial performance
gain at the cost of a backhaul connection, similar to [14],
while the gain achieved with cooperation between out-
door BSs and a single indoor BS is smaller.With increasing
capability of the backhaul, the cooperation level can be
increased which allows to achieve the same performance
with fewer BS antennas. Good channel estimation is cru-
cial to obtain the benefits of massiveMIMO and especially
the benefits of network MIMO.
Our results should help to guide the design of future

mobile radio communication systems, e.g., Long-Term
Evolution-Advanced (LTE-Advanced) and 5G. We pre-
sented preliminary results in [15–17], and we add the
following aspects.

• Instead of using water-filling to allocate power, we
use mercury/water-filling, which is optimal for finite
modulation alphabets [18].

• We study two additional deployments (the two
indoor BSs deployment and the fourty indoor BSs
deployment).

• We add LS-MIMO as an example of an interference
coordination scheme.

• We study fairness for Gaussian modulation.

A version of this work containing further details especially
on the preliminaries is available online [19].
Bold lowercase letters denote vectors, and bold upper-

case letters denote matrices. The transpose of X is XT

and the complex conjugate transpose isXH. The Euclidean
norm of x is ‖x‖2, and the Frobenius norm of X is ‖X‖F .
A diagonal matrix having diagonal entries x is denoted by
diag (x).

2 Methods
2.1 Systemmodel
Consider the downlink in the 3GPP “A1 - Indoor Office”
scenario in the Wireless World Initiative New Radio II
(WINNER II) deliverable [20], see Fig. 1. The UEs are
served by BSs located inside and outside the building. The
K single antenna UEs use orthogonal frequency-division
multiplexing (OFDM). For each subcarrier, one obtains a
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Fig. 1 Deployments. Base station deployments in the indoor office
scenario [20]

broadcast channel (BC). The received signal of the k-th
UE on the f -th subcarrier is

y(f )
k =

(
h(f )
k

)H
x(f ) + z(f )k , k ∈ {1, . . . ,K} (1)

where hHk =
[
hHk,1, . . . ,h

H
k,NBS

]
is the vector of channel

coefficients from all NBS BSs to the k-th UE. The subcar-
rier index is omitted if f is clear from the context. The
i-th BS has Mi BS antennas with the channel coefficients
hHk,i. The dimension of hHk is M = ∑NBS

i=1 Mi. The transmit

signal vectors are collected in x =
[
xT1, . . . , xTNBS

]T
, and

the z1, z2, . . . , zK are independent proper complex addi-
tive white Gaussian noise (AWGN) random variables with
variance σ 2

N . The received signals y =[ y1, . . . , yK ]T of all
UEs for one subcarrier are collected in the vector

y = HHx + z (2)

whereHH = [
hH1 , . . . ,hHK

]
and z =[ z1, . . . , zK ]T.

For linear precoding, the transmit signals vector x is

x = Ws (3)

where W =[w1, . . . ,wK ] is the matrix of the precoding
vectors and s =[ s1, . . . , sK ]T is the vector of transmit sym-
bols. Let E

[|sk|2
] = 1 for k ∈ {1, 2, . . . ,K}, and consider

the per-BS sum-power constraints

NSC∑
f=1

E

[∥∥∥x(f )
i

∥∥∥
2

2

]
=

NSC∑
f=1

∥∥∥W(f )
i

∥∥∥
2

F
≤ Pi ∀i ∈ {1, . . . ,NBS}

(4)

where NSC is the number of subcarriers, and W(f )
i is the

part of the precoding matrix that creates the transmit
signals at the ith BS x(f )

i .

2.2 Transmission schemes
Interference management is important for modern wire-
less communication standards like Long-Term Evolution
(LTE) [21], LTE-Advanced [22], and for future standards
like 5G. A general framework and optimization algorithms
formulti-cell scenarios with different levels of cooperation
are presented in [23]. We are interested in transmis-
sion schemes with low complexity. For ease of notation,
the principle is described for a single subcarrier and the
subcarrier index is omitted.

2.2.1 Local precoding
Local precoding BSs determine the transmit signals and
the scheduled UEs locally. They treat inter-cell inter-
ference as noise, and thus interference limits reliable
transmission in many scenarios. As a result, backhaul
requirements are low and only local CSI is required.
Suppose each UE is served by the BS with the maximum

average SNR, and ZFBF [24] is used to mitigate intra-cell
interference. The local precoding matrix at the ith BS is

Wi = Hi,i
(
HH

i,iHi,i
)−1 diag

(
p̃i

) 1
2 (5)

where HH
i,i is the channel matrix from the ith BS to its Ki

UEs, and p̃i is the power allocation vector at the ith BS.
ZFBF requires that the ith BS serves at most Mi UEs, i.e.,
Ki ≤ Mi. If Ki > Mi then the low complexity scheduling
algorithm from [25] is used to select Mi UEs. Note that
the set of scheduled UEs may be different on each sub-
carrier. Each BS uses mercury/water-filling [18] to allocate
power according to a per-BS power constraint. For ill-
conditioned channels, the performance improves when
using other precoding strategies, e.g., [9, 26].

2.2.2 Large-scaleMIMO
Interference coordination has each BS estimate its chan-
nels to all UEs and exchange this CSI with the other BSs.
The resulting global CSI lets us coordinate the transmis-
sions of the BSs, e.g., by power allocation, precoding, and
scheduling. A UE is served by a single BS. The backhaul
requirements are modest because a signal-level synchro-
nization of the BSs is not needed [27]. The coordination
can be accomplished at a central processor or locally at the
BSs. The distributed, local coordination can be realized
in a competitive (game theoretic) way or with the help of
control messages over the backhaul. Note that to reduce
the backhaul requirements some coordination schemes
exchange little CSI, and some schemes exchange control
messages instead.
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The coordination schemes can be categorized as follows
[27]:

• Coordinated scheduling (CS) has the scheduling and
power allocation optimized jointly by all BSs.

• Coordinated beamforming (CB) has the precoding
coordinated using available precoding degrees of
freedom to reduce interference.

• The combination of CS and CB, which is called
coordinated scheduling/ coordinated beamforming
(CS/CB), is more common than pure CB.

• For CS, CB, and CS/CB, interference is treated as
noise. Performance can improve if interference is
detected at the UEs [27]. Interference detection can
be supported by coding at the transmitter, e.g., by
interference alignment.

We consider large-scale MIMO (LS-MIMO) [28] as an
example of an interference coordination scheme. LS-
MIMO is a linear CB scheme which does not exchange
CSI or control messages over the backhaul. However, it
requires sufficiently many antennas: the number Mi of
antennas at the ith BS must be at least as large as the
total number of UEs, i.e., Mi ≥ K . Then, each BS uses
ZFBF to mitigate the interference created at all UEs and
thereby creates parallel interference-free channels to the
UEs it serves. The UEs served by each BS are determined
based on maximal SNR as for local precoding. Note that
LS-MIMO is feasible only if M ≥ NBSK . It can be made
feasible by scheduling a subset of UEs. However, we study
LS-MIMO only ifM ≥ NBSK . Each BS uses ZFBF via

Wi = Hi
(
HH

i Hi
)−1 diag

(
p̃i

) 1
2 (6)

whereHH
i is the channel matrix from the ith BS to all UEs,

and each BS allocates power bymercury/water-filling [18].
Local precoding approaches the zero-forcing behavior of
LS-MIMOwith increasingMi because the channels to the
UEs of the other BSs become orthogonal to the channels
of the served UEs [28].
A similar approach is eigen-direction-aware zero forc-

ing, which shows promising results for a similar scenario
[29].

2.2.3 NetworkMIMO
Network MIMO requires that the BSs are connected by
a backhaul with low delay and high throughput and that
the BSs are synchronized. The distributed BSs act as one
BS with distributed antennas, and the downlink channel
becomes a BC. In contrast to interference coordination,
network MIMO may have interference enhance the sig-
nals at the UEs. Network MIMO can be realized by a
central processor or by exchanging messages between the
BSs.

For the network MIMO scheme, we assume a perfect
backhaul with unlimited capacity and zero delay. The
rationale for this assumption is that we aim to understand
the potential of networkMIMO; the design of strategies to
deal with an imperfect backhaul are out of the scope of this
work. All BSs act as a single BS with distributed antennas
and apply ZFBF with per-BS power constraints. The clas-
sic multiple-access channel (MAC)-BC duality does not
determine the optimal precoder for per-BS power con-
straints [27]. A low-complexity and suboptimal approach
is to determine for each subcarrier the ZFBF precoding
matrix

W = H
(
HHH

)−1 diag
(
p̃
) 1
2 (7)

where p̃ is the power allocation vector. Mercury/water-
filling [18] serves to allocate power according to a total
power constraint

NSC∑
f=1

E

[∥∥∥x(f )
∥∥∥
2

2

]
≤

NBS∑
i=1

Pi. (8)

Next, each BS determines its transmit power and scales
its precoding matrix W so that the per-BS power con-
straint is satisfied at the BS with the maximal transmit
power. Note that the other BSs could transmit with higher
power. Hence, this is a suboptimal approach, and better
approaches can be found, e.g., see [30, 31].
Network MIMO helps to avoid rank deficient and

poorly conditioned channel matrices which are caused by
spatial correlations or by the “keyhole” effect [32]. Net-
work MIMO is sometimes called “distributed MIMO,”
“MIMO cooperation,” “coherently coordinated trans-
mission,” “Joint Processing CoMP,” “Joint Transmission
CoMP,” “C-RAN (Cloud-RAN),” or “p-cell” [33].

3 Simulation setup
3.1 Indoor scenario
Figure 1 shows the layout of the indoor office scenario
defined as “A1 - Indoor Office” in the WINNER II deliv-
erable D.1.1.2 [20]. The UEs are located 1.5 m above the
floor inside the building. The Quasi Deterministic Radio
Channel Generator (QuaDRiGa) [34] is used to generate
the channel coefficients.
The indoor channels are generated according to the “A1

- Indoor Office” channel model parameters [20]. There
are two parameter sets for line-of-sight (LOS) and for non
line-of-sight (NLOS) conditions. For NLOS conditions, a
wall penetration loss is added, where the wall penetra-
tion loss is determined by counting the number of walls
between each BS and UE beyond the first penetrated wall.
When counting the number of walls, paths along the cor-
ridors are considered as alternatives to the direct path,
which might penetrate more walls.
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The outdoor-to-indoor channels are generated accord-
ing to the “B4 - Outdoor to indoor” channel model param-
eters defined in theWirelessWorld Initiative New Radio+
(WINNER+) deliverable D5.3 [35]. The outdoor BSs are
below rooftop micro BSs. We assume a LOS path from
the BS to the outside wall of the building. For each UE,
the pathloss is calculated based on the path through the
point on an outside wall nearest to the UE. The number of
penetrated walls is determined as for the indoor BSs.
3.1.1 Base station deployments
We define six different BS deployments which are shown
in Fig. 1.

• Single central BS is a single BS with M antennas
located in the corner of the room southwest of the
center (“1” in Fig. 1). This is a classical massive
MIMO deployment.

• Two indoor BSs are two BSs withM/2 antennas each.
One BS is located in the center of each corridor (“2”).

• Four indoor BSs are four BSs withM/4 antennas
each. Two BSs are located in each corridor (“3”).

• Fourty indoor BSs are fourty BSs withM/40 antennas
each. One BS is located in the center of each room
(“4”). This is similar to the deployment of p-cell [33].

• Outdoor BSs are two BSs withM/2 antennas each.
They are located 15 m north/south of the middle of
the north/south outside wall (“5”).

• Indoor-outdoor BSs are three BSs withM/3 antennas
each. One BS is in the location of the single central
BS deployment (“1”) while two are in the location of
the outdoor BSs deployment (“5”).

Note that all deployments except the single central BS
deployment require a high-capacity backhaul (not shown
in Fig. 1), which might be wireless [36], to permit net-
work MIMO. Also note that the BSs are not necessarily
optimally placed.

3.1.2 Antenna array configuration
The indoor BSs are rectangle arrays, while the outdoor
BSs are uniform linear arrays (ULAs). The antennas are
spaced at half wavelength distance λL/2. The rectangu-
lar arrays are mounted underneath the ceiling at a height
of 3 m. The side lengths of the rectangle are such that
�√Mi	 antennas fit per row and column. Note that the
last rows might not be fully occupied. The height of the
outdoor BSs is 10 m and the antennas of the ULAs are
located on a line parallel to the long side of the building.
We assume no mutual coupling between antennas. Unless
otherwise stated, we assume ideal hardware, perfect syn-
chronization, and perfect CSI of the complete network at
all nodes.

3.2 Simulation parameters
We fix the number of UEs to K = 24 and compare
the deployments with different performance measures for

different numbers M of total BS antennas. Three hun-
dred drops are simulated where one drop is a random
placement of the 24 UEs within the office building. For
each drop, 10 channel realizations are generated. The wall
penetration loss is 12 dB per wall. The bandwidth is 20
MHz around a carrier frequency of 2.1 GHz. The active
bandwidth is 18 MHz and 1 MHz on each side of this
bandwidth is a guard band. The subcarrier spacing is 15
kHz and one obtains 1200 subcarriers. In LTE, subcarri-
ers are arranged in groups of 12 consecutive subcarriers
which are called physical resource blocks (PRBs). Hence,
one obtains 100 PRBs. The channel conditions of the sub-
carriers of one PRB are usually very similar. The schedule,
power allocation, and precoder are the same for all subcar-
riers of one PRB in LTE to save control signaling overhead.
We save simulation time by simulating a single subcar-
rier per PRB and assuming that the same performance is
achieved on the other subcarriers of the PRB.
Unless otherwise mentioned, the modulation is

256 quadrature amplitude modulation (QAM) and
mercury/water-filling is used to allocate power. The
per-BS power in dBm at the ith BS is constrained by

Pi = 26dBm − 10 log10 (NBS) . (9)

The maximal per-BS powers are such that the maximal
sum power available to the BSs is 26 dBm. The variance
of the AWGN at the UEs, i.e., the noise level, is σ 2

N =
−125.1dBm.
The simulation parameters are summarized in Table 1.

With these parameters, the per-UE SE Sk of the kth UE
without considering control signaling overhead is

Sk =
12 · ∑100

f=1 C
(
SINR(f )

k

)
· 14

1ms · 20MHz
(10)

where 12 is the number of subcarriers per PRB, 100 is
the number of PRBs, 14 is the number of OFDM blocks
per subframe, 1 ms is the duration of one subframe, and
C

(
SINR(f )

k

)
is the capacity at SINR(f )

k of a memoryless
channel with 256 QAM input and continuous output in
bits [37]. The sum SE S in the building without consider-
ing control signaling overhead is

S =
24∑
k=1

Sk (11)

where 24 is the number of UEs. The maximal sum SE
for 256 QAM is S∗ = 161.28 bit/s/Hz, since the rate
C

(
SINR(f )

k

)
is bounded by 8 bits for 256 QAM.

4 Results and discussion
4.1 Sum spectral efficiency
First, consider the average sum SE S. The 5 percentile sum
SE and the 95 percentile sum SE follow the same trends
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Table 1 Simulation parameters

Carrier frequency 2.1 GHz

Bandwidth 20 MHz

Active bandwidth 18 MHz

Subcarrier spacing 15 kHz

Number of subcarriers 1200

Number of PRBs 100

Antenna spacing λL/2

Indoor wall penetration loss 12 dB

Per-BS power constraint Pi 26 dBm − 10log10 (NBS)

Noise level σ 2
N −125.1 dBm

Modulation scheme 256 QAM

Number of UEs K 24

Number of drops 300

Number of channel realizations per drop 10

and are not shown. For the single central BS deployment,
there is only one BS; hence, the curves for local precoding,
LS-MIMO, and network MIMO are equal.
Consider the sum SE achieved with network MIMO

(solid curves) in Fig. 2. The deployments perform poorly
for the fully loaded MIMO system with M = 24 BS
antennas. The sum SE improves significantly when few
antennas are added. Adding more antennas increases the
sum SE, but the gain per additional antenna decreases. A
ratio of twice as many BS antennas as UEs seems to be
a good trade-off between achieved sum SE and number
of BS antennas. As expected, the distributed deployments
outperform the single central BS deployment, except for
the outdoor BSs deployment which performs poorly with
all transmission schemes.
Next, consider the sum SE achieved with LS-MIMO

(dashed curves) in Fig. 2. Recall that for LS-MIMO at least
M = NBSK total BS antennas are required. Similar to net-
workMIMO, adding more antennas increases the sum SE,
and the gain with each additional antenna decreases. Since
LS-MIMO does not require a backhaul, one can trade off
the costs of a backhaul with the numberM of BS antennas
to achieve the sum SE of network MIMO with LS-MIMO.
Local precoding is non-cooperative and performs

poorly due to interference (dotted curves), see Fig. 3. For
all deployments, the sum SE improves little when adding
antennas. However, it may be beneficial to distribute BS
antennas even without cooperation. For example, the two
indoor BSs deployment with local precoding outperforms
the single central BS deployment. Local precoding outper-
forms network MIMO for small M when more UEs are
served by a BS than the BS can serve with local precoding
and only the best UEs are scheduled.

In conclusion, the SE increases with the number of
BS antennas for all deployments and all transmission
schemes until it is limited by the maximal SE of the mod-
ulation. Cooperation between indoor BSs provides large
gains, while cooperation between outdoor BSs or indoor
and outdoor BSs provides smaller gains. Network MIMO
performs best, but CS/CB is an interesting alternative as
the backhaul requirements are reduced. The placement of
BSs is important to overcome wall penetration losses and
to control interference.
A SE of 100 bit/s/Hz without considering overhead is

achievable with 192 antennas using local precoding and
less than 28 antennas using two indoor BSs with network
MIMO. Considering an overhead of 50%, the required
bandwidth to achieve the goals of the METIS project [2]
is:

• For the TC1 virtual reality office:

0.1 bit/s/m2 · 5000m2

50 bit/s/Hz
= 10 GHz. (12)

More UE antennas, more base stations, or larger
QAM constellations could reduce the required
bandwidth.

• For the TC2 dense urban information society:

0.7Mbit/s/m2 · 5000m2

50 bit/s/Hz
= 70MHz. (13)

This performance is achievable with single antenna
UEs, few BSs, and 256 QAM within a reasonable
bandwidth.

4.2 Average SNRmaps
This subsection provides reasons as to why the deploy-
ments with only one or no indoor BS perform poorly as
compared to the distributed indoor BSs deployments. To
this end, only a single UE is served at different positions
within the office building and its average SNR ismeasured.
The BSs use network MIMO under per-BS power con-
straints,1 and they distribute the per-BS transmit power
equally among the subcarriers. The SNR achieved when a
single UE is served is an upper bound to the SNR when
more UEs are served with ZFBF or any other linear pre-
coding scheme, as serving more UEs only reduces the
degrees of freedom.
Figure 4 shows the SNRs averaged over 300 channel

realizations for each sampled position. The single central
BS deployment achieves low SNR in many rooms, espe-
cially those close to the outside wall. This is due to the
wall penetration loss. The outdoor BSs deployment and
the indoor-outdoor BSs deployment achieve low SNR in
inner rooms and in the corridors. The other deployments
achieve high SNR in all rooms.

1For a single served UE, ZFBF coincides with maximum ratio transmission.
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Fig. 2 Network MIMO versus LS-MIMO. Average sum SEs with network MIMO and LS-MIMO for 256 QAM and mercury/water-filling

Fig. 3 Network MIMO versus local precoding. Average sum SEs with network MIMO and local precoding for 256 QAM and mercury/water-filling
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Fig. 4 Average SNR maps. Average SNR achieved at a single served UE for different positions with 48 transmit antennas (with 40 transmit antennas
for the fourty indoor BSs deployment). a Single central BS deployment. b Two indoor BSs deployment. c Four indoor BSs deployment. d Fourty
indoor BSs deployment. e Outdoor BSs deployment. f Indoor-outdoor BSs deployments

We conclude that the lower SEs of the deployments with
only one or no indoor BS are at least partly due to the large
wall penetration loss and the building penetration loss. A
deployment with few well-placed BSs suffices to provide
good service throughout the building.

4.3 Comparison to capacity upper bound
Massive MIMO lets simple transmission schemes
approach capacity with an increasing number of BS
antennas. In the following, this statement is studied for
the network MIMO transmission scheme. One can upper
bound the capacity of a deployment by the capacity of a
BC under a total power constraint. Suppose all BSs of a
deployment cooperate and act as one BS with distributed
antennas, and suppose we relax the per-BS power con-
straint to a total-power constraint. Note that for the single
central BS deployment, the upper bound is tight, as the

capacity of a BC is achieved by non-linear DPC [38–41].
The algorithms in [42] find the optimal transmission
policy while treating the OFDM subcarriers as virtual
antennas. The resulting capacity is compared to the SEs
achieved with Gaussian modulation, since 256 QAM
limits SE, while Gaussian modulation allows to approach
the capacity upper bound.
Figure 5 shows the capacity upper bounds and the aver-

age sum SEs achieved with Gaussian modulation and net-
work MIMO under per-BS power constraints and under
a total power constraint. The general trends are similar
to Figs. 2 and 3, but the SEs increase without bound with
the number of BS antennas. For few BS antennas, the
gap between the capacity upper bound and the network
MIMO rates is large, but the gap could be reduced bymore
advanced scheduling algorithms. The channels harden for
more BS antennas: it becomes optimal to schedule all UEs
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Fig. 5 Comparison to capacity. Average sum SEs of network MIMO for Gaussian modulation

on each subcarrier [6], and advanced scheduling strate-
gies provide diminishing gains [17]. With an increasing
number of BS antennas, the gap decreases and vanishes
completely under a total power constraint, while a gap
remains under per-BS power constraints. Determining
better capacity upper bounds and choosing better precod-
ing and power allocation under per-BS power constraints
would reduce the gap. In summary, networkMIMO allows
simple transmission schemes to approach capacity with an
increasing number of BS antennas in our scenarios.

4.4 Fairness study
The deployments and transmission schemes should pro-
vide a fair service to all UEs as the channels harden. One
can measure fairness quantitatively with Jain’s index [12]

J (S1, S2, . . . , SK ) =
(∑K

k=1 Sk
)2

K · ∑K
k=1 Sk2

. (14)

Jain’s index is 1 when all UEs achieve the same per-UE SE
and is 1/K when only one UE achieves a positive per-UE
SE.
Figure 6 shows the simulated fairness indices. For net-

work MIMO and LS-MIMO, the two indoor BSs deploy-
ment, the four indoor BSs deployment, and the fourty
indoor BSs deployment approach perfect fairness indices
of 1 with an increasing number of BS antennas. This

is partly due to all UEs being served with the maxi-
mal per-UE SE of 256 QAM. With Gaussian modula-
tion, the trends of Jain’s fairness index are similar, but
no deployment achieves perfect fairness. For local pre-
coding, the fairness indices are lower and they do not
approach a fairness index of 1 in the considered range
of BS antennas. The single central BS deployment, the
outdoor BSs deployment, and the indoor-outdoor BSs
deployment do not approach a fairness index of 1 with
any transmission scheme in the range of BS anten-
nas, but the index increases with the number M of BS
antennas.
We conclude that fairness increases with the number

of BS antennas, with the level of cooperation between
BSs, and with the distribution of BS antennas (given some
cooperation between BSs). Note that one can increase
fairness by making it an objective while scheduling and
allocating power.

4.5 Noisy channel estimation
So far, we assumed perfect CSI. However, perfect CSI is
usually not available, and acquiring CSI might be difficult
in massive MIMO due to the many antennas. Frequency
division duplex (FDD) requires a pilot sequence for each
BS antenna, while time division duplex (TDD) might suf-
fer from pilot contamination [3]. Hence, a study of the
effect of estimation errors on the average SE is in order.



Dierks et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:22 Page 10 of 12

Fig. 6 Fairness study. Jain’s fairness index for 256 QAM and mercury/water-filling

Fig. 7 Noisy channel estimation. Average SE with 48 total BS antennas (with 40 total BS antennas for the fourty indoor BSs deployment) for a
zero-mean Gaussian distributed channel estimation error
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Let the channel coefficient with estimation error from the
mth antenna of the ith BS to the kth UE at subcarrier f be

ĥ(f )
i,k,m = h(f )

i,k,m + e(f )i,k,m (15)

where h(f )
i,k,m is the channel coefficient without error and

e(f )i,k,m is the estimation error. The estimation errors are
independent and zero-mean proper complex Gaussian
random variables. The estimation error of the channel
between the ith BS and the kth UE is normalized such
that its variance scales with the mean channel coefficient
squared

E

[∣∣∣e(f )i,k,m

∣∣∣
2
]

= E

[∣∣∣h(f )
i,k,m

∣∣∣
]2

σ 2
E (16)

where σ 2
E is the normalized mean squared error (NMSE),

and the expectation is over the BS antennas and the sub-
carriers. This channel estimation error occurs, e.g., for
channel prediction [15, 43]. The BSs determine the pre-
coders based on the channel estimation with error. For
these precoders, intra-cell interference occurs due to the
estimation error.
Figure 7 shows the average SEs versus NMSE for 48

total transmit antennas, except for the fourty indoor BSs
deployment where only 40 total BS antennas are deployed.
With networkMIMO, the performance of all deployments
severely degrades with increasing NMSE. The SEs of local
precoding are unaffected by low NMSE and degrade for
high NMSE only. Inter-cell interference is always present
for local precoding and dominates over the interference
caused by channel estimation errors formost of the NMSE
range. Hence, the power allocation of local precoding is
more robust to interference and local precoding outper-
forms network MIMO for a NMSE higher than −30 to
−20 dB. However, the performance of network MIMO
with estimation errors can be improved, e.g., by mak-
ing the power allocation more robust to the additional
interference caused by estimation errors [44]. For more
BS antennas, the trends and performance differences are
similar.
We conclude that all deployments suffer from channel

estimation noise, while some deployments are more sen-
sitive. Good channel estimation is crucial to obtain the
massive MIMO and network MIMO benefits. However,
more robust precoding techniques and power allocation
schemes could improve performance in the presence of
prediction errors.

5 Conclusions
We compared the performance of six different deploy-
ments and different levels of cooperation in the 3GPP
indoor office scenario. Cooperation between BSs pro-
vides gains as compared to no cooperation, which become

larger as the level of cooperation increases. The same per-
formance as a single massive MIMO BS is achieved by
distributed BSs with cooperation and fewer antennas. The
costs of antenna elements can be traded off with the costs
for backhaul capability to achieve the same performance.
NetworkMIMOwith a ratio of twice as many BS antennas
as served UEs can offer many of the massive MIMO ben-
efits. User fairness and SE close to capacity are achieved
with simple transmission schemes. Accurate channel esti-
mation is necessary to obtain the massive MIMO and
cooperation benefits.
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