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Abstract

The fingerprint indoor localization method based on channel state information (CSI) has gained widespread attention.
However, this method fails to provide a better localization effect and higher localization accuracy due to poor
fingerprint accuracy, unsatisfactory classification and matching effect, and vulnerability to environmental impacts. In
order to solve the problem, this paper proposes a CSI fingerprint indoor localization method based on the Discrete
Hopfield Neural Network (DHNN). The method mainly consists of off-line and on-line phases. At the off-line phase, a
low-pass filter is applied to conduct a preliminary processing on the fingerprint information of each reference point,
and then, phase difference is adopted to correct the fingerprint data of all reference points. In this way, the quality of
fingerprint data is improved, hence avoiding problems such as indoor environmental changes and multipath effect of
signals, etc. in which impact the fingerprint data. Finally, the characteristic fingerprint database is established after
acquiring relatively accurate fingerprint data. At the on-line phase, to maintain the consistency of data, the data of each
reference point in the fingerprint database is set as an attractor. Meanwhile, the localization information of the test
point is processed to make convergence judgment through DHNN. Eventually, the localization result is obtained. The
experimental results show that the localization accuracy with a median error of 1.6 m can be achieved through the
proposed method in the experimental environment. Compared with similar methods, it has a higher stability which
can significantly reduce the cost of manpower and time.
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1 Introduction
With the increasing popularity of location-based service
(LBS), the demand for localization-based services in life is
also increasing [1]. In the outdoor environment, GPS,
GLONASS, BeiDou Satellite Navigation System, and other
mature satellite localization systems are widely used,
which can provide convenience for people to acquire
more accurate localization and navigation services [2].
However, in the indoor environment, the satellite

localization system fails to work effectively due to its weak
satellite signals and the inability to penetrate buildings.
Therefore, it is a new challenge for the current indoor

localization technology to study the indoor localization sys-
tem with higher accuracy, better reliability, and lower cost.
In recent years, the widespread popularity of indoor

Wi-Fi has given rise to various indoor localization tech-
nologies based on Wi-Fi [3], which includes localization
based on the received signal strength indication (RSSI)
and channel state information (CSI). Particularly, Horus
[4] system adopts RSS data to estimate position with a
probabilistic approach. However, in the indoor environ-
ment, due to the influence of obstacles, RSSI will pro-
duce a certain deviation and be easily affected by other
signals and indoor multipath effects. Therefore, RSSI
fails to provide sufficient accurate and reliable indoor
localization [5]. For Wi-Fi signals using IEEE 802.11n
communications protocol, it can obtain CSI in orthog-
onal frequency division multiplexing (OFDM) subcar-
riers by modifying the wireless network card driver [6].
CSI resolved from the physical layer can describe the
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channel characteristics and state between the signal
transmitter and the receiver [7]. Compared with RSSI,
CSI has a certain multipath resolution and can sense
weak fluctuations of signals on the propagation path.
CSI also has a higher sensitivity, a wider sensing range,
and stronger sensing reliability [7–10]. Of course, CSI
can also be used in more fine-grained detection, such as
gesture recognition using CSI and sleep monitoring
using CSI [11, 12].
Generally speaking, according to the principle of loca-

tion, indoor localization technology based on Wi-Fi can
be divided into localization based on the propagation
model and localization based on the fingerprint [13]. The
localization based on the propagation model needs to es-
tablish an accurate channel model to estimate the distance
between the target and each AP (access point). However,
the physical model differs greatly from the actual environ-
ment and some interference factors are not considered to
some extent, so the localization effect is often less than
that of the fingerprint localization method [14]. When it
comes to the fingerprint-based localization, such as Array-
Track [15], the coverage is largely enhanced with the
multi-input multi-output (MIMO) technology, and then
AoA is derived by using the MUSIC algorithm. The
fingerprint localization method can reduce the impact on
the localization accuracy caused by the change of the ac-
tual environment. However, in some indoor fingerprint
localization methods, the problems such as poor finger-
print accuracy, low classification effect, and susceptibility
to environmental impact make it difficult to provide better
localization effect and higher localization accuracy. In re-
cent years, KNN, support vector machine (SVM), and
other machine learning methods have been widely used in
indoor location based on the fingerprint. However, KNN
needs to store all training values, and the sample size is
large [16]. Support vector machines need to balance the
randomness of data with corresponding kernel functions,
which leads to high computational complexity [17].
The fingerprint-based localization method has been

widely used in indoor localization systems because it does
not need to understand the relationship between distance
and signal and has a relatively high accuracy [18–22].
The localization process of the general fingerprint-

based indoor localization method is divided into two
phases, namely an off-line phase and an on-line phase.
The off-line phase usually collects signals in an indoor
environment. In a Wi-Fi environment, the information
normally collected is RSSI and CSI, and then the corre-
sponding fingerprint information is obtained from a
known reference point to construct a fingerprint database.
RADAR [23] is an initial location fingerprinting system
that measures RSS for multiple base stations and builds an
off-line radio map. SVR [24] select RSS as sample data
and filtered analyze in the off-line. The on-line phase

usually uses some classification-matching algorithm to
match the data acquired from the unknown location with
the data in the fingerprint library to achieve the purpose
of localization. FIFS [25] scheme uses the weighted
average CSI values to improve the performance of the
RSS-based method.
Since RSSI is susceptible to multipath effects in the

environment and can only provide coarse-grained infor-
mation, it cannot meet the current high-precision posi-
tioning requirements. Therefore, most of the current
Wi-Fi-based indoor positioning methods collect data to
select CSI. DeepFi [26] chooses to use deep learning to
train the collected CSI in the off-line. In BiLoc [27], the
authors developed a deep learning-based algorithm to
exploit bimodal data. Both the estimated angle of arriv-
ing (AOA) and average amplitudes of two adjacent an-
tennas are used as location features for building the
fingerprint database. In this paper [28], the authors pro-
vided quantitative and visual explanations for the DNN
learning process as well as the critical features that the
DNN has learned during the process. Our work is differ-
ent from the above system. In the off-line phase, we
preprocessed the data and improved the accuracy of the
fingerprint library.
However, in traditional CSI-based fingerprint indoor

localization method, the problems such as poor finger-
print accuracy, low classification matching effect, and
susceptibility to environmental impact make it unable to
provide better localization effect and higher localization
accuracy. The amplitude and phase information in the
CSI can best reflect the position characteristics. In the
indoor localization research based on CSI, some re-
searches only process the amplitude information and ig-
nore the phase information. Some localization methods
only include the original phase information and do not
process the phase information, but the original phase in-
formation cannot describe the corresponding position
information well, and include the position information
some noise effects due to the environment. Therefore, it
cannot reflect the integrity of the data, and the compre-
hensiveness of location information is also missing. At
the same time, the single experimental environment can-
not reflect the robustness of the positioning method.
Combining with the problems existing in the above
methods, and in order to achieve high accuracy and
reliability of indoor location, this paper proposes a CSI
fingerprint indoor localization method based on Discrete
Hopfield Neural Network (DHNN). DHNN has an asso-
ciative memory function, which forms a memory by
learning the sample, inputs the unknown sample and
forms the output of a sample stored in the network,
thereby identifying the unknown sample. The first step
of the method presented in this paper is preprocessing
the collected data. The original data contains some
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redundant data (Outlier) and noise as well as some data
affected by the multipath effect. After preprocessing
redundant data and removing some noise, the accurate
CSI was obtained. Secondly, with the phase difference
correction method, the features of the position informa-
tion of each reference point (known locations) can be
expressed, and the data that does not conform to the
feature can be removed by the method, so that the
fingerprint information of each reference point can be
relatively accurate. Because this article sets DHNN net-
work according to the asynchronous mode, so the state
of the network does not change anymore starting from
the initial state and after going through the finite recur-
sion, and DHNN network eventually converges to an at-
tractor. If the location information input in the on-line
stage cannot converge to the same constant (attractor)
as the network in the off-line stage after the finite recur-
sion, the location information is proved to be inaccurate.
Otherwise, the attractor can be used to determine and
use location information for locating. In the on-line phase,
the data in the fingerprint database in the off-line phase
will be set as attractors, the real-time collected data will be
used as input after the same processing as in the off-line
phase, and DHNN will be used for convergence judgment
to finally determine the localization result [29–37]. The
experimental results show that the DHNN-based CSI fin-
gerprint indoor localization method has higher stability
and localization accuracy than similar methods.
The contributions of this paper are summarized as

follows:

(1) The design uses a combination of low-pass filter
and phase difference correction to process the
fingerprint information, ensuring the accuracy of
the fingerprint data and greatly reducing the
localization error.

(2) It is proposed to set the reference point data in the
fingerprint database as attractors. After recursion

for many times, it can be determined whether the
attractors converged in the on-line stage are the
same as those converged in the off-line stage, which
can ensure a significant improvement in localization
accuracy.

(3) In order to verify the effectiveness of the proposed
method, several mature methods are compared
from the aspects of actual localization effect,
localization accuracy, and error analysis.
Experimental results show that the proposed
method is superior to the existing methods.

The rest of the paper is organized as follows. Section
2 describes the preliminary work. Section 3 illustrates
details on the DHNN model design. Section 4 intro-
duces the experimental environment and analyzes the
performance of this method through experiments, com-
pares it with other mature indoor localization methods.
Meanwhile, error analysis is added to analyze the influ-
ence of different factors on localization accuracy from
different stages, thus demonstrating the effectiveness of
the proposed method. Finally, the work is concluded in
Section 6.

2 Preliminary
2.1 System overview
The core of the DHNN-based CSI fingerprint indoor
localization method lies in the processing of finger-
print data in the off-line phase and the convergence
of DHNN in the on-line phase to determine the rela-
tionship between CSI information and the position of
the localization point. The overall localization process
is shown in Fig. 1.
The whole localization process includes the off-line

phase and the on-line phase:

(1) Off-line phase

Fig. 1 System overview
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Data acquisition: The wireless access point sends con-
tinuous data packets to the PC terminal, collects CSI data
of all reference points, and obtains an initial data set.
Filter of low-pass filter: The initial data set contains

some redundant data and noise as well as some data
affected by the multipath effect. The redundant data and
some noise can be removed by using a low-pass filter to
obtain the relatively accurate CSI.
Phase difference correction: The existing CSI data also

contain some noise and data affected by the multipath
effect. The feature of the position information of each
reference point can be expressed by phase difference
correction, and the data that does not conform to the
feature can be removed, so that the fingerprint informa-
tion of each reference point will be more accurate.
Construction of fingerprint database: The CSI of each

reference point processed above is used as the localization
fingerprint information to construct a fingerprint database.

(2) On-line phase

Attractor setting: The CSI of each reference point of
the off-line phase fingerprint database is set as an
attractor. The setting of attractor provides a basis for
convergence judgment of DHNN network.

Data acquisition: The wireless access point sends con-
tinuous data packets to the PC and collects CSI data of
the test localization.
DHNN network convergence judgment (localization):

The CSI data of the test point is input into the DHNN
network, and convergence judgment is made with the
data in attractor (fingerprint database) to finally obtain
the localization result.
In the process of data acquisition, sending continuous

data packets until the environment is stable can effect-
ively reduce the impact of instantaneous changes in the
environment on the localization results.

2.2 Low-pass filter processing
Because of the complexity of the indoor environment
and the fine granularity of CSI, CSI collected in indoor
environment usually contains noise and some redundant
data due to the multipath effect. In the experimental en-
vironment, it is a stable environment when there are no
people moving around and no other obstacles in the ex-
perimental area. When there are people walking around
and multiple obstacles are placed in the experimental
area, it is an interference environment. It can work
under line of sight (LOS) and non-line of sight (NLOS)
conditions. As shown in Fig. 2, there is a large gap

Fig. 2 Data comparison in different environments (a) Stable environment (b) Interference environment
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between the data in different environments. Figure 2 a
shows that the image of the experimental data is rela-
tively smooth and regular in a relatively stable environ-
ment. Figure 2 b shows the data in the case of large
environmental interference, which obviously has more
redundant data. Therefore, it is necessary to select data
collection under a stable environment. The low-pass fil-
ter allows signals below the cut-off frequency to pass
and blocks signals above the cut-off frequency. Some
noise frequencies in the room are much higher than those
of people walking. So, for the collected CSI, this
paper uses Butterworth low-pass filter to filter noise
[38]. According to needs, different cut-off frequen-
cies must be set, assuming that the walking speed is
about 1 m/s, and AP works at a frequency of 5.765

GHz, according to wavelength ¼ wave speed
frequency , thenλ ¼ u

f

¼ 3�108m=s
5:765�109Hz

¼ 0:052 m . Due to the need to collect
fingerprint information of each reference point, this
paper can only calculate the corresponding wave-
length and frequency according to the minimum
walking speed of indoor people, and will try its best
to wait for testers to collect data when they are
stable at a certain reference point during the real
measurement, thus ensuring the data quality.

2.3 Phase difference correction
To ensure the effect of phase difference correction, when
the reference point is selected firstly, four different dir-
ection data are selected and acquired under the same
reference point. As shown in Fig. 3, at the same point,
the tester stood facing north, east, south, and west and
collected corresponding data.
Secondly, for the position information of the same

reference point, if there is a big difference between
the four directions after processing, data will be col-
lected again to ensure that the position information
of each reference point is relatively accurate. Phase
difference of the 3 antennas in a random reference
point is shown in Fig. 4. The calculation algorithm at

the same reference point used in this paper is shown
in Algorithm 1:

The phase difference under different reference
points is also different, which provides more effective
information for better distinguishing different refer-
ence points. According to the literature [39, 40], ef-
fective motion information is obtained by linearly
changing all subcarriers and the phase difference be-
tween the two antennas. After the linear change, the
phase shift caused by the clock skew and unknown
constant can be eliminated, while the phase informa-
tion that is relatively disordered after the difference
between the two antennas will be distributed and
concentrated. For the indoor localization method, the
clock skew has a great influence on the personnel de-
tection in the moving condition, but due to the influ-
ence of some uncertain factors in the selection of
reference points and the data acquisition process, the
phase will shift. For the same reference point, the dif-
ference between two antennas can not only use differ-
ent data to do the corresponding antenna difference,
but also can do the difference for different antennas
in the same data. Similarly, for different reference

Fig. 3 The same reference point four different directions data
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points, corresponding methods can also be used to
correct the data. As shown in Fig. 5, two different
reference points are randomly selected for sampling.
(a), (b), (c) respectively represents the phase differ-
ence between the antennas corresponding to the two
reference points. The calculation algorithm at differ-
ent reference points used in this paper is shown in
Algorithm 2:

3 DHNN model design
DHNN is a single-layer network with a total of neurons.
The weights of DHNN are not obtained through re-
peated learning, but are calculated according to certain
implementation rules to change the state of the network.
The topological structure of DHNN is shown in Fig. 6.
DHNN is characterized in that the output xi of any

neuron is fed back to all neurons xj as input through
connection weights ωij. Each neuron can receive the
feedback from other neurons in order to make the out-
put of each neuron restrict each other. At the same time,
each neuron is set with a threshold Tj to reflect the con-
trol of input noise, and the whole DHNN can be re-
corded as N = (W, T). The whole set of neuron states
constitutes a state X = [x1, x2,⋯, xn]

T of the recurrent
network, and its input is the initial value of the state of
the network, which is recorded as X(0) = [x1(0), x2(0),
⋯xn(0)]

T. Under the excitation of external input, the
whole network moves from the initial state to the dy-
namic evolution process, during which the state of each
neuron in the network is constantly changing, and the
change law follows Eq.(1):

x j ¼ f net j
� �

j ¼ 1; 2;⋯; n ð1Þ
Wheref(⋅)stands for the transfer function, and DHNN’s

transfer function often uses the sign function:

x j ¼ sgn net j
� � ¼ 1; net j≥0

−1; net j < 0

�
j ¼ 1; 2;⋯; n

ð2Þ
In Eq. (2), the net input is:

net j ¼
Xn
i¼1

ijxi−T j
� �

j ¼ 1; 2;⋯; n ð3Þ

Fig. 4 Phase difference of the 3 antennas in same reference point (a) Antenna 1 and Antenna 2 (b) Antenna 1 and Antenna 3 (c) Antenna 2 and
Antenna 3
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For the whole DHNN, there are ωii = 0, ωij =ωji in gen-
eral. When the network is stable, the state of each neuron
no longer changes, and the stable state at this time is the

output of the entire network, expressed as:
limXðtÞ
t→∞

.

DHNN is a network that is capable of storing several
preset stable points. In operation, when an initial input
is applied to the network, the entire network feeds back
its output as the next input, and the input of each
neuron does not include self-feedback. After several cy-
cles, if the network structure meets certain conditions,
the network will eventually stabilize at a predetermined
stable point. If the state of the network meets X = f(W ⋅
X − T), X is called the attractor of the network, that is,
the state X when the network reaches stability, it is
called the attractor of the network. For DHNN network,
if the state of the network is adjusted in the asynchron-
ous mode (only one neuron at a time performs state ad-
justment while the state of other neurons remains
unchanged) and the connection weight matrix W is a
symmetric matrix, the entire network will eventually

converge to an attractor in any initial state. If the state
of the network is adjusted in a synchronous mode (all
neurons adjust the state at the same time) and the con-
nection weight matrix W is a non-negative fixed sym-
metric matrix, the network will eventually converge to
an attractor in any initial state.
In this paper, after filtering and phase difference, the

data of each reference point correction are taken as the
attractor of DHNN, and the data of real-time position is
taken as the input of DHNN network, and finally the
localization result is determined after the convergence
judgment. To verify the feasibility, this paper assumes
that the network works in an asynchronous mode and
defines the energy function of the network as:

E tð Þ ¼ −
1
2
XT tð Þ �W � X tð Þ � XT tð Þ � T ð4Þ

If the variant of network energy is ΔE , and the variant
of network state is ΔX, there is:

Fig. 6 The topological structure of DHNN

Fig. 5 The phase difference between two reference points corresponds to the antenna (a) Antenna 1 (b) Antenna 2 (c) Antenna 3
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ΔΕ tð Þ ¼ E t−1ð Þ−E tð Þ ð5Þ
ΔX tð Þ ¼ X t þ 1ð Þ−E tð Þ ð6Þ

From Eqs. (4) and (5):

ΔE tð Þ ¼ −ΔXT tð Þ W � X tð Þ−T½ �− 1
2
ΔXT tð Þ �W

� ΔX tð Þ ð7Þ
If performed asynchronously, then there is only one

neuron adjusting state at t time. If the neuron is j, then:

ΔX tð Þ ¼ 0;⋯; 0;Δx j tð Þ; 0⋯; 0
� �T ð8Þ

Turn Eq. (8) into Eq. (7), and there is

ΔE tð Þ ¼ −Δx j tð Þ
Xn
i¼1

ωijxi−T j

" #
−
1
2
Δx2j tð Þ � ωjj ð9Þ

Because there is no self-feedback in the neurons, there
is ωjj = 0,
From Eqs. (2) and (3): ΔE(t) = − Δxj(t) ⋅ netj(t). Accord-

ing to the analysis, there are three situations:

x j tð Þ ¼ −1; x j t þ 1ð Þ ¼ 1
x j tð Þ ¼ 1; x j t þ 1ð Þ ¼ −1
x j tð Þ ¼ x j t þ 1ð Þ

8<
:

After verification, it is found that there would be
ΔE(t) ≤ 0 in any case, the energy is always decreasing or
unchanged during the dynamic evolution of the network,
and eventually the network will converge to a constant.
That is, when the network operates in an asynchronous
manner and connects weight matrix W as a symmetric
matrix, the network will eventually converge to an
attractor. What is similar is that if the network state is
adjusted in a synchronous manner and the connection
of weight matrix W is a non-negative definite matrix, it
can be deduced that:

ΔE tð Þ ¼ −
Xn
j¼1

Δx j � net j tð Þ− 1
2
ΔXT tð Þ �W � ΔX tð Þ

Based on the previous verification, it can be found that
−Δxj(t) ⋅ netj(t) ≤ 0, and W is a non-negative fixed sym-
metric matrix; then ΔE(t) ≤ 0 there is, and E(t) will even-
tually converge to a constant value.
From the above, the real-time CSI is adopted in this

paper as the input of DHNN network. The network
starts from the initial state X(0). If the state of the net-
work does not change after the finite recursions, that is
X(t + 1) = X(t), then the network is stable. If the network
is stable, it can converge from any initial state to a
steady state. No matter the network works in synchron-
ous or asynchronous mode, when the energy is finally
stable to a constant, this constant corresponds to the

minimum state of network energy and also to the at-
tractor in the network. In certain cases, if W cannot be
guaranteed as a non-negative definite symmetric matrix,
the network will have self-sustaining oscillations. In the
experiments, the DHNN ought to be designed to work
asynchronously, and the fingerprint database of each ref-
erence point ought to be set as the attractor respectively
and calculate the weight of the test point data and then
input to the network; each time there is only one neuron
state adjustments, the status of other neurons remains
the same; after comparing one by one, the estimated
position information will be obtained. The processed
CSI data in the off-line stage will be set as the attractor
of the whole DHNN network, and the processed CSI
data in the on-line stage will be set as the initial state of
the DHNN network. After the finite recursion, the net-
work will eventually converge to a steady state, that is, a
constant. At this moment, if the constant matches the
data in the fingerprint database, the localization is then
proved to be successful, and the corresponding location
information is returned; otherwise, the localization is un-
successful. Due to the small amount of collected CSI
data and the preliminary processing, the data are basic-
ally consistent. Therefore, the stop mechanism of the
network does not take into account. When the data vol-
ume is large enough and the experimental environment
is complex, it is necessary to consider whether the net-
work can complete the recursive convergence to the at-
tractor within a certain time. If not, the stop mechanism
is introduced to increase the positioning efficiency.
Compared with others, it has higher stability and pro-
duces less localization errors than the operation of
synchronous mode.

4 Experimental setup and analysis
4.1 Experiment setup
The schematic diagram of the experimental environment
is shown in Fig. 7a, and the whole indoor environment
is 10.01× 6.90 m2. The laboratory environment is rela-
tively empty, and the multipath effect is small, which is
referred to as “stable” environment in the subsequent
verification experiment. In this paper, 25 grid areas are
set up to divide the experiment area into 5 × 5, a total of
25 squares. Each square area is 0.8 m. On the left of the
experimental area, there is a workbench, and a desktop
computer on the workbench with an Intel 5300 network
card, a CPU of Intel Core i3-4150, and an operating sys-
tem of Ubuntu11.04. Access point (AP) is placed on the
workbench on the right side of the experimental area. At
the end of the AP, there is a router with model TL-
WDR5300. The two workbenches are the same height.
During the experiment, the device is set as AP mode
and the working frequency as 5.765 GHz. Similarly, this
paper chose the conference room as a comparative
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experimental environment. As is shown in Fig. 7b, the
whole indoor environment is 12.01 × 6.90 m2. The con-
ference room has many obstacles and strong multipath
effect, so it is recorded as the “interference” environment
in the subsequent verification experiments. Figure 8 is
the floor plan of the two scenarios. The blue dots repre-
sent the reference points for off-line data collection.

4.2 Experimental analysis
In this paper, three representative indoor comparison
methods, DeepFi [26], SVR [24], and BiLo c[27] are se-
lected to make comparison with the proposed method.
DeepFi and SVR are similar to the methods proposed in
this paper because they both include the off-line training
phase and the current localization phase. The difference
is that DeepFi chooses to use deep learning to train the
collected CSI, and then uses the greedy algorithm to cal-
culate the weights layer by layer. SVR selects RSS as
sample data and filters analysis. In BiLoc [27], the
authors developed a deep learning-based algorithm to
exploit the bimodal data. Both the estimated angle of ar-
riving (AOA) and average amplitudes of two adjacent
antennas are used as location features for building the
fingerprint database. In this paper, two methods are
reproduced in the same experimental environment and

compared with the DHNN method. The localization
accuracy mentioned in this paper is the average
localization accuracy obtained after the experiment. Ten
groups were set up for the experiment, and each group
was recorded for 10 times to record whether the
localization was successful. During the experiment, a
square (0.8 m) is taken as the error allowable range, that
is, the localization error within 0.8 m means localization
success. Otherwise, the localization failure is recorded.
As shown in Fig. 9, in a stable environment, all the four
methods have a relatively high localization accuracy rate.
Because of the construction of the fingerprint database,
deep learning and neural network algorithms are
adapted to process and model the data, and the sample
number of fingerprint database is larger and the accur-
acy is higher compared with other two methods. Due to
the introduction of AOA and deep learning algorithm,
the localization accuracy of BiLoc is higher than that of
DHNN. However, under the interference environment,
all four methods were affected to different degrees.
Among them, SVR is most seriously affected, and the
accuracy of localization is reduced to less than 30%.
Because of the interference caused by other signals and
the multipath effect, RSS information is vulnerable to
environmental changes and fluctuates greatly. Therefore,

Fig. 7 Experimental scenarios

Fig. 8 Floor-plan of the two scenarios
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its accuracy decreases greatly. The accuracy was reduced
to below 50% with the method DeepFi, BiLoc, and the
method proposed in this paper, but they are better than
the SVR method because those methods use CSI as fin-
gerprint information, regarding localization, a more fine-
grained CSI is needed to improve accuracy. On the other
hand, although CSI information will change greatly due
to environmental interference, since both methods adopt
feature classification, it can reduce the impact of
environmental changes on the of localization accuracy.
In both environments, DeepFi is similar to the algo-

rithm proposed in this paper. This is because DeepFi has
collected large amounts of data, improved the cost and

complexity of localization, and has built a relatively ac-
curate localization fingerprint database of large data vol-
umes. BiLoc needs to accurately measure AOA and CSI
data. Although it can obtain high localization accuracy,
it increases the workload. However, the method used in
this paper is more lightweight in information collection,
and it is easier to achieve a more accurate localization
effect. As shown in Fig. 10, in the case of small data col-
lection, the algorithm proposed in this paper can achieve
higher localization accuracy compared with the other
three methods.
Figure 11 shows the localization errors with the four

localization methods. It can be manifested from the

Fig. 9 Accurate rate

Fig. 10 Impacts of data collection capacity on accurate rate
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figure that the median localization error with the SVR
method is 2 m, the median localization error with the
DeepFi method is 1.71 m, and the median localization
error with the BiLoc method is 1.52 m. The median
localization error with the proposed method in this
paper is 1.6 m. Therefore, the method proposed in this
paper is superior to the other two methods. However,
AOA is not added to the fingerprint data because it is
slightly inferior to BiLoc.

5 Performance results and discussion
5.1 Influence of the number of reference points on
experimental performance
For the same experimental area, the selection of refer-
ence points is also crucial. In this paper, by using the ex-
perimental environment, we designed and compared the
errors in the indoor localization of DeepFi, SVR, BiLoc,
and the localization method proposed in this paper. By
using these 4 methods, Fig. 12 respectively shows the
localization accuracy in 9, 16, 25, and 36 reference point.
It can be seen that the higher the number of reference
points, the higher the accuracy of localization. However,
due to the limitations of localization areas and the com-
plexity of sampling and data processing, this paper did
not select more reference points to improve the
localization accuracy.
Figure 13 a and b respectively show the cumulative

distribution of localization errors of four localization
methods when the number of reference points is 9 and
36. It can be seen from Fig. 13a that when the number
of reference points is 9, the localization error of more

than 80% using the proposed method in this paper is
within the range of 2.6 m, while the localization error
using the DeepFi method, SVR method, and BiLoc
method are 3.2 m, 3.7 m, and 2.9 m respectively. When
the number of reference points is 36, as shown in Fig.
13b, the localization error of more than 80% of the
points with the proposed method in this paper is within
2.1 m, and the localization errors with the DeepFi
method, SVR method, and BiLoc method are 2.8 m, 3.3
m, and 1.8 m respectively. Therefore, with the increase
of the number of reference points, the localization
accuracy of the localization method will be improved. At
the same time, the improvement range is different.
In summary, this paper selects 25 reference points to

mesh the experimental area. The advantage of the
method proposed in this paper lies in less-collective
sample information and the data processing in the early
stage only needs filtering and phase correction, which
does not require a large amount of time to collect data
samples and build models through learning. This way
will greatly reduce the time cost in the off-line phase
and reduce the workload meanwhile to ensure better
localization performance.

5.2 The effect of repeat count on localization
performance
Sampling repeat count is significant to the localization
effect of the whole system. The data collected once by
the same reference point is not accurate because of con-
tingency. However, repeated collection and processing
will obtain more accurate location information and

Fig. 11 The comparison of CDF-based methods
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provide high-quality data for localization. In order to
verify the influence of sampling repetition rate on
localization performance, this paper designed a number
of experiments, analyzed the data from sample 1 to
samples 8 respectively, as shown in Fig. 14.
After data fitting, it can be approximately obtained

that the sampling quantity is inversely proportional to
the average error. As shown in Fig. 15, the more the
sampling times, the higher the localization accuracy and

the smaller the average error, but eventually it remains
stable. When the sampling amount reaches a certain
value, the localization accuracy and error will remain
basically unchanged.
Under the premise of increasing no complexity of data

processing, in this paper, the sampling frequency (4
times) of relatively gentle localization accuracy and aver-
age error change is selected, which can help to improve
the localization accuracy, the advantage of the proposed

Fig. 12 Impacts of reference points on experimental performance

Fig. 13 The comparison of CDF with reference points-based methods (a) 9 reference points (b) 36 reference points
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method is less-collective information, and in the early
stage of data processing, only filtering and phase correc-
tion are required, and there is no need to take a lot of
time to collect data samples and build models through
learning, which greatly saves time in the off-line phase.

5.3 Impact of data quality on localization performance
In the off-line phase, the collected data are filtered and
corrected for phase difference, the redundant data and
noise are removed, the quality of the fingerprint database
is guaranteed, and the location information of the

Fig. 14 The relation between sampling time and average error

Fig. 15 The effect of repeat count on localization performance
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attractor in the on-line phase is provided with higher qual-
ity. To analyze the impact of data quality on localization
performance, this paper designed two comparison experi-
ments to compare and analyze the impact of data quality.
In experiment A, the collected data is not filtered and

phase difference correction is also not conducted in the off-
line phase to build the fingerprint database, and the data of
each reference point is directly used as the attractor.
In experiment B, the collected data were processed in

the off-line phase according to the method proposed in
this paper, after processing, information of each refer-
ence point was taken as the attractor. The impact of data
quality on localization accuracy is shown in Fig. 16 and

Fig. 17. Results show that experiment A, whether in a
stable environment or in interference environment,
localization accuracy is no more than 40%, and the
localization accuracy in experiment B is much higher
than that of experiment A in stable environment and
interference environment, which also proves the neces-
sity of filtering and phase correction of the collected data
in this paper. If the data is not processed, the
localization accuracy will be greatly reduced.

6 Conclusions
In this paper, a CSI fingerprint indoor localization
method based on DHNN is proposed in view of poor

Fig. 16 Average error between experiment A and experiment B (a) Average error of experiment A (b) Average error of experiment B

Fig. 17 Impacts of data quality on experimental performance
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accuracy of fingerprint data, low effect of matching
based on classification, and vulnerability to environmen-
tal impacts. The CSI is preliminarily processed using
low-pass filter in the off-line phase, and then, the finger-
print data of all reference points are corrected by phase
difference, so as to improve the quality of fingerprint
data and obtain a relatively accurate feature fingerprint
database. In the on-line phase, the data of each reference
point in the fingerprint database is set as an attractor to
maintain the consistency of the data. At the same time,
the location information in the on-line phase is judged
using DHNN network for convergence. Finally, the
localization results are obtained, and the localization
method is verified and compared with experiments.
The comprehensive experimental results show that com-

pared with some current fingerprint indoor localization
methods, this method has higher localization accuracy and
lower requirements on data quantity. Moreover, future
researches will focus on improving localization accuracy
and reducing data volume.
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