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Abstract

With the development of network technology, WLAN-based indoor localization plays an increasingly important role.
Most current localization methods are based on the comparison between the received signal strength indication
(RSSI) and the RSS in the database, whose nearest reference point is the location point. However, since a uniform
standard for measuring components of smartphones has not yet been established, the Wi-Fi chipsets on different
smartphones may have different sensitivity levels to different Wi-Fi access points (APs) and channels. Even for the
same signal, RSSI values obtained by different terminals at the same time and the same location may be different.
Therefore, the impact of terminal heterogeneity on localization accuracy can be overlooked. To address this issue, a
fusion method based on received signal strength difference and compressive sensing (RSSD-CS) is proposed in this
paper, which can reduce the influence caused by the terminal heterogeneity. Besides, a fingerprint database is
reconstructed from the existing reference point data. Experiments show that the proposed RSSD-CS algorithm can
achieve high localization accuracy in indoor localization, and the accuracy is enhanced by 20.5% and 15.6%
compared to SSD and CS algorithm.
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1 Introduction
The rapid development of smartphones has made it a
carrier of location-based service (LBS), such as indoor
localization, navigation, and tracking. In recent years, re-
ceived signal strength (RSS) fingerprint-based Wi-Fi po-
sitioning methods have attracted the attention of many
researchers because RSS can be easily obtained by a Wi-
Fi-integrated mobile device without any additional hard-
ware [1–5]. The performance of the fingerprint-based
methods depends on the number of the reference points
(RPs) in unit space. However, as RSS measurement is
time-consuming and laborious, an increase in the num-
ber of RPs will increase positioning costs.

Figure 1 shows the RSS distribution of three different
access points (APs) in the same space. It can be seen
that the RSS distribution of different APs in the same
space is different because of the differences of their
place, so there is a corresponding relationship between
the location and the RSS values, just like the fingerprints
of persons. It is called “location fingerprint.”
Fingerprint-based positioning requires first establish-

ing a fingerprint database and then performing online
matching in two stages of rough matching and precise
matching in this paper. Wireless signals depend on the
propagation environment, and the multi-path character-
istics of different channels are different. During the
transmission of wireless signals, unique signals related to
the transmission environment are produced through re-
flection, refraction, and scattering. The multi-path fea-
ture is referred to as the “location fingerprint” [6].
However, since the radio frequency (RF) signals can vary
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over time and space due to obstacles and multi-path fad-
ing, this may degrade performance of using RSS finger-
prints for positioning. It is therefore difficult to achieve
good accuracy in most applications.
To achieve better indoor localization results, there are

many fusion approaches to enhance the positioning ac-
curacy [2, 7, 8]. However, if different types of sampling
terminals are employed in offline stages and online
stages, the positioning accuracy will be reduced directly
[9]. Such device heterogeneity will affect the perform-
ance of indoor localization [10]. Therefore, the key of in-
door localization technology is to design an accurate
real-time indoor localization system without any hard-
ware installation and modification, which can be readily
deployed to the mobile devices.
A method by the existing Wi-Fi infrastructure, without

the need of knowing the specific location of each AP, is
proposed in this paper. The compressive sensing tech-
nology is used for reconstructing the position finger-
prints, and the received signal strength difference
(RSSD) is used for replacing the traditional RSS. The
purpose is to improve the positioning accuracy without
increasing the hardware investment, no matter which
devices the users use.
The main contributions of this paper are as follows:

� To present a method of indoor positioning through
the fusion of RSSD and rompressive sensing (CS)
without any hardware installation and modification.
Replace the traditional RSS with RSSD to realize
localization, which can undermine the influence of
device heterogeneity on localization accuracy to
some extent. At the same time, the compressive
sensing algorithm is presented for location
matching. The existing reference point data are used
for restoring the complete fingerprint database so
that every point in space has a corresponding
fingerprint and the localization accuracy can be
improved to a certain extent.

� To present an improved fuzzy clustering method
(IFCM) algorithm, unlike the traditional fuzzy
clustering method (FCM) algorithm, it is not
necessary to determine the clustering center in
advance. It takes all sample points as the candidate
clustering centers and gives each sample point a
corresponding real number, which is called the biased
parameter. The larger the deviation parameter is, the
more likely to be determined as the clustering center.

The rest of this paper is organized as follows: Section
2 describes a summary of related work. Next, Section 3
describes the overall system architecture and RSSD-CD
methods. The experimental results and the related dis-
cussion are presented in Section 4. Finally, Section 5
provides the conclusions of this paper.

2 Related work
Fingerprint-based location technology does not require
prior knowledge of infrastructure location, nor does it
need a propagation model. In general, fingerprint-based
methods map RSS values to physical locations through
pattern recognition technology [11]. This kind of RSS-
localization mapping is obtained from the site survey, and
it can be located by using different statistical modeling or
machine learning algorithm to compare data in online
measurement and pre-existing database [12, 13]. K-nearest
neighbor (KNN) [14], multi-layer perceptron [15], neural
network [16, 17], maximum likelihood [18, 19], support
vector machine [20], nuclear methods [21–23], etc. can be
used in indoor localization. Nuclear-based machine learn-
ing technology can also be applied to WLAN localization
[21]. Indoor signal propagation environment, however, is
quite complex. The RSS of a given location usually
changes over time due to the reason of interference, re-
flection, refraction, multi-path fading, direction of equip-
ment, hardware changes, temperature, humidity, and even
attack [24–29]. Additional radio bandwidth will also
change RSS in a bandwidth-constrained system [30, 31].

Fig. 1 RSS distributions for three different APs in the same space. a The RSS value received from the AP1 at the RPi. b The RSS value received
from the AP2 at the RPi. c The RSS value received from the AP3 at the RPi
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Such noise causes the mismatch between the online meas-
uring data and the offline recorded data in the location
fingerprint system. The previously stored fingerprinting
map no longer reflects the statistical features of the
current RSS, so the performance of the system decreases.
In an actual indoor environment, this problem is inevit-
able. At the same time, the Wi-Fi chipsets on different
smartphones may be sensitive to different Wi-Fi APs and
channels. Therefore, the signal values and length of signal
vector [32] are different. The operating systems of smart-
phones may support different APs. The detection rate and
number of APs sensed can be altered [33]. Therefore, even
the same device with different operating systems may still
have heterogeneity.
In literature [34, 35], the authors proposed that RSS

for different devices follow a linear model for the same
signals. The signals of two devices are given, and the lin-
ear calibration model is obtained by regression. Offline
training is required before the exact mapping relation-
ships. However, manual data acquisition and calibration
are inconvenient for deployment. To reduce such labor-
intensive work, some crowd-sourced algorithms [36] can
be implemented to provide efficient signal data for cali-
bration. To reduce the workload of offline calibration,
online calibration is adopted in literature [32, 37]. Hos-
sain et al. have proposed a simple signal strength differ-
ence (SSD) algorithm based on the signal and antenna
gain model. The constant factor of the antenna gain is
derived. A similar idea is employed in the received signal
strength indication (RSSI) ratio [37]. An AP measure-
ment value is selected [37], and each AP signal is divided
by this constant value. These methods are easy to realize
on the online calibration of the signal vector.
Numerous researchers improve the accuracy of the in-

door localization system from different aspects. Wang
et al. [8] have used curve fitting (CF) technology to de-
termine RSS-distance relation in an indoor environment,
instead of using a logarithmic distance model and a
series of linearly independent functions to build a gen-
eric RSS-distance model. The advantage of this approach
is that the data can be extracted from a small number of
RSS measurements. By dividing space and curve fitting
in each partition, a more accurate RSS-distance relation-
ship can be obtained for each AP. First, a subarea which
a mobile device belongs to is determined, and then the
sum of distance errors can be minimized to realize
localization. However, the drawback of this scheme is
that it only considers the regular layout of the room and
not considers the diversity of terminals.
Fang et al. [38] have matched the RSS value of the mo-

bile device and the fingerprint database by using the
compressive sensing principle. Compressive sensing
technology can be applied to compensate for the scarcity
compressed signal or noise. This method uses a small

amount of fingerprint sampling to reconstruct a
complete fingerprinting map, it can reduce the workload
of building a fingerprint database and also can improve
the accuracy of positioning, but this method still does
not take the diversity of terminals into account and has
a higher computational complexity.
Wen et al. [39] have proposed a new algorithm to adjust

the RSS fingerprint database by using the feedback informa-
tion about the surrounding environment. The system uses
different, updated measurements and offline fingerprint
points according to the time and spatial intensity of the lo-
cation. Because the adaptive radius is applied as the main
factor of affecting positioning accuracy, this method can
solve the problem of signal occlusion which were caused by
moving obstacles in simulation and actual scenes.
Zheng et al. [40] have used a low-tubal-rank tensor to

model Wi-Fi fingerprints of all reference points (RPs) and
proposed an adaptive sampling scheme via approximate
volume sampling to improve reconstruction accuracy of
radio map with reduced expenditure. Meanwhile, they
have provided a mathematical theory to analyze and de-
rive the performance bounds of the proposed method in
terms of sample complexity and reconstruction error.
References [41–43] are based on outdoor positioning.

Wu et al. [41] proposed a mobile positioning system and a
mobile positioning method based on recurrent neural net-
works to analyze the RSSIs from heterogeneous networks,
which include cellular networks and Wi-Fi networks. The
network signals from heterogeneous networks can be ana-
lyzed to improve the accuracies of the estimation of loca-
tions. Cheng et al. [42] proposed an intelligent positional
approach for high-speed trains based on ant colony
optimization and machine learning algorithms. The pro-
posed methods can enhance the real-time performance in
the online updating process on the premise of reducing
the positioning error. Chen et al. [43] proposed a two-
stage estimation algorithm based on variable projection
method for GPS positioning. The proposed method can
effectively mitigate multi-path interference.
Many researchers have used different methods to im-

prove indoor localization performance. However, they do
not consider the influence of both equipment heterogeneity
and non-reference point factors on positioning accuracy.
Compared to these works, our received signal strength dif-
ference and compressive sensing (RSSD-CS) method can
restore complete signal space with limited RSS measure-
ment. It can reduce noise interference and remove outliers
to some extent. No matter what type of terminals are being
used, a satisfactory positioning effect can be obtained.

3 Methods
Although locational fingerprinting technologies based on
Wi-Fi have relatively high localization accuracy, collected
RSS samples could be affected by indoor environmental
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factors, such as multi-path, shielding, and person’s move-
ment. RSS values are likely to be different even at the
same device, same location, and different time, which
could affect localization accuracy significantly. Due to the
differences in the type of chipsets in the devices, the RSS
values measured by different devices at the same time, in
the same location, are also different. It is impossible to es-
tablish a fingerprint database for each device in the data-
base. Therefore, the error caused by the heterogeneity of
devices cannot be ignored.
As can be seen from Fig. 2, the sampling of RSS values

at a different time in the same location is constantly
changing. The estimation of location only by absolute
RSS value will produce a large error. It is necessary to
select the mean value within continuous time sampling
as the measured RSS values for calculation both online
and offline states. Doing so can reduce the adverse im-
pact of environmental factors, but it is impossible to
eliminate it fundamentally.
The indoor propagation model of the wireless signal is

[44]:

P dð Þ dBm ¼ P d0ð Þj jdBm−10βlg
d
d0

� �

þXdB ¼ 10 lg
PAPGAPGMTλ

2

16π2d0
2L

� �
−10β lg

d
d0

� �
þ XdB

ð1Þ

where PAP is the transmission power of AP, GAP is the
antenna gain of AP, GMT is the antenna gain of mobile
terminal (MT), L is system loss factor, λ is the wave-
length of the wireless signal. Due to different Wi-Fi net-
work interface controllers (NICs) embedded in
smartphones, the antenna gain (GAP and GMT) may be
different. This leads to RSS samples at the same time,
and the same location by different devices are also
different.
From formula (1), it can be seen that the RSS value at

a distance d depends on the hardware parameter of MT.
So,

P d1ð ÞjdBm ¼ 10 lg
PAP1GAP1GMTλAP1

2

16π2d0
2L1

� �
−10β1 lg

d1
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ð2Þ
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2
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Formula (2) minus formula (3) is:

P d1ð Þ dBm−P d2ð Þj jdBm ¼ 10 lg
PAP1GAP1λAP1

2L2
PAP2GAP2λAP2

2L1
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d0
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d2

d0

� �
þ X1−X2½ �dB

ð4Þ

Fig. 2 RSS measured by the same device at the same location during one minute
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As can be seen from formula (4), the difference of two
RSS values eliminates the item of GMT, that is, RSSD
eliminates the impact of device heterogeneity. The dif-
ference among APs can be used as fingerprint features,
for example, RSS differences, i.e., a RSSD value between
two APs can be used as a fingerprint. RSSD can reflect
the interval relationship between fingerprints at a spe-
cific time and location, and it is a more stable wireless
signal feature than the absolute RSS value. But, for n
APs, the values of independent RSSD can only be n − 1.
This reduction in dimension may make RSSD slightly
less accurate than RSS when using the same device in
the offline and online stages. However, Kjargaard [45]
has pointed out that the increase of RSS fingerprint di-
mension does not bring obvious improvement of
localization accuracy when n is greater than 5. So, when
using different devices, RSSD as the location fingerprint
can bring significant improvement to accuracy.
WLAN-based fingerprint localization consists of two

stages: the offline stage and the online stage. During the
offline stage, RSS reading of each access point (AP) was
collected at the uniformly distributed reference point
(RP), and the RSS values were clustered and eliminated
outliers. The most stable m APs and their corresponding
RSS values of each cluster were extracted as the eigen-
values for the subsequent rough localization. During the
online stage, first, the AP and corresponding RSS read-
ing measured online was compared with the clustering
eigenvalues in the offline stage to find the most similar

clusters and roughly locate several subsets. Then, the or-
thogonalization is done on the set to meet the necessary
conditions for compressive sensing principle. The proc-
essed set is calculated as the RSSD between APs. Finally,
the compressive sensing theory is used for accurate
localization. The flow chart of the proposed scheme is
shown in Fig. 3

3.1 Offline stage
In general, the localization application scenario is that
the user holds a mobile device, measures RSS reading of
some APs which can be sensed, and the user's location
is shown on the map or illustrated as a message. The
user's location estimation is done by comparing the
similarity between the RSS values measured at the mo-
bile and the fingerprint map. In this paper, the compres-
sive sensing theory is used for reconstructing the
fingerprint map. In the process of fingerprint matching,
the RSSD value is used as the new fingerprint to com-
pare the measured value to the database, to find the
most matching fingerprint, and to realize the
localization.

3.1.1 Fingerprint collection
In the offline phase, the original set of the RSS time
samples collected from AP i in RP j are denoted as {ψi,

j(τ), τ = 1, 2,…, q, q > 1}, where q represents the total
number of time samples. The experiment result shows
that the mean value of received signal strength tends to

Fig. 3 Block diagram of the proposed indoor localization system
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be stable when q ≥ 30 in the experimental environment.
Then, the average of the RSS time samples is computed
and stored in a database, known as a radio map. Such a
radio map is used for describing the RSS spatial nature
of the location area and can be represented by Ψ:

Ψ ¼
ψ1;1 ψ1;2 ⋯ ψ1;N
ψ2;1 ψ2;2 ⋯ ψ2;N
⋮ ⋮ ⋱ ⋮

ψL;1 ψL;2 ⋯ ψL;N

2
664

3
775 ð5Þ

where ψi, j is the average of RSS readings from AP i at
RP j (unit: dBm), that is, ψi; j ¼ 1=q �Pq

τ¼1ψi; jðτÞ; i ¼ 1;

2;⋯; L; j ¼ 1; 2;⋯;N , L is the total number of APs that
can be detected, and N is the number of RPs. Column

vector ψ! j in Ψ represents the average RSS vector that at

the RP j received from L APs, is denoted as:

ψ! j ¼ ψ1; j;ψ2; j;⋯;ψL; j

h iT
; j∈ 1; 2;⋯;Nf g ð6Þ

where the superscript T denotes the transposition. The
variable values of the RSS time sampling sequence from
each AP at all RPs are stored in the database to be used
in fine localization by the AP’s selection mechanism sub-
sequently. The variance vector corresponding to the RPj,
j = 1, 2, ⋯, N is defined as:

Δ
!

j ¼ Δ1; j;Δ2; j;⋯;ΔL; j
� �T ð7Þ

where Δi, j is the unbiased estimated variance of RSS
readings from APi at RPj.

Δi; j ¼ 1=ðq−1Þ �Pq
τ¼1ðψi; jðτÞ−ψi; jÞ2; i ¼ 1; 2;⋯; L. The

table composed of fðx j; y j; ψ
!

j; Δ
!

jÞ; j ¼ 1; 2;⋯;Ng
forms a complete fingerprint database and is stored in
the server.

3.1.2 Improved fuzzy clustering method (IFCM)
Due to the indoor complex environment and complex
time-varying characteristics of radio wave propagation,
the online RSS is different from that in the radio map.
As can be seen from Fig. 2, there is a deviation of 2–20
dBm in the RSS reading of the same AP at the same
sampling point over time. To reduce the impact of time
variability and remove potential outliers, the reference
points in the database can be clustered. The members of
the same class have the characteristics of geographic
proximity and RSS fingerprint similarity. These charac-
teristics can be used for the rough localization mechan-
ism of the subsequent online stage, and narrow the
localization area to one or more classes. Clustering can
weaken the influence of time-varying and spatial inter-
ference of partial RSS, improve the efficiency of accurate
localization, and reduce the time complexity of the
algorithm.

There are many clustering methods, for example, the
K-means clustering algorithm, FCM algorithm, ant col-
ony algorithm, and neural network algorithm. Wu et al.
[46] proposed an efficient pixel clustering-based method
for mining spatial sequential patterns from serial remote
sensing images. To cluster pixels into a pixel-group rap-
idly, the images were converted to the run-length coding
schema, from which images can be overlaid with each
other efficiently, to produce pixels with a sequence list.
Chen et al. [47] proposed a travel time prediction system
based on data clustering for waste collection vehicles.
The adaptive-based clustering (ABC) methods analyze
the similarities or distances between the data and cluster
centers and group these data into several clusters in ac-
cordance with a threshold. He et al. [48] proposed an
evolutionary K-means (EKM) algorithm, which combines
K-means and genetic algorithm, solves K-means initi-
ation problem by selecting parameters automatically
through the evolution of partitions. Two aggregated con-
sensus matrices are defined to store the clustering ten-
dency for each pair of instances. They store the
tendency that a pair of data instances should group to-
gether or group apart, respectively. The matrices were
used to evaluate partitions. Liao et al. [49] proposed a
tensor factorization-based user cluster (TFUC) model.
The latent influence users are identified by a neural net-
work clustering model. This model can filter the market-
ing users with low influence before constructing tensor,
which is proven to significantly enhance the recommen-
dation effect. Wang et al. [50] proposed two efficient co-
clustering algorithms via nonnegative matrix tri-
factorization. First, an effective penalty nonnegative
matrix three-factorization method is introduced for
high-order orthogonality constraints. Secondly, the
three-factorization of symmetric penalty nonnegative
matrix is used to deal with the co-aggregation problem
in the extraction of the sample similarity matrix.
FCM algorithm is the commonly used fuzzy clustering

method, but this algorithm is sensitive to the initial value
and easy to fall into local extreme value, it is difficult to
get the global optimal solution. Unlike the traditional
FCM algorithm, the IFCM clustering algorithm does not
need to determine the clustering center in advance. It
takes all n sample points as the candidate clustering cen-
ter and gives each sample point a real value, which is
called the biased parameter. The larger parameters are
more likely to be used as clustering centers. At the same
time, the selection of biased parameters will also affect
the number of clustering. The algorithm establishes
similarity information between each sample point and
other sample points, maximizes the fitness function in
the sample competition through the message iteration of
the loop between samples, and finally forms the class
center and class members. Because the algorithm does
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not need to randomly select the class center and the
convergence speed is fast, it is applied to the data pre-
processing in the offline phase of the localization system.
Sim(i,j) represents the similarity between the reference

point RPj and the reference point RPi. The received sig-
nal strength vector at the reference point RPj can be ap-

proximately expressed as ψ! j þ ε j , where εj is the

measurement noise, approximate Gaussian distribution
under certain conditions. Therefore, Euclidean distance
can be used as a judgment basis to measure the similar-
ity between RSS vectors of reference points. The similar-
ity between reference points is defined as:

Sim i; jð Þ ¼ − ψ!i

��� −ψ! j

���2; ∀i; j≠i∈ 1; 2;…;Nf g ð8Þ

where Sim(k, k), k = 1, 2, …, N is defined as the self-
similarity function, and the value is assigned as the bias
parameter to indicate the possibility of the reference
point RPk becoming the class center. Since there is no
prior knowledge, all reference points are likely to be-
come class centers. The bias parameters of each refer-
ence point are defined as a function of the median
similarity value, which can be expressed as:

b ¼ α �medianfSim i; jð Þ;∀i; j∈ 1; 2;…;Nf g; j≠i ð9Þ

where α is the empirical value obtained during the ex-
periment process, which is used for selecting a moderate
number of classes.
The core of the improved FCM clustering algorithm is

the transmission of messages between two reference
points:
Each RP is assigned the same offset parameter to form

the affiliation matrix a[N][N], whose initial value is a
function of the median value of Sim(i,j).
Attractiveness messages are the adaptability of one ref-

erence point to be the class center of other reference
points, and affiliation messages are the affiliation degree
of a reference point, which becomes a class member
centered on another reference point. IFCM clustering is
to continuously search for evidence from data and carry
out message transmission in a cyclic and iterative way,
to produce a high-quality class center and assign a clas-
sification center to every member.

3.1.2.1 Attractiveness message a(i, j) Attractiveness
message a(i, j) is sent from the reference point RPi to
RPj, reflecting the cumulative evidence which RPj as a
class attracts to RPi under the influence of considering
another candidate reference point besides RPj, is denoted
as:
a(i, j) = Sim(i, j) −max {t(i, j′) + Sim(i, j′)}, j′ ≠ j, (10)
where t(i, j′) are affiliation messages.

3.1.2.2 Affiliation message t(i, j) Affiliation message
t(i, j) is sent from candidate class center RPj to RPi,
reflecting the accumulated evidence that under the influ-
ence of other class members taking RPj as the center,
RPi believes that RPj is belonging to its class center, they
are denoted as:

t i; jð Þ ¼ min 0; a j; jð Þ þ
X

i
0
≠i; j

max 0; a i
0
; j

� �n on o
; i

0
≠i ð11Þ

The self-affiliation message t(j, j) reflects the accumu-
lated evidence of RPj as the class center after the positive
attraction values are sent from other reference points
besides RPj to RPj. It is denoted as:

t j; jð Þ ¼
X

i
0
≠ j

max 0; a i
0
; j

� �n o
ð12Þ

Class centers compete through passing two messages
between the pairs of reference points. For every RPi, cal-
culating j′ = argmaxj ∈ {1, 2,…,N}{t(i, j) + a(i, j)}, if j′ = i, then
RPi is selected as the class center. On the contrary, RPj is
going to be the class center of RPi. The messages are
passed recursively between pairs of RPs within each
radio map, and the above updating rules are followed
until the appropriate number of class convergences, the
corresponding class center is formed.
In general, the reference points located at the center of

the cluster usually have a bigger sum of attraction to
other reference points. Therefore, they are more likely to
become the class center. On the contrary, for those lo-
cated at the border of the cluster, the possibility of be-
coming the class center is low due to smaller sums of
attraction.

3.2 Online stage
Define the RSS value measured by the user's handheld
terminal device at any unknown location as:

φ!r ¼ φ1;r;…;φL;r

h iT
ð13Þ

where φK, r is the online average RSS. The online
localization stage is divided into a coarse localization
stage and fine localization stage. The coarse localization
first compares the similarity between the RSS vectors

φ!r and every class center in the offline database, and an
appropriate threshold is set to narrow the localization
area with a sub-set of the reference point, which not
only reduces the computational complexity of the
localization algorithm but also can remove the errors
caused by outliers at a distance. Then, select the most

powerful m APs from the RSS vector φ!r measured on-
line, conducting the AP selection of the data in the off-
line database and select the same m APs to participate
in the calculation. To eliminate device heterogeneity, the
subtraction between the first AP and the other m − 1
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APs was performed to generate a new RSSD matrix for
localization.

3.2.1 Coarse localization
According to the definition of similarity function, the set
of matching class center is denoted as:

Simmt ¼ Sim r; jð Þ > β; j∈Hf g ð14Þ

where H is the number of clusters, β is the threshold
for controlling the number of matching classes, which is
defined as the function of maximum similarity and mini-
mum similarity, and is denoted as:

β ¼ max Sim r; jð Þf g þ β1 min sim r; jð Þf g ð15Þ

where β1 is usually a real number between 0.3 and 0.5.
After the matching class is determined, the RSS vector

set received by the members of the matching class is de-
noted as a L� ~N matrix ~Ψ:

~Ψ ¼ ~ψi; j; i ¼ 1; 2;…; L; ∀ j∈C
h i

ð16Þ

which means ~Ψ ¼

~ψ1;1 ~ψ1;2 ⋯ ~ψ
1; ~N

~ψ2;1 ~ψ2;2 ⋯ ~ψ
2; ~N

⋮ ⋮ ⋱ ⋮
~ψL;1 ~ψL;2 ⋯ ~ψ

L; ~N

2
6664

3
7775 , where

~N is the number of matching class members, and means
~N ¼ jCj。

3.2.1.1 AP selection mechanism for the strongest RSS
According to the measured value of online RSS, m APs
with the strongest RSS are selected for calculation. Sort
the online RSS received from L APs in descending order,
select the first M APs, and complete the matrix c line by
line. Since the user receives different signals from differ-

ent APs in different positions, the matrix e~Ψ needs to be
filled in dynamically.

e~Ψ ¼

e~ψ1;1
e~ψ1;2 ⋯ e~ψ1;Ne~ψ2;1
e~ψ2;2 ⋯ e~ψ2;N

⋮ ⋮ ⋱ ⋮e~ψM;1
e~ψM;2 ⋯ e~ψM;N

2
6664

3
7775 ð17Þ

3.2.1.2 Received signal strength difference (RSSD)
conversion After determining the matrix e~Ψ, the subtrac-
tion between the other m − 1 APs and the first AP is

calculated to form the matrix e~Ψ0.

e~Ψ0 ¼
e~ψ0

1;1
e~ψ0

1;2 ⋯ e~ψ0
1;Ne~ψ0

2;1
e~ψ0

2;2 ⋯ e~ψ0
2;N

⋮ ⋮ ⋱ ⋮e~ψ0
M−1;1

e~ψ0
M−1;2 ⋯ e~ψ0

M−1;N

2
6664

3
7775 ð18Þ

where
eeψ0

i; j is the difference between the signal

strength received from APiand AP1 at the reference
point RPj, and is denoted as:

eeψ0
i; j ¼ e~ψi; j−

e~ψ1; j ð19Þ

Let M represent the total number of the strongest AP
selected in the localization area and ~N represent the
total number of reference points in the matching class.

The RSSD vector received online is defined as φ!r

0
,

φ!r

0
¼ φ

0
1;r;…;φ

0
M−1;r

h iT
ð20Þ

where φ
0
i;r represents the RSSD between APi and AP1

at the request location, that is:

φ
0
i;r ¼ φi;r−φ1;r ð21Þ

3.2.2 Fine localization

3.2.2.1 Sparse characteristics and problem modeling
To apply compressive sensing, sparse characteristics and
irrelevancy are required. Firstly, for the localization sys-
tem, the spatial position of the user at a specific time is
unique and sparse. Ideally, suppose that the user just
stands on a RP, so θ can be defined as a vector of ~N � 1,
and each element represents a reference point in the
spatial domain selected in rough localization. Thus, the
user’s position can be accurately represented by a 1-
dimensional sparse vector, that is, the corresponding ref-
erence point position that the user is standing on is 1,
and the other positions are 0:

θ ¼ 0;…; 0; 1; 0;…; 0½ �T ð22Þ
Set y as the measurement vector of online RSS, y′as

the vector composed of the RSSD between APi and AP1,
and y′ can be further described as:

y
0 ¼ e~Ψ0

θ þ δ ð23Þ

where e~Ψ ¼ Φ~Ψ ; the definition of e~Ψ0

is shown in for-
mulas (18) and (19). Φ is M × L matrix and is a selection
on the measurement vector y. Each row of Φ is a 1 × L
vector, only φ(r) = 1, where r is the index of selected AP.
~Ψ is a L� ~N matrix, is a subset of the offline fingerprint
library defined in (16), each column represents the RSS
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vector of a selected class member in the coarse
localization region. δ is unknown environmental noise.

In the ideal environment without considering noise, φ!r

0

is a column about e~Ψ0

corresponding to an index position
of θ. In this case, the relationship between the measure-
ment vector y and the online received signal strength
vector φr is:

y ¼ Φφr ð24Þ
The purpose of localization is to reconstruct the 1-

dimensional sparse vector θ from formula (23) according
to the measurement vector difference y′ at the moment
t, y′ is calculated by formulas (21) and (20) after the AP
selection mechanism.

3.2.2.2 Orthogonalization In addition to the sparse
characteristics, the uncorrelated or weak correlation

matrix e~Ψ0

is an important feature to ensure that the

linear projection of signals can maintain the original
structure of signals, which become another important
guarantee for sparse signals reconstruction using the
compressive sensing theory. The restricted isometry

property (RIP) condition of the matrix e~Ψ0

is given
and proved by Candes and Tao [51], and it is a ne-
cessary condition using the compressive sensing the-
ory to realize sparse signals reconstruction through
ℓ1-minimization [52, 53] approximating ℓ0-
minimization. Therefore, orthogonalizing the matrixe~Ψ0

is necessary.
Orthogonalize y defined in formula (24), that is, z = Ty.

Define T =QR+. R ¼ e~Ψ0

, Q = orth(RT)T, represents the or-
thogonalization of the matrix R,R+ is the pseudo-inverse
matrix of R. Therefore, the localization problem can be
described as the minimization problem of the following
ℓ1-norm:

Fig. 4 Robustness comparison between RSS and RSSD. a RSS sampling from different mobile terminals. b RSSD sampling from different
mobile terminals.

Fig. 5 Comparison of RSS and RSSD localization performance. a Terminal homogeneity. b Terminal heterogeneous
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θ̂ ¼ arg min
θ∈RN

θk k1; s:t:z ¼ Qθ þ δ
0 ð25Þ

z = Ty =QR+ · (Rθ + δ) =QR+ · Rθ + δ′ =Qθ + δ′ e~Ψ0

is
known, Q meets the RIP characteristic [54]. Since θ has
a sparse nature, according to the theory of compressive
sensing theory [53, 55–58], if the number of APs M
meets M ¼ Oð log ~NÞ , the location indicator θ can be
well recovered from z with very high probability by solv-
ing the following ℓ1-minimization problem:
When the user happens to be located at a reference

point, it is ideally reconstructed into a 1-dimensional
sparse vector, the value of the index position is 1, while
the other positions are 0. However, in practice, the user
does not necessarily happen to be at a certain reference

point, so the reconstruction of θ̂ is not necessarily a 1-
dimensional sparse vector. Some larger values are taken
at the index positions of a few candidate reference
points, and the remaining index positions are approxi-
mately 0. To some extent, these non-zero values be-
tween (0, 1) reflect the possibility of corresponding
candidate reference points as position estimation. There-
fore, the threshold σ is set, and the reference point cor-
responding to the coefficient greater than the threshold
σ is taken as the second-level candidate reference point
and is denoted as ϒ,

ϒ ¼ njθ̂ nð Þ > σ
n o

ð26Þ

Therefore, the linear combination of these second-
order reference points with weights will be used as the
final position estimation for accurate localization.

x̂; ŷð Þ ¼
X

n∈ϒ
μn � x̂n; ŷnð Þ ð27Þ

where μn ¼ θ̂ðnÞ=Pi∈ϒ θ̂ðiÞ . The localization is
completed.

4 Experimental results and discussion
4.1 RSSD robustness analysis
Thirty locations were randomly selected and sampled
with two different mobile terminals for signal strength.
RSS and RSSD values of each location were compared,
as shown in Fig. 4. Figure 4a is the RSS sequence of the
same AP at 30 sampling points of two different mobile
terminals. Figure 4b is the RSSD sequence of the differ-
ence in signal strength for a pair of APs in two different
terminals at 30 sampling points.
It can be seen that at each sampling point, the RSS

values obtained by different mobile terminals are differ-
ent, with a maximum difference of 14.31 dBm, while the
RSSD values obtained by different mobile terminals
maintain a relative consistency. Although there is a dif-
ference between the two RSSD values at the same sam-
pling point, the maximum difference is only 1.74 dBm.
That RSSD had better robustness compared with RSS is
consistent with the previous analysis.

4.2 Comparison of fingerprint location accuracy of RSS
and RSSD
In practice, terminals used in localization are mostly dif-
ferent from that used in fingerprint database construction.
At the same time, the number of AP used for localization
is also a major factor affecting the localization accuracy.
Therefore, in the process of the experiment, two cases of
terminal homogeneity and heterogeneity were tested, re-
spectively. Using the traditional KNN algorithm, when the
same type of terminals is used for the offline fingerprint
database construction and the online localization, the
localization accuracy of RSSD is slightly lower than that of
the RSS when 6 APs are selected. When 10 APs are se-
lected, their performance is similar, and both of them can
achieve the localization accuracy within 3m in case of
over 87%. However, in the case of different types of termi-
nals, the performance of the RSS decreases significantly,
and the localization accuracy within 3m is only 32%, while

Fig. 6 Comparison of RSS-based using compressive sensing localization performance. a Terminal homogeneity. b Terminal heterogeneous
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the localization accuracy within 3m of RSSD reaches 58%,
85% of the probability can reach the localization accuracy
within 5m, and the localization accuracy can be improved
by more than 20% as shown in Fig. 5.
It can be seen that the localization accuracy in the

case of terminal heterogeneity is significantly lower
than that in the case of homogeneity. RSS-based
localization decreased by more than 50%, RSSD-based
decreased by nearly 30%. But in the practical applica-
tion, the situation of terminal heterogeneity is univer-
sal, so it is urgent to improve the performance of the
localization system.

4.3 Using compressive sensing localization performance
In the case of terminal homogeneous, the RSS-based
using compress sensing localization accuracy can reach
100% within 3 m, 80% within 1 m and 67% within 0.4 m,
with the performance improved by nearly 20%. In the
case of terminal heterogeneous, the localization accuracy
within 3 m can be achieved at 40% and within 4m at
60%, with the performance improved by nearly 3.8%. It
can be seen that compressive sensing has no obvious ef-
fect on device heterogeneity, which is shown in Fig. 6.
In the case of terminal homogeneous, the localization

accuracy of the RSSD-based using compress sensing can
reach 100% within 3 m, 79% within 1 m and 67% within
0.4 m, with the performance improved by nearly 20%. In
the case of terminal heterogeneous, the localization ac-
curacy within 3 m can be achieved at 73% and within 4
m at 92%. It can be seen that RSSD-CS fusion algorithm

greatly improves the positioning accuracy in the case of
homogeneous and heterogeneous terminals, which is
shown in Fig. 7.
The performance of RSSD-CS algorithm is verified

through experiments, and the specific summary is shown
in Tables 1 and 2.

5 Conclusion
This paper proposes an RSSD-CS indoor localization al-
gorithm to address the terminal heterogeneity, which
could improve the indoor localization accuracy. Firstly,
an IFCM algorithm is used for clustering map data to
eliminate outliers in the offline phases, narrow the
search range for online matching, and reduce time com-
plexity. Then, during the online phases, RSSD values of
APs sensed and selected at location points and matching
matrices on the map are calculated orthogonally to meet
the constraints of CS. Finally, CS theory is used for esti-
mating the user’s location. The experimental results
demonstrate that the proposed localization method leads
to substantial improvements in localization accuracy
over the widely used traditional fingerprinting methods.
In particular, the positioning accuracy of this method is
improved by 20.5% and 15.6% compared to SSD and re-
ceived signal strength and compressive sensing (RSS-CS)
algorithm.
Future research of this work may have three direc-

tions. First, the proposed IFCM algorithm has a higher
time complexity, which requires a longer time to calcu-
late when the number of samples is large. While this

Fig. 7 Comparison of RSSD-CS localization performance. a Terminal homogeneity.b Terminal heterogeneous

Table 1 Different percentile values concerning the positioning error under terminal homogeneous

Percentile values RSSD-CS positioning RSS positioning RSSD positioning RSS-CS positioning

50% < 0.25 m < 1.0 m < 1.0 m < 0.35 m

70% < 0.6 m < 1.9 m < 1.9 m < 0.55 m

90% < 2.3 m < 3.5 m < 3.4 m < 2.3 m
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work only improves the shortcomings of the clustering
algorithm in terms of its sensitivity to initial values, an
in-depth research for other clustering algorithms could
be conducted in the future. Second, the calculation of
RSSD values that is conducted in online stages increases
the computational complexity. If RSSD values of map
data can be obtained offline in the future, the timeliness
of location could be guaranteed. Third, the localization
accuracy is also related to the network element layout. If
the layout of network elements can be optimized in the
future, which could ensure that 5–7 first-path signals
can be received at any point in the positioning space, the
effect of multi-path can be effectively avoided and the
positioning accuracy can be further improved.

Abbreviations
WLAN: Wireless local area network; RSSI: Received signal strength indication;
RSS: Received signal strength; RSSD: Received signal strength difference;
CS: Compressive sensing; RSSD-CS: Received signal strength difference and
compressive sensing; SSD: Signal strength difference; RSS-CS: Received signal
strength and compressive sensing; Wi-Fi: Wireless fidelity; LBS: Location-
based service; RP: Reference point; AP: Access point; RF: Radio frequency;
FCM: Fuzzy clustering method; IFCM: Improving fuzzy clustering method;
ABC: Adaptive-based clustering; EKM: Evolutionary K-means; TFUC: Tensor
factorization-based user cluster; KNN: K-nearest neighbor; CF: Curve fitting;
MT: Mobile terminal

Authors’ contributions
YXM contributed to the investigation, methodology, draft manuscript
writing, manuscript reviewing, editing, software and hardware development,
simulations, result in analysis, and reviewing. WHQ and WJQ contributed to
the overall design and network element optimization layout model. The
authors read and approved the final manuscript.

Funding
This research was supported by National Natural Science Foundation of
China (no. 61872104 and 61901134), the National Science and Technology
Major Project of China (no. 2016ZX03001023-005), the China Postdoctoral Sci-
ence Foundation (no. 2019M651264), Natural science foundation of Heilong-
jiang Province of China (no. 2015023) and the Basic Business Project in
Education Department of Heilongjiang Province of China (no. 135209244).

Availability of data and materials
The datasets used and analyzed during the current study are available from
the corresponding author on a reasonable request.

Competing interest
The authors declare that they have no competing interests.

Author details
1College of Computer Science and Technology, Harbin Engineering
University, Harbin, People’s Republic of China. 2College of Computer and
Control Engineering, Qiqihar University, Qiqihar, People’s Republic of China.
3College of Underwater Acoustic Engineering, Harbin Engineering University,
Harbin, People’s Republic of China.

Received: 31 July 2019 Accepted: 6 March 2020

References
1. Castro P, Chiu P, Kremenek T, et al. A probabilistic room location service for

wireless networked environments [J]. 2001.
2. C. Wu, Z. Yang, Y. Liu, et al., WILL: wireless indoor localization without site

survey [J]. IEEE Transactions on Parallel & Distributed Systems 24(4), 839–848
(2013)

3. M. Bshara, U. Orguner, F. Gustafsson, et al., Fingerprinting localization in
wireless networks based on received-signal-strength measurements: a case
study on WiMAX networks [J]. IEEE Transactions on Vehicular Technology
59(1), 283–294 (2010)

4. Shih CY, Chen LH, Chen GH, et al. Intelligent radio map management for
future WLAN indoor location fingerprinting [C] // Wireless Communications
& Networking Conference. IEEE, 2012.

5. S.H. Fang, T.N. Lin, P.C. Lin, Location fingerprinting in a decorrelated space
[J]. IEEE Transactions on Knowledge and Data Engineering 20(5), 685–691
(2008)

6. L. Wei, Research on the location of WIFI location and the design of
simulators. Master's thesis of southwest jiaotong university, 5–14 (2012)

7. Li B, Wang Y, Lee H K, et al. Method for yielding a database of
location fingerprints in WLAN [J]. IEE Proceedings-Communications,
2005, 152(5):580-0.

8. B. Wang, S. Zhou, W. Liu, Y. Mo, Indoor localization based on curve fitting
and location search using received signal strength. IEEE transactions on
industrial electronics. 62(1), 572–582 (2015)

9. Dai-Jun X, Fan-Zeng K, Han-Ying Hu. Research on robustness of location
fingerprint under terminal heterogeneity [J]. Computer Engineering, 2014.

10. Sharma P, Chakraborty D, Banerjee N, et al. KARMA: Improving WiFi-based
indoor localization with dynamic causality calibration [C] // SECON 2014.
IEEE, 2014.

11. K. Kaemarungsi, Efficient design of indoor positioning systems based on
location fingerprinting (Wireless Networks, Communication and Mobile
Computing, 2004), pp. 18–24

12. K. Pahlavan, X. Li, J.P. Makela, Indoor geolocation science and technology
[J]. IEEE Communications Magazine 40(2), 112–118 (2002)

13. Seshadri V, Zaruba G V, Huber M. A Bayesian sampling approach to in-door
localization of wireless devices using received signal strength indication [C]
// Pervasive Computing and Communications, 2005. PerCom 2005. Third
IEEE International Conference on. IEEE, 2005, 75–84.

14. P. Bahl, V.N. Padmanabhan, Radar: an in-building rf-based user location and
tracking system. INFOCOM, 775–784 (2000)

15. M. Brunato, R. Battiti, Statistical learning theory for location fingerprinting in
wireless LANs [J]. Computer Networks 47(6), 825–845 (2005)

16. R. Battiti, V.A. Le NT, Location-aware computing: a neural network model for
determining location in wireless lans (tech. rep., Technical Report DIT-02-0083,
Department of Information and Communication Technology, University of
Trento, Italy, 2002)

17. C. Nerguizian, C. Despins, S. Affès, Geolocation in mines with an impulse
response fingerprinting technique and neural networks [J]. IEEE Transactions
on Wireless Communications 5(3), 603–611 (2006)

18. M.A. Youssef, A. Agrawala, A.U. Shankar, in Pervasive Computing and
Communications. Wlan location determination via clustering and probability
distributions (2003), pp. 143–150

19. D. Fox, J. Hightower, L. Liao, et al., Bayesian filtering for location estimation
[J]. IEEE Pervasive Computing 2(3), 24–33 (2003)

20. Z.L. Wu, C.H. Li, J. Ng, et al., Location estimation via support vector
regression [J]. IEEE Transactions on Mobile Computing 6(3), 311–321 (2007)

21. A. Kushki, K.N. Plataniotis, A.N. Venetsanopoulos, Kernel-based positioning in
wireless local area networks [J]. IEEE Transactions on Mobile Computing
6(6), 689–705 (2007)

Table 2 Different percentile values concerning the positioning error under terminal heterogeneous

Percentile values RSSD-CS positioning RSS positioning RSSD positioning RSS-CS positioning

50% < 2.4 m < 3.7 m < 2.8 m < 3.5 m

70% < 2.9 m < 5.9 m < 3.5 m < 4.7 m

90% < 3.9 m < 8.9 m < 7.5 m < 6.3 m

Yu et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:72 Page 12 of 13



22. J.F. Pan, J. Kwok, Q. Yang, et al., Accurate and low-cost location estimation using
kernels. International Joint Conference on Artificial Intelligent, 1366–1370 (2005)

23. J.J. Pan, J.T. Kwok, Q. Yang, et al., Multidimensional vector regression for
accurate and low-cost location estimation in pervasive computing [J]. IEEE
Transactions on Knowledge and Data Engineering 18(9), 1181–1193 (2006)

24. Y. Cheng, H. Jiang, F. Wang, et al., Using high-bandwidth networks
efficiently for fast graph computation [J]. IEEE Transactions on Parallel and
Distributed Systems, 1–1 (2018)

25. S.H. Fang, C.H. Wang, Y. Tsao, Compensating for orientation mismatch in
robust Wi-Fi localization using histogram equalization. IEEE Transactions on
Vehicular Technology. 64(11), 5210–5220 (2015)

26. Alejandro A. Antennas and Propagation for Wireless Communication
Systems: 2nd Edition[M]. (1999)

27. S.H. Fang, C.H. Wang, A novel fused positioning feature for handling
heterogeneous hardware problem [J]. IEEE Transactions on Communications
63(7), 2713–2723 (2015)

28. C.H. Chen, An arrival time prediction method for bus system [J]. IEEE
Internet of Things Journal, 1–1 (2018)

29. S.H. Fang, C.C. Chuang, C. Wang, Attack-resistant wireless localization using
an inclusive disjunction model [J]. IEEE Transactions on Communications
60(5), 1209–1214 (2012)

30. W.J. Chang, J.H. Tarng, Effects of bandwidth on observable multipath clustering
in outdoor/indoor environments for broadband and ultra-wide-band wireless
Systems [J]. IEEE Transactions on Vehicular Technology 56(4), 1913–1923 (2007)

31. H. Hashemi, Impulse response modeling of indoor radio propagation
channels [J]. IEEE J Selected Areas in Commun 11(2), 594–606 (1993)

32. A.K.M. Mahtab Hossain, Y. Jin, W.S. Soh, et al., SSD: a robust RF location
fingerprint addressing mobile devices’ heterogeneity [J]. IEEE Transactions
on Mobile Computing 12(1), 65–77 (2013)

33. N. Brouwers, M. Zuniga, K. Langendoen, Incremental Wi-Fi scanning for
energy-efficient localization[C]//2014 IEEE International Conference on
Pervasive Computing and Communications (PerCom). IEEE, (2014) https://
doi.org/10.1109/PerCom.2014.6813956

34. A. Haeberlen, Practical robust localization over large-scale 802.11 wireless
networks[C]// International Conference on Mobile Computing and
Networking. ACM, 70-84 (2004)

35. M.B. KjaRgaard, Indoor location fingerprinting with heterogeneous clients
[J]. Pervasive and Mobile Computing 7(1), 31–43 (2011)

36. C. Laoudias, D. Zeinalipour-Yazti, C. Panayiotou, et al., Crowdsourced indoor
localization for diverse devices through radiomap fusion [J], in Proc. IPIN 25, 28–
34 (2013)

37. L. Li, G. Shen, C. Zhao, et al., Experiencing and handling the diversity in data density
and environmental locality in an indoor positioning service[C]// International
Conference on Mobile Computing & Networking ACM, 459-470 (2014)

38. C. Feng, W.S.A. Au, S. Valaee, et al., Received-signal-strength-based indoor
positioning using compressive sensing [J]. IEEE Transactions on Mobile
Computing 11(12), 1983–1993 (2012)

39. W. Xiaoyang, T. Wenyuan, O. Chung-Ming, et al., On the dynamic RSS
feedbacks of indoor fingerprinting databases for localization reliability
improvement [J]. Sensors 16(8), 1278–1294 (2016)

40. H. Zheng, M. Gao, Z. Chen, et al., An adaptive sampling scheme via
approximate volume sampling for fingerprint-based indoor localization [J].
IEEE Internet of Things Journal, 1–1 (2019)

41. L. Wu, C.H. Chen, Q.S. Zhang, A mobile positioning method based on deep
learning techniques. Electronics 8(1), 59 (2019)

42. R. Cheng, Y. Song, D. Chen, et al., Intelligent positioning approach for high speed
trains based on ant colony optimization and machine learning algorithms [J].
IEEE Transactions on Intelligent Transportation Systems, 1–10 (2018)

43. G.Y. Chen, M. Gan, C.L.P. Chen, et al., A two-stage estimation algorithm
based on variable projection method for GPS positioning [J]. IEEE
Transactions on Instrumentation and Measurement 67(11), 1–8 (2018)

44. X. Dai-Jun, K. Fan-Zeng, H. Han-Ying, Research on robustness of location
fingerprint under terminal heterogeneity [J]. Computer Engineering 5(40),
81–85 (2014)

45. M.B. Kjaergaard, Hyperbolic location fingerprinting: a calibration-free
solution for handling differences in signal strength[C]// Proc. Sixth Annual
IEEE International Conference on Pervasive Computing and
Communications. IEEE, 17-21 (2008) https://doi.org/10.1109/PERCOM.2008.75

46. X. Wu, X. Zhang, An efficient pixel clustering-based method for mining
spatial sequential patterns from serial remote sensing images [J]. Computers
& Geosciences 124, 128–139 (2019)

47. Ch.H. Chen, F.J. Hwang, H.Y. Kung, Travel Time Prediction System Based on
Data Clustering for Waste Collection Vehicles, IEICE TRANS. INF. & SYST.
E102–D(7), 1374-1383 (2019)

48. H. Zhenfeng, Y. Chunyan, Clustering stability-based evolutionary K-means [J].
Soft Computing (2018)

49. Liao X W , Zhang LY, Wei J J, et al. Recommending mobile microblog users
via a tensor factorization based on user cluster approach, Hindawi Wireless
Communications and Mobile Computing Volume 2018, Article ID 9434239,
11 pages https://doi.org/10.1155/2018/9434239

50. S. Wang, A. Huang, Penalized nonnegative matrix tri-factorization for co-
clustering [J]. Expert Systems with Applications 78, 64–73

51. E. Candes, J. Romberg, Sparsity and incoherence in compressive sampling
[J]. Inverse Problems 23(3), 969–985 (2007)

52. S.S. Chen, D.M.A. Saunders, Atomic decomposition by basis pursuit [J]. SIAM
Review 43(1), 129–159 (2001)

53. E.J. Candes, M.B. Wakin, S.P. Boyd, Enhancing sparsity by reweighted ℓ1
minimization [J]. Journal of Fourier Analysis & Applications 14(5-6), 877–905
(2008)

54. R. Baraniuk, M. Davenport, R. Devore, et al., A simple proof of the restricted
isometry property for random matrices [J]. Constructive Approximation
28(3), 253–263 (2008)

55. Zhang Y. Theory of compressive sensing via ℓ- minimization: a non-rip
analysis and extensions, Technical Report TR08-11, Rice CAAM Dept., 2008.

56. E.J. Candes, J.K. Romberg, T. Tao, Stable signal recovery from incomplete
and inaccurate measurements [J]. Communications on Pure & Applied
Mathematics 59(8), 1207–1223 (2006)

57. J. Wu, X. Ma, Y. Yin, et al., A novel algorithm to mitigate the effect of
clipping in orthogonal frequency division multiplexing underwater
communication acoustic sensor system [J]. International Journal of
Distributed Sensor Networks (2017)

58. C.H. Chen, F.Y. Song, et al., in Physical A: Statistical Mechanics and its
Applications. A probability density function generator based on neural
networks, vol 541 (2020)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Yu et al. EURASIP Journal on Wireless Communications and Networking         (2020) 2020:72 Page 13 of 13

https://doi.org/10.1109/PerCom.2014.6813956
https://doi.org/10.1109/PerCom.2014.6813956
https://doi.org/10.1109/PERCOM.2008.75
https://doi.org/10.1155/2018/9434239

	Abstract
	Introduction
	Related work
	Methods
	Offline stage
	Fingerprint collection
	Improved fuzzy clustering method (IFCM)

	Online stage
	Coarse localization
	Fine localization


	Experimental results and discussion
	RSSD robustness analysis
	Comparison of fingerprint location accuracy of RSS and RSSD
	Using compressive sensing localization performance

	Conclusion
	Abbreviations
	Authors’ contributions
	Funding
	Availability of data and materials
	Competing interest
	Author details
	References
	Publisher’s Note

