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Abstract

In the process of target tracking for UAV video images, the performance of the
tracking algorithm declines or even the tracking fails due to target occlusion and
scale variation. This paper proposes an improved target tracking algorithm based on
the analysis of the tracking framework of the kernel correlation filter. First, four
subblocks around the center of the target center are divided. A correlation filter
fusing Histogram of Oriented Gradient (HOG) feature and Color Name (CN) feature
tracks separately each target subblocks. According to the spatial structure
characteristics in the subblocks, the center location and scale of the target are
estimated. Secondly, the correct center location of target is determined by the
global filter. Then, a tracking fault detection method is proposed. When tracking fails,
the target redetection module which uses the normalized cross-correlation algorithm
(NCC) to obtain the candidate target set in the re-detection area is started. Besides,
this algorithm uses the global filter to obtain real target from the candidate set. In
the meanwhile, this algorithm adjusts sectionally the learning rate of the classifiers
according to detection results. Lastly, the performance of this algorithm is verified on
the UAV123 dataset. The results show that compared with several mainstream
methods, that of this algorithm is significantly improved when dealing with target
scale variation and occlusion.

Keywords: Target tracking, Kernel correlation filter, Part-based tracking, Target
redetection, UAV video image

1 Introduction
An unmanned aerial vehicle (UAV) is an aircraft without a human pilot on board,

which exploits radio remote control equipment or self-provided program control de-

vices. In recent years, the Internet of things has been developing rapidly. With the inte-

gration of information, communication, and network technology, the UAV derived

from consumer leisure and entertainment toys can be applied to high-value commer-

cial, agricultural, and defense fields, thus turning into a killer product. Chen et al. [1]

design a traceable and privacy protection protocol to conduct the UAVs’ application in

sensitive control area. Chen et al. [2] propose a novel multi-hop clustering algorithm,

called DMCNF. Lin et al. [3] present a novel moving-zone-based architecture and a

corresponding routing protocol for message dissemination in VANETs by using
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vehicle-to-vehicle communications only (i.e., without using vehicle-to-infrastructure

communications). Chen proposes a CP-based method to analyze cellular network sig-

nals (i.e., NLUs, HOs, and CAs) for estimating vehicle speeds [4]. In addition, devel-

oped deep learning was a developed method to learn the potentially complex and

irregular probability distributions [5]. Cheng et al. [6] introduce a novel Markov

Random Field (MRF) model to describe the data correlation among sensor nodes.

Owing to the research results in the UAV and communication fields, the UAV has

great potential in different domains and under various missions, as well as greater flexi-

bility in application.

At present, the UAV has become a more powerful and reliable task performer in

terms of aerial photography, investigation, search, and rescue. Since the video image-

related target tracking technology can provide autonomous navigation information for

the UAV to settle many thorny problems, visual processing technology is of great sig-

nificance to the UAV system. Liu et al. [7] propose a deformable convolution layer to

enrich the target appearance representations in the tracking-by-detection framework.

Huang et al. [8] design a bidirectional tracking scheme to solve the problem of model

drift in online tracking. The tracking algorithm in line with deep learning has ideal per-

formance but is generally time-consuming in [7–13]. However, the tracking algorithm

based on the correlation filter also can well adapt to the variation of the target appear-

ance, considering its extremely fast computation speed and good positioning perform-

ance in the Fourier domain. Therefore, the primary real-time tracking algorithm is the

improvement of the target tracking algorithm according to correlation filters. Bolme

et al. [14] propose the MOSSE tracking algorithm, which first applies the correlation

filter to visual tracking. Henriques et al. [15] put forward the CSK method, an algo-

rithm with a fairly good performance and high calculation speed. It is worth noting that

those two trackers both feature a single-channel Gray function. Danelljan et al. [16] im-

prove the CSK methods by using the CN feature that is a multiple channel feature.

Bolme et al. [17] propose the KCF method, which further enhanced the efficiency of

the CSK tracker by the use of HOG features. Besides, the ridge regression problem in

linear space is mapped to nonlinear space by the kernel method. For the scale

evaluation problem, the DSST tracker in [18] exploits the HOG feature to learn an

adaptive multi-scale correlation filter, which aims to evaluate the scale variation of the

object target. Apart from that, a series of modified algorithms, such as SAMF and RPT

[19–24], have been proposed successively.

Due to flight altitude change, the wide flight range and the intricate background, the

UAV target tracking is apt to generate tracking challenges, such as target occlusion or

target movement out of view. Hence, how to devise a more steady and accurate track-

ing algorithm is a challenging problem in UAV target tracking. This design should help

the tracking algorithm accurately trace the target when occluded and recapture the tar-

get when it reappears.

This paper proposes an improved KCF algorithm in combination with abilities based

on parts and redetection. In an attempt to improve the tracking performance of the al-

gorithm under occlusion, part-based tracking strategy fused with the multi-feature is

employed on the basis of the traditional KCF algorithm. For the sake of solving the

issue of target scale variation, the relative position variation of corresponding subblocks

in two adjacent frames is used for the calculation of the target scale step. Last, the
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target tracking failure is detected by calculating the value of target tracking confidence

FPRM, through which the learning rate is sectionally adjusted. When the tracking fails,

the target redetection module starts to retrieve the real target. Overall, this algorithm is

more robust.

The remainder of this paper is organized as follows. Section 2 reviews the basic the-

oretical knowledge of the KCF algorithm, and Section 3 introduces the framework of

this proposed method. Experimental results and analysis are shown in Section 4, with

the conclusion given in Section 5.

2 The KCF tracker
In the KCF algorithm [17], the target tracking problem is transformed into solving

ridge regression problem under minimum mean square error. The goal of training is to

find a function f(z) = ωTz that minimizes the squared error over samples xi and their re-

gression targetsyi:

min
ω

Xn

i
f xið Þ−yið Þ2 þ λ ωk k ð1Þ

where Eq. (1) is solved to obtain optimal solution, which makes the cost function mini-

mized. Where the λ is a regularization parameter to control overfitting, xi represents

the training sample generated by the shift of the base sample through circulation. yi ∈

[0, 1] is the training label, which is the expected output of the training sample xi. y is

the Gaussian distribution. The function f can be written as the linear combination of

basis samples: f(x) = ωTx. ω is the classifier parameter.

To deal with the case of nonlinear regression, we propose f ðzÞ ¼ ωTz ¼ Pn
i¼1αiκðz;

xiÞ in which the kernel function κ(z, xi) is introduced, and the cyclic matrix and the

Fourier transform are used. For the most commonly used kernel functions, the circu-

lant matrix trick can also be used [17]. For dual space coefficients α can be learnt as

below:

α̂� ¼ ŷ
κ̂xx þ λ

ð2Þ

where ∧ denotes Fourier transform. α̂� denotes the complex-conjugate of α̂. We adopt

the Gaussian kernel which can be applied in the circulant matrix trick as below:

κxx
0 ¼ exp −

1
σ2

xk k2 þ x
0�� ��2� �

−2F−1 x̂� x̂
0 �� �� �

ð3Þ

where ⊗ denotes the dot product of the corresponding position elements among the

matrixes.

In the rapid detection process, we define that the image patch z at the same position

in the next frame is the reference sample. The response map of the input image in time

domain can be obtained by fast target detection:

F zð Þ ¼ F−1 κ̂~xz
� �� � α̂

� �
ð4Þ

where ~x denotes data learned from the model. F−1 denotes inverse discrete Fourier

transform. The position corresponding to the maximum response is the location of the

target being tracked.
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Pt ¼ arg maxP∈Rt F zð Þ ð5Þ

where Pt denotes the center position of the target in the current frame. Rt denotes

search area. P represents all possible target positions in the search area, and the search

area is set to 2.4 times the target size in this paper.

3 The improvement of KCF algorithm
The traditional KCF algorithm fails to consider the scale problem and lacks the defi-

ciency of tracking failure detection. This paper proposes two improvements of the KCF

algorithm as follow. First, the multi-feature fusion block tracking strategy is used, and

the s-type function is used to optimize the scale step, so the ability of the algorithm to

deal with occlusion and scale variation is improved. Second, a method of tracking fail-

ure detection is proposed, and then target is detected again after tracking failure. Ac-

cording to the results of tracking failure detection, the learning rate is adjusted in

sections. A more robust tracking algorithm is obtained.

3.1 Part-based tracking strategy based on multi-feature fusion

When the target is occluded, the improvement of KCF algorithm can still use the

unblocked part to provide accurate positioning information for tracking in [24]. When

the target scales change, the tracking results of each subblock can overlap and separate

accordingly. As a result, the target scale is deduced by using this theorem. HOG feature

describes the distribution of gradient intensity and gradient direction in the local area

of the images. CN feature describes the global surface properties of the images. The

two features are fused which the performance of the tracker is improved by using the

complementary advantages among different features in [19]. Furthermore, the high-

speed processing capability of correlation filtering algorithm provides the possibility of

real time part-based tracking [20].

The blocking method in this paper, four equal-sized subblocks, are generated around

the target center locations, as shown in Fig. 1. To be more exact, the height and width

of the four subblocks are 0.5 times that of the overall target box respectively. The cen-

tral coordinates of the upper and lower subblocks are separately moved up and down

Fig. 1 Block method. The whole block and its partial blocks from Lemming in OTB dataset. Four equal-sized
subblocks are generated around the target center locations
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0.25h from the target center location. The center coordinates of the left and right sub-

blocks are moved to the left and right 0.25w from target center location, individually.

The function is given as below:

Bk ¼
Pt 1; 1ð Þ−m Ptð1; 2Þ½ � k ¼ 1
Pt 1; 1ð Þ þm Ptð1; 2Þ½ � k ¼ 2
Pt 1; 1ð Þ Ptð1; 2Þ−n½ � k ¼ 3
Pt 1; 1ð Þ Ptð1; 2Þ þ n½ � k ¼ 4

8>><
>>:

ð6Þ

where Bk denotes the central location of all target subblocks. k ∈ (1, 2, 3, 4) denotes the

index of the target subblocks. m = 0.25h and n = 0.25w, ω and h are respectively repre-

sent the height and width of the overall target box. Pt represents the center position of

the global target box.

This paper proposes the concatenation of Histogram of Oriented Gradient (HOG)

and Color Name (CN) as the feature representation to balance discriminative power

and efficiency. The KCF tracking algorithm and fusion feature described above are used

to track each target subblock independently to obtain the response map:

k
0 ¼ arg max

k∈ 1;2;3;4ð Þ
max Fkð Þð Þ ð7Þ

where k′ denotes the index of the selected response. The selected response is then used

to calculate the location B̂k
0 of the corresponding subblocks. The rough tracking results

~Pt are estimated by combining the position constraint relationship between the part

and the whole of the target. And then uses the global filter to determine the exact loca-

tion of the target center P.

The general solution to solve the scale problem is to calculate the confidence

level at different scales by scaling the original trace window. And then, the target

size is determined by selecting the maximum scale of confidence level as the target

scale. As shown in Fig. 2, this paper uses a part-based tracking method. Although

the tracking box size of each target subblock is constant, the relative location

among each block varies with the target scales. In this paper, the character as

above in part-based tracking are quantified to calculate the scale of the target.

First, preliminary estimation of target scale steps is obtained by calculating the

average Euclidean distance ratio among the center locations of all the target sub-

blocks in the current frame and that of the corresponding subblocks in the previ-

ous frame:

~step ¼ sqrt
1

K K−1ð Þ
XK

i¼1

XK

i¼1

dist B̂
t
i ; B̂

t
j

� �

dist B̂
t−1
i ; B̂

t−1
j

� �
0
@

1
A i≠ jð Þ ð8Þ

where B̂
t
i is the location obtained by the independent tracking of the ith target subblock

in the tth frame. dist denotes Euclidean distance. In order to avoid the error caused by

the poor tracking quality of individual subblocks, an s-type function is used to con-

strain the scale step size based on the properties of scale variation:
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step ¼ 0:12= 1þ exp −20 ~stepþ 20ð Þð Þð Þ þ 0:94 ð9Þ

where step denotes the step size of the target scale, which means change of target size

compared with the previous frame. The scale parameter is given by Eq. (10):

St ¼ St−1 � step ð10Þ

where St is the scale parameters of the target in the current frame. The scale of the tar-

get in the current frame can be obtained through the scale of the previous frame multi-

plied by the scale step size calculated in the current frame.

3.2 Reliability estimation

To some degree, the peaks and fluctuations of response can reveal the confidence of

the tracking results [25]. The ideal response map has only one peak and is smooth in

other areas when the detected trace frame matches the real target, and the response

fluctuates dramatically and the peaks become smaller, when the target tracking fails, as

can be seen in Fig. 3. Therefore, FPRM (fluctuations and peaks of response map) can

be calculated by using this property:

FPRM ¼ Fmax � ln
Fmax−Fmeanj j
Fmin−Fmeanj j

� �
þ e ð11Þ

Where Fmax denotes maximum value in response. Fmin denotes minimum value in re-

sponse. Fmean denotes the average of all the elements in the response. The number e is

Fig. 2 Tracking results under scale variation. The first row shows that the target subblocks can overlap each
other, when the target scale becomes small. The second row shows that the distance among the subblocks
also increases correspondingly to adapt to the larger target scale, while the target scale is becoming big
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a mathematical constant that is the base of the natural logarithm: the unique number

whose natural logarithm is equal to one. It is approximately equal to 2.71828. When

the target tracking fails, the response fluctuation increases, the peak decreases, and the

value of FPRM decreases.

This FPRM distribution is shown in Fig. 4. When the serious tracking drift and track-

ing faint appear, the corresponding FPRM value becomes extremely low, which is

0.2302 and 0.1487 in frames 26 and 47, respectively. Besides, those two values are

around 0.3 and 0.26 times of the FPRMmean values of the corresponding positions, re-

spectively. From the 74th frame to the 77th frame, the target starts to enter occluded

areas. Accordingly, the value of FPRM decreases rapidly to somewhere near and below

the value of FPRMmean in the corresponding position. In the 104th frame, the target

box perfectly matches the actual location of the target, with its corresponding FPRM

value also reaching the maximum that far exceeds the FPRMmean of the relevant pos-

ition. Therefore, this character can be used to determine whether the tracking fails and

attest the effectiveness of this tracking failure detection method proposed as well.

3.3 Target redetection and model update

Traditional correlation filter tracking algorithm lacks tracking failure detection [26, 27].

Once target tracking is lost, it is difficult to recover. This section shows that aiming at

Fig. 3 The response maps of the tracking results. The first column is images of the video sequence called
Coke from the OTB dataset, where the green bounding box indicates the tracking result. The response
maps in the second column correspond to the tracking results in the first column
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the shortcoming of the lack of target faint detection in the kernel correlation filter; the

improvement of this algorithm is achieved. When tracking failure is detected, the target

redetection module is started to retrieve the real target.

When a trace failure is detected, that is FPRM≤0.3FPRMmean. Meanwhile, when tar-

get tracking fails, the peak of the response is recorded as Fθ. And the target redetection

module needs to be started. First, the target redetection module gets the set φt of candi-

date target locations p in the recheck area via normalized cross correlation algorithm

(NCC), as shown in Fig. 5. The normalized correlation altogether between matrix x and

matrix z, which have the same size, is defined as follows [28]:

λ x; zð Þ ¼
P

i; j xi; j−x
� �

zi; j−z
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i; j xi; j−x
� �2P

i; j zi; j−z
� �2q ð12Þ

where xi,j is the value of the elements in row i and column j of the matrix x. The larger

λ(x,z) is, the higher the correlation between matrix x and matrix z is.

For each candidate target in the set φt, the correlation filtering model of fusion fea-

ture is used to detect whether it is a real target. This paper uses Eq. (11) to calculate its

corresponding FPRMt;pi , where pi denotes the ith element in the candidate target set. A

candidate target p with a maximum value of FPRMt, p is found in all alternative target.

And, when FPRMt, p ≥ 1.2Fθ, the candidate target p is defined as a real target obtained

from the current frame by this target redetection module. When the current frame fails

to detect a real target, the results of the part-based tracking are maintained. In the next

frame, the target redetection module continues to work until a reliable target is

detected.

The traditional correlation filter tracking algorithm updates the features of target ap-

pearance and classifier parameters in each frame, without considering whether the

Fig. 4 The FPRM distribution of video sequences Dragon Baby from the OTB dataset and corresponding
tracking results. The black line denotes the FPRM distribution in the video sequence. The green line
denotes the FPRMmean distribution. The location of the black dots corresponds to the tracking result
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tracking is reliable. This update method will introduce errors into the model, resulting

in tracking drift and even tracking failure. This paper proposes a method to adjust the

classifier learning rate according to the result of tracking failure detection to reduce the

error into the model. Through series of simulation experiments, the learning rate γt is:

γt ¼
γ FPRMmean≤FPRM
0:8γ 0:3FPRMmean≤FPRM≤FPRMmean

0 FPRM≤0:3FPRMmean

8<
: ð13Þ

where FPRMmean denotes the average of FPRM calculated from 1st to (t-1) th frames

during the tracking process. γ = 0.018.

On the one hand, the problem of model drift caused by occlusion, deformation, etc.

is avoided by adjusting the learning rate in sections during tracking process. On the

other hand, when the target is lost, the target redetection module is started to retrieve

the real target.

3.4 Algorithmic process

The tracking algorithmic in this paper uses the multi-feature fusion block tracking

strategy and introduces a target recheck module to retrieve the target after it is lost.

Meanwhile, the learning rate of the classifier is adjusted according to the tracking

quality.

Fig. 5 Candidate target set. The redetection module generates a candidate target set in the redetection
region via normalized cross correlation algorithm (NCC), and then the correlation filtering model of fusion
feature is used to detect whether it is a real target
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4 Results and discussion
4.1 Experiment setup

In order to comprehensively evaluate the effectiveness of the proposed algorithm in this

paper, the proposed algorithm is compared with five correlation filtering algorithms

with excellent comprehensive performance on the UAV123 benchmark dataset [29].

The trackers used for our comparison are CSK [15], CN [16], KCF [17], DSST [18],

and SAMF [19]. The UAV123 dataset contains 12 different attributes such as illumin-

ation variation (IV), scale variation (SV), partial occlusion (POC), full occlusion (FOC),

out-of-view (OV), fast motion (FM), camera motion (CM), background clutter (BC),

similar object (SOB), aspect ratio change (ARC), viewpoint change (VC), and low reso-

lution (LR).

In this experiment, the experimental platform is Matlab2014a, and all the experi-

ments are conducted on an Intel i3-3110M CPU (2.40 GHz) PC with 6 GB memory.

The parameters of the algorithm in this paper are set as follows: the σ used in Gaussian

function is set to 0.5, the cell size of HOG is 4×4, and the orientation bin number of

HOG is 9. The parameters of five other algorithms used for comparison are the default

parameters of the source program published by the authors [15–19].

In all the experiments, the performance is measured with three evaluation criteria

which are overlap region (OR), distance precision (DP), and overlap precision (OP)

[30]. For the OR, it reflects the overlap between the tracking output bounding box rt
and the ground truth bounding box gt. The OR is o = |rt ∩ gt|/|rt ∪ gt|, where |⋅| denotes
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the area. The DP refers to the percentage of frames whose center location error (CLE)

are less than a certain threshold (20 px) accounts for the total frames during the track-

ing process. In addition, the OP is used which is the percentage of frames with OR

greater than a certain threshold (0.5) in the total frames in the tracking process. As an

evaluation criterion, larger value of OR, DP, and OP indicates better performance of

algorithms.

4.2 Qualitative experimental results and analysis

This section mainly analyzes the effectiveness of this algorithm from two perspectives

of scale variation and occlusion. The occlusion includes partial occlusion (POC) and

full occlusion (FOC). The algorithm in this paper and five algorithms mentioned above,

are analyzed and contrasted. In the qualitative analysis experiment, six video sequences

with scale variation and occlusion attributes, including Boat6, Car9, Group1-4,

Person4-1, Person1-s, and Person19-2, are selected from the UAV123 dataset. Table 1

shows the specific attributes of these six sets of video sequences.

4.2.1 Experimental results and analysis of scale variation

The scale variation is the only one attribute in Fig. 6a. This video describes a scene of a

ship moving in the water towards a drone hovering in the air. The distance between

the target and the UAV image equipment becomes smaller. The original target size

grows up from 27×16 to 434×264, which means the ultimate target size is 16 times as

large as the original one. From the experimental results, although, DSST, SAMF, and

the algorithm in this paper, have the ability of scale estimation. However, the scale esti-

mation capabilities of the DSST and SAMF are difficult to cope with the drastic vari-

ation of the target scale during the tracking process. The tracking boxes of these two

algorithms fail to change as the change of target size. In addition, these algorithms ex-

cept for that in this paper have shift to some degree and cannot accurately track the

target because of the relatively distant initial position, the relatively small target size,

and relatively low resolution.

There are target scale changes in Fig. 6b. This video illustrates a walking car,

as a target, is gradually moving away from the drone in the air. The target size

keeps a downward trend, declining from 99×169 to 41×40. From the experimental

results, all the algorithms can capture the moving targets, while only the algo-

rithm in this paper and DSST algorithm can estimate the target scale variation

more accurately.

Table 1 The attributes of these six sets of video sequences

Video sequences Attributes

Boat6 SV

Car9 SV, ARC, LR, FM, POC, CM, SOB

Group1–4 SV, ARC, POC, IV, VC, CM, SOB

Person20 SV, ARC, POC, IV, VC, CM, SOB

Person1-s SV, FM, POC, IV, VC, CM

Person19-2 SV, ARC, FM, FOC, POC, OV, CM
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4.2.2 Experimental results and analysis of occlusion

Figure 7 a shows partial occlusion and slight-scale variation. There are three people

walking in a park together. As can be seen, three people walk together, while one of

them can be captured as the target. They occlude each other during the walking. As

the shooting angle of the UAV changes, so does the target scale. According to the ex-

perimental results, DSST, CN, and CSK fail to track due to interference factors such as

occlusion and scale variation. Although SAMF and KCF can keep up with the target’s

movement, their results also exist shift to some extent. Overall, the algorithm in this

paper can accurately track the target.

Fig. 6 Qualitative experimental tracking results of Scale variation. The proposed tracker compared with five
correlation filter-based trackers, including CSK, KCF, CN, DSST, and SAMF. The tracking results are exhibited
in scale variation challenging frames. The video sequences are from Boat6 and Car9 respectively

Fig. 7 Qualitative experimental tracking results of occlusion. The proposed tracker compared with five
correlation filter-based trackers, including CSK, KCF, CN, DSST, and SAMF. The tracking results are exhibited
in challenging frames, i.e., partial occlusion and full occlusion. The video sequences are from the Group1–4,
Person20, Person1-s, and Person19-2 respectively
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Figure 7 b illustrates partial occlusion and large-scale variation. The video exhibits

the process of pedestrians walking in a certain scenario. The target walks from far to

near, while the target scale is increasing. The target is partially occluded due to the

change of shooting angles, which means the SAMF, CN, KCF, and CSK in this video is

severely shifted. Although the DSST can still adapt to this target’s scale change, it still

exists shift to some extent.

Figure 7 c exhibits partial occlusion and slight scale variation. As can be seen, a scene

where the character in the game moves quickly. This video includes the process from

this game character’s disappearance to reappearance. In the 56th frame of the video,

the DSST, CN, and CSK fail to track due to the target’s rapid movement. The target

enters the obstruction, and then disappears completely in the 917th frame. When the

target reappears, the proposed algorithm recaptures the target in the 1249th frame.

Therefore, this algorithm can track the target steadily during the subsequent process.

Figure 7 d shows partial occlusion, full occlusion, and slight scale variation. There is

a pedestrian walking on the stairs. The target is completely occluded due to the change

of shooting angle in the pictures. The target completely disappears from the video in

the 1980th frame. When the target reappears, it can be retracked and continue to be

followed due to this algorithm with target redetection mechanism.

4.2.3 Experimental results and analysis based on overlap region

High overlap region requires not only lower tracking center location error, but also

higher accuracy of scale elevation. So, the OR can better represent the tracking per-

formance of the algorithm. As can be seen from Fig. 8, when the target scale varies sig-

nificantly (such as Boat6, Car9, and Person20), this algorithm’s scale estimation method

can also successfully estimate the target’s scale variation. When the target is occluded

to some extent (such as Group1–4, Person20), this algorithm can maintain a good

Fig. 8 Overlap region plots. Compared our proposed tracker with five correlation filter-based trackers
including CSK, KCF, CN, DSST, and SAMF, the results are shown by overlap region plots. These six video
sequences correspond to Fig. 6a, b and Fig. 7a–d respectively. Our method handles occlusion and scale
variation more accurately than the other trackers
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tracking effect compared with other algorithms. Additionally, due to the additional tar-

get re-detection module, the algorithm’s ability to process long-term tracking has been

greatly improved. When the target is completely occluded, disappears, and then reap-

pears (such as 900th frame~1249th frame in Person1-s, 1907th frame~2010th frame in

Person19-2), this algorithm can retrack the target in the tracking process.

4.3 Quantitative experimental results and analysis

In order to more intuitively reflect the overall performance of this algorithm, this paper

uses the UAV123 benchmark dataset to verify the proposed algorithm and compares it

with other five correlation filtering algorithms with better performance. Distance preci-

sion (DP) and overlap precision (OP) are used to represent the overall performance of

the tracking algorithm.

Figure 9 a and b respectively shows the distance precision plots and overlap precision

plots under different thresholds. As can be seen from the figure, the tracking effect of

the algorithm in this paper is the best compared with the other five algorithms. The DP

and the OP of the algorithm in this paper are 0.674 and 0.555, respectively. Compared

with the original KCF algorithm, the DP and the OP increase by 12% and 16.4% indi-

vidually. The main reason is that this algorithm uses the part-based tracking method

based on KCF, which improves its anti-occlusion and processing scale variation per-

formance. In addition, compared with DSST and SAMF algorithms with scale estima-

tion capabilities, this algorithm adds a target redetection module to make it obtain the

ability of long-term tracking, which makes it more suitable for application scenarios for

UAV video image tracking.

In order to verify the performance of the proposed algorithm on scale variation and

occlusion scenarios, Fig. 10 shows the distance precision and overlap precision plots of

these six kinds of algorithms under three attributes: scale change (SV), partial occlusion

(POC), and full occlusion (FOC). It can be seen from Fig. 10 that the algorithm pro-

posed in this paper performs excellently in the face of scale changes and occlusions and

ranks first under these three attributes.

Fig. 9 Overall precision plots. Quantitative analyze of the proposed tracker and five correlation filter-based
trackers on the UAV123 dataset. In all plots, our algorithm obtains the highest success rate as listed in the
legend. The names of these trackers also can be seen in the legend
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5 Conclusion
Based on the research achievements in the field of target tracking, UAV technology,

representing the future of many industries, will have a wider application prospect in

the future. For example, home delivery by the UAV will become one of the most com-

mon applications; the miniature UAV will be used to pollinate plants. Advanced tech-

nology can bring a better and convenient living environment for mankind.

This paper studies the problem of target tracking for UAV video images. Based on

the KCF algorithm, a tracking algorithm combined with abilities based on parts and

redetection is proposed. This algorithm is conducive to dealing with the tracking failure

Fig. 10 Precision plots with 3 challenging attributes, namely scale variation, partial occlusion, and full
occlusion, approach on the UAV123 dataset. Our method performs best in all the attributes. The names of
these trackers are also shown in the legend
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resulted from the situation when the target is briefly occluded and re-enters the field of

view after leaving the camera for a period of time. Part-based tracking strategy in ac-

cordance with multi-feature fusion improves the anti-occlusion performance of the al-

gorithm and solving the problem of target scale variation. Concerning target tracking

confidence FPRM, it is used to determine whether the tracking failed. When it does,

the target redetection module initiates the retrieval of the real target to enable the algo-

rithm to achieve long-term tracking. Meanwhile, the learning rate is partly adjusted

through the value of target tracking confidence FPRM to reduce the introduction of er-

rors. Seen from the quantitative experiment results, the algorithm in this paper has ob-

vious edges in dealing with occlusion and scale change problems. In addition,

qualitative experimental results show that the distance accuracy (DP) and overlap rate

accuracy (OP) of the proposed algorithm perform best in both the overall and challenge

tests. In general, our method outperforms other mainstream algorithms in the literature

on the UAV123 dataset. Notably, stabilized tracking for the ground moving target can

be realized when the algorithm processes video sequences with scale variation and oc-

clusion. The fundamental purpose of the algorithm proposed in this paper is to track a

single target. In the future, UAV detection and tracking of multiple targets will be

explored.
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