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Abstract

In this paper, we address the joint estimation problem of elevation, azimuth, and
polarization with nested array consists of complete six-component electromagnetic
vector-sensors (EMVS). Taking advantage of the tensor permutation, we convert the
sample covariance matrix of the receive data into a tensorial form which provides
enhanced degree-of-freedom. Moreover, the parameter estimation issue with the
proposed model boils down to a Vandermonde constraint Canonical Polyadic
Decomposition problem. The structured least squares estimation of signal parameters
via rotational invariance techniques is tailored for joint auto-pairing elevation, azimuth,
and polarization estimation, ending up with a computational efficient method that
avoids exhaustive searching over spatial and polarization region. Furthermore, the
sufficient uniqueness analysis of our proposed approach is addressed, and the
stochastic Cramér-Rao bound for underdetermined parameter estimation is derived.
Simulation results are given to verify the effectiveness of the proposed method.

Keywords: Electromagnetic vector-sensor, Nested array, Parameter estimation, Tensor
decomposition, Cramér-Rao bound (CRB)

1 Introduction

Electromagnetic vector-sensor (EMVS) has been widely used in a variety of applica-
tions such as localization, tracking, and beamforming [1-3]. A complete six-component
EMVS contains spatially co-located three identical orthogonally electric dipoles and mag-
netic loops that could measure all six-components of the electromagnetic field [4, 5].
The model of EMVS was investigated in [6]. Different from scalar-sensor arrays, EMVS
arrays that are composed of multiple EMVSs with particular configurations could detect
both direction-of-arrival (DOA), i.e., elevation and azimuth, and polarization of incident
sources. This polarization diversity brings us lots of advantages, such as resolving sources
from the same DOA as long as they have different polarization states, providing better
resolution ability, offering extra degrees-of-freedom (DOFs), and improving estimation
performance [7-10].
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In order to utilize the aforementioned benefits, the DOA and polarization estimation
with EMVS arrays could be cast as a multiple-parameter estimation problem which, how-
ever, turns out to be much more complicated than the scalar-sensor array case. Usually,
they demand a time-consuming multi-dimensional searching procedure [11]. Also, the
auto-pairing issue of different parameters cannot be neglected. Moreover, the steering
matrix of an EMVS always has irregular structure, which aggravates the difficulty in the
parameter estimation techniques. Several matrix-based DOA and polarization estimation
methods have been proposed with the EMVS array. Most of them are the extensions of
the existing DOA estimators with scalar-sensor arrays by taking into the physical struc-
ture of EMVSs into consideration. In [6], a vector cross-product approach to estimate
the Poynting vector of the sources was presented. Eigenvector-based parameter estima-
tors such as multiple signal classification (MUSIC) and estimation of signal parameters
via rotational invariance techniques (ESPRIT) were developed in [12, 13], through uti-
lizing either spatial or temporal invariance properties. These approaches show superior
resolution abilities and estimation accuracy with tolerable computational burdens.

The multi-dimensional model, i.e., tensor model, was first linked with array processing
under the framework with Canonical Polyadic Decomposition (CPD) in [14]. Interest-
ingly, the tensor modeling techniques reverse the curse of multi-dimensional problems
into blessing, which could achieve several benefits such as auto-paring of parameters,
relaxed uniqueness condition, to name a few. Subsequently, tensor-based approaches
were introduced to the EMVS array whose received data embodies multi-dimensional
structure. In [15], the identifiability was analyzed with an EMVS array. More general
CPD-based approach for EMVS array were developed in [16—19]. In parallel, higher-
order singular value decomposition (HOSVD) which represents tensor-based low-rank
approximation method, generalizes the concept of matrix-based SVD. HOSVD-based
parameter estimators are able to provide higher estimation accuracy [20, 21]. The so-
called tensor-MUSIC approaches were developed with the EMVS array in [22, 23], which
require exhaustive multi-dimensional searching procedures.

Compared with uniform linear array (ULA), difference co-arrays such as nested and co-
prime arrays are able to provide more DOFs [24—26]. The nested array could construct
virtual arrays that obtain as large as O(M?) DOFs with M physical sensors, which greatly
improves the identifiability as well as resolvability and reduces mutual coupling effects
between sensors. The stochastic Cramér-Rao bound (CRB) when the number of sources
is more than the number of sensors was derived separately by [27-29]. It is worth noting
that the aforementioned methods are only suitable for uncorrelated sources.

A nested array which is equipped with EMVSs was first developed by Han et al. in [30].
The nested EMVS array provides more DOFs and better resolvability than the EMVS
ULA. However, the DOA and polarization vectors were not decoupled, meaning that
the nested EMVS array requires a prior knowledge of the polarization state before per-
forming MUSIC method to avoid exhaustive searching. A tensor model for nested EMVS
array that could efficiently decouple the DOA and polarization was constructed in [31].
This method divides the nested EMVS array into several subarrays with respect to differ-
ent polarization states. Then, it builds a tensor composed of multiple local covariances,
followed by the CPD to obtain DOA and polarization estimations.

In this paper, we propose a novel methodology for tensor modeling and parameter esti-
mation by means of utilizing the relationship between tensor permutation and the array
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structure. The proposed approach has several novelties and advantages: (1) A tensor
model of nested EMVS array model is established through the property of tensor permu-
tation, which is different from the complex produce proposed in [31]. (2) The proposed
estimator is capable of achieving the auto-pairing of DOA and polarization state. (3) It is
proved that the proposed method guarantees more DOFs through uniqueness condition
analysis. (4) An underdetermined stochastic CRB for the nested EMVS array is derived as
a benchmark for performance evaluation.

The remainder of this paper is organized as follows. Section 2 introduces the basic
mathematical notations and constructs the tensor model of a nested EMVS array. In
Section 3, we briefly review the Han’s tensor modeling method and then propose our ten-
sor modeling approach through multilinear algebra. In Section 4, we devise CPD and the
structured least squares (SLS) ESPRIT method for joint DOA and polarization estimation.
In Section 5, we analyze the sufficient uniqueness condition of the proposed method and
derive the underdetermined stochastic CRB of the nested EMVS array. In Section 6, we
give simulation results to demonstrate the effectiveness of our propose method. Section 7

concludes this work.

2 Problem formulation
2.1 Notations
Definition 1 (Tensor vectorization) A tensor vectorization of an N-dimensional ten-

N
sor A € Chxkx=xIN s denoted as vec(A) € Cll=121x1 where vec(-) represents the

vectorization operator.

Property 1 If an N-dimensional tensor A € C1**IN could be expressed as the outer-
product of a sequence of vectors a, € C"*1,n = 1,2,...,N, namely,

A=310320~~03N (1)

where o denotes the outer product, then, its tensor vectorization has the following structure

as
vec(A) =ay Qan_1 0 - - Oay (2)
where © represents the Khatri-Rao product.

Definition 2 (Tensor matrization) A matrix unfolding of an N-dimensional tensor A €
ChxhxxIN glong n-mode is denoted as A,y € Chlnt1-INTi-Tn—y,

Definition 3 (The n-mode tensor-matrix product) The n-mode product of a tensor A €
ChxlxxIN gnd g matrix D € C/n*In along the nth mode is given by

C2Ax,D 3)

I
Cit,igysesin—1fnsing 1 miN = E ail,i2v-<-,iny-<-aiNdjnvin
i=1

where C € CIV<-> -1l xIN gy g €, = DAy).
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2.2 Signal model
For a six-component EMVS, it consists six spatially co-located antennas, i.e., three
orthogonally electric dipoles and three orthogonally magnetic loops. We adopt e 2
[ex;s ey ezk]T and hy é[hxk, hyk,hzk]T to denote the kth source’s electromagnetic field
characterized by electric and magnetic triads along x-, y-, and z-axis, respectively. The
diagram of an EMVS under Cartesian coordinates is shown in Fig. 1.

We assume that there are no mutual coupling effects within each EMVS. Thus, the
physical polarization vector of kth source observed by an EMVS is a collection of e; and
hy

A T
Pk = [exk ey, ez My By, th]

[ cos ¢y cos — sin ¢
sin ¢ cos Oy Cos Py
A —sin 6 0 sin ye/
B —singr  — cos ¢y cos b [ COS Vi :|
Cos ¢y — sin ¢ cos O
L 0 sin O
=Er&k (4)

where 0y €[0,7),¢r € (0,27],yx €[0,7/2),nr €[ —m, ) denotes the kth source’s ele-
vation measured from positive vertical z-axis, azimuth, auxiliary polarization angle, and
polarization phase difference, respectively. The (-) stands for the transpose. Throughout
this work, we assume that different sources have different polarization states.

e

dENra
h. // \4\

’
’

| ——
<V

hy

Fig. 1 Diagram of a six-component EMVS

€z
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Then, the normalized Poynting vector gy is given by

A € h}:
8k = X
llexll  I1hgll
i sin O cos ¢
A
=| v | = | sinf; singy (5)
[0)% cos 6
where (-)*, x, and || - || represent the complex conjugation, Cartesian product, and £5-

norm, respectively. We use pg, vk, oy for the direction-cosine functions along the x-, y-,
and z-axis, respectively.

In this paper, we consider a typical two-level nested array which is composed of two
concatenated ULAs with different inner EMVS spacings. The EMVS linear array is placed
along the y-axis with a total of M EMVSs as illustrated in Fig. 2. The small ULA has M;
sensors with a half-wavelength spacing, whereas the large one has a total of M, sensors
with an intersensor spacing of (M; + 1)%. Thus, the positions of EMVSs in the nested
array are given as

A
2= 112 My, M+ 1,2My 42, Mo (M) + Nk (6)

According to [24], the DOFs for a nested array with identical scalar-sensors could be

determined as

M= 7
M1 | M if M is odd. ?

_ { M22*2 + M if M is even

Assume that there are K narrowband far-field completed polarized signals impinging
on this array. As a result, the spatial steering vector of the nested EMVS array for the kth
source is given by

3 . .2 . .9, . T
a(0) é I:e]T”zl Sm9k,917"22 sm9k’ e e’TnZM sm9k] 8)

where A denotes the wavelength of the sources and z; denotes the kth element of z. Note
that (8) only stands for the spatial relationship among all M EMVSs in the array without
taking the physical property of EMVS into account. The ¢th sample vector of whole array

gives as
K
YO =) sc® @) © pr) + n(t) )
k=1
=(A O P)s(t) + n() (10)
=Aps(t) +n(t) (11)
M, Mo

WYy

Fig.2 A nested linear array consists of two concatenated ULAs with My and M, EMVSs, respectively

Page 5 of 23
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where A}, € COMxK

represents the steering matrix of the whole nested EMVS array where
s(t) and n(¢) represent K signals’ waveforms at time ¢ and the additive temporally and

spatially white Gaussian noise, respectively.
A
a =[a(91)>--':a(9[()] (12)

Pé[le--xPK] (13)

In this work, we assume that the sources are uncorrelated stationary white Gaussian pro-
cess. Meanwhile, the additive noise obeys independent and identically distributed (IID)
Gaussian distribution, i.e., n(¢) ~ CN(O, O',%I) with 0'3 being the noise variance. Fur-
thermore, the signal and noise are uncorrelated. The covariance matrix is calculated
as

R=E[y®)y"®)]
=a,E [s(t)s" ()]} + E [n@)n" )]
= apDag + 0 epmr (14)

where D denotes the source covariance matrix, [E[ -] represents the mathematical expec-
tation. Since the sources are statistically uncorrelated, we have

D = diag(d) (15)

where d = [012,022, . ..,O'[2<]T with ok2 being the power of the kth source and diag(-)
denotes the diagonalization operator that forms an K x 1 vector into a K x K square
matrix with elements on its main diagonal and zeroes elsewhere. Note that the covariance
matrix cannot be exactly obtained since the number of samples is finite. Instead, we use
the sample covariance matrix (SCM) as

T
A 1
R=_ ;ya)v’* t). (16)

For simplicity, we use the covariance matrix for derivation of the proposed method. How-
ever, it should be kept in mind that the SCM is different from the covariance matrix. In
consequence, the signal covariance matrix Ry will not have a perfect diagonal structure.
This phenomenon may degrade the performance of the proposed method as we will see
in the simulations later.

By vectorizing the covariance matrix, an aperture-enlarged array is obtained, and its

observation is given as
vec(R) =(aj © a,)d + 0,1 17)
=@ OP*0a0P)d+o0’1 (18)

where 1 = vec(Igyr). Note that the steering matrix a; Qay € C36M*xK a5 larger size,
which extends the array aperture. However, the sources d become coherent since s(z)
are stationary process. To circumvent this problem, several rank restoration methods,
e.g., spatial-smoothing technique and compressive sensing-based approaches, have been
suggested. These strategies might not be appropriate for the situation of the nested EMVS
array. This is because the aperture-extended array does not have the ULA structure, which
is prohibiting the application of spatial-smoothing technique. Note that the spatial matrix
a and polarization matrix P are alternating arranged as depicted in (18), which are not
decoupled. As a matter of fact, the EMVS array can be described as a multi-dimensional
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model. This thereby motivates us to establish the tensor model for the observations of the
EMVS array.

3 Tensor modeling

3.1 Han's tensor modeling approach

The measurement matrix of the whole EMVS array at tth sample is obtained through
matrizating (9) as

Y(£) =mat(y(?)) (19)
K
=" si(H)@B) o pr) + N(@) (20)
k=1
=A x3s(t) + N(¢) (21)

where mat(-) denotes the matrization operator, Y(t) € CM*6 and A e CM*x6xK
represents the steering tensor as shown in Fig. 3.

The 3-mode matrix unfolding of the steering tensor is equivalent to the steering matrix
of EMVS as

T
A(S) =a,. (22)
Based on [30], the fourth-dimensional covariance tensor R is constructed as
R = E[Y o Y] g CM*x6xMx6, (23)

We could regard (23) as a tensor extension of the covariance matrix. To further investigate
the structure of R, each element in R could be expressed as

Vijiyizia = E [Yiliz (t)Y;';iL} (t)] . (24')

To be specific, we have

R =E[(Ax35s+N)o(Ax3s-+N)*]. (25)
'S
oo =
9
\ i
[ |
I
|
|
|
I
l
I
M A
|
|
I
|
B St i i i
-~ < - /
-~ - g . /
6
Fig. 3 The steering tensor of a six-component EMVS
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Then perform 2-mode matrization of ‘R, yielding

Reen = R{;
= Anest x3 d+0,/Ey (26)
where Ajest € COM*x6xK gtands for the steering tensor and
vec(Ipr)
vec(Ipr)

E, = . . 27)

vec(Ipr)

Comparing with (17), (26) has a similar form but with a nested steering tensor of size
6M? x 6 x K. Taking one horizontal slice of (30) since the DOA and polarization state are
coupled in the steering tensor as

Anest = [Axlwst’ B Agest] (28)

where Al € COM>K | =1, ..,6 represents the sub-nested steering tensor associ-
ated with the /th polarization state in pg. The polarization state and the spatial structure
are coupled in the first dimension of the /th sub-nested steering tensor, and it has the
following form

Allqest =Ag) 0 A

:a;; ©a (29)

and a; denotes one slice of the nested steering tensor associated with /th polarization state
pllefjrlrr sin 61 . pKlefjrlrr sin O
plle—/rzﬂ sin 61 o pKle—}dzn sin g

a = ) . ) . (30)
—jrpm sin6q —jrpm sin O

pue -+ Prie
where a; € CM*K ] = 1,2,...,6. In a word, the tensor modeling of nested EMVS array

could be regarded as folding one of the polarization dimension of the matrix-based steer-
ing matrix into a higher dimension. Note that the spatial and polarization dimensions of

the nested steering tensor are still coupled.

3.2 Proposed tensor modeling method
Different from the existing tensor modeling methods in [30] and [31], we introduce the

property of tensor permutation to establish a tensor model of the nested EMVS array.

Definition 4 (Tensor permutation) Consider an N-dimensional tensor, a permutation
operator of this tensor is denoted as 1 =[m1,72,...,7N], where 7, € {1,2,...,N},n =
1,2,...,N. An N-dimensional tensor C € Ch*b-XIN with indexes iy, is,...,iN after

permutation leads to C, € Cla*lm>lay

T (il)i2»~ . le) = (inlyinzxo . .,inN) (31)

For example, we define a permutation as = =[ 3,2, 1]. Then, a three-dimensional tensor
C € Cl*2xIs after permutation is C, € CB3*2%% a5 shown in Fig. 4.
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I3

I3

I I

Fig. 4 Diagram of a three-dimensional tensor permutation

Property 2 If an N-dimensional tensor C'"*"*IN could be expressed as a outer-product
of N vectors, we have the following expression after permutation &1 =[ w1, 7o, ..., TN] as

Cr=Cp, 0Cr, 0...0Cqy (32)

This property is proved through using Property 1 and the definition of tensor permuta-
tion. It represents a special case of rank-one tensors, which is based the fact that tensor
permutation will maintain the inter-relationship of each vectors.

Recalling (17), we obtain

vec(R) = (a* O P* ©a @ P)d + 071
K
=) ola;Op; Oa O pr+o,1. (33)
k=1

According to Property 1, we formulate (33) into a four-dimensional tensor as

K

Grest = Z O'kza* (Bk) o P]t oa(tk) o pix + Nnest (34)
k=1

where Gpest € CM*6XMx6 Thep, by setting 77 : (1,3,2,4), Gnest after permutation  gives

K
Gr = ) _oga" (@) o a(k) o pj o pr + N (35)
k=1

c CMXMXGXG

Performing 1-mode unfolding of G into a three-dimensional tensor yields

K
G =3 at@" ) ©al) o p; o pr + N (36)
k=1

where g;,” € CM*x6x6 The spatial and polarization vectors are arranged in order instead
of placing alternatively as in (33). Until this step, a three-dimensional tensor with decou-
pled spatial and polarization factors is constructed. However, a*(0;) © a(6;) does not
obey the Vandermonde structure and incurs several repeated spatial phase factors as
pointed out in [30]. Here, we directly remove the repeated ones to reduce the dimen-
sion of a*(6) ©® a(6x) while keeping the DOFs unchanged. The selecting and permutation
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matrices are defined as Js and J,, respectively. Then, we operate them on G to remove

the repeated and arrange the spatial phase factors in order as

G =60 x1Jsx1)p (37)
K

= Z szb(ek) opjopk+ N (38)
k=1

where G € CM*6x6 and
; ; T
b(6;) = [e‘jn%smek,...,l, . ..,ef”%sinak] . (39)

Note that the deleting and selecting matrices are determined by the spatial structure of
the nested array and thus can be calculated offline once.
To be specific, each element in G is expressed as

K

8ivigis = Z O bis kP sk + O Siinis (40)
k=1
whereiy = 1,...,M,ip = 1,...,6,i3 = 1,...,6 and § stands for the Dirac function such
that
s _Jra=" and =i 1)
12571 0 elsewhere '

Since we have already known the positions of noise items as given in (41), the noise could
be easily eliminated from G to further improve the signal-to-noise ratio (SNR) in real
world applications. Performing SVD to (16), the singular value matrix is given as £ =

diag(6Z,...,62,). The singular values are decreasingly ordered as 6 > --- > 6% >
&[% == 662M. Thus, an estimate of the noise power could be given as
1 6M
) 2
=— ;. 42
" eM—K 2 G 42)
k=K+1

It should be emphasized that although the proposed tensor model has a similar form as
that in [31], the physical properties behind the model are quite different. In our proposed
model, the matrix factors represent spatial and polarization states while dropping the
temporal information. Note that the powers of K sources are trivial parameters which will
not influence the estimate of parameters.

4 DOA and polarization estimation

4.1 Elevation estimation

In this subsection, elevation estimation is firstly achieved. Then, we use the results to
obtain azimuth and polarization estimates in the next subsection. The proposed tensor
modeling approach constructs a three-dimensional tensor which is able to exploit the
spatially correlation structure inherent in the EMVS array data. To this end, we use B,
P, and P*, respectively, to stand for matrix factors. Thus, we could use CPD to estimate
these factors directly. The CPD of G could achieve the estimates of B and P up to permu-
tation and scaling [14]. The Alternating Least Squares (ALS) algorithm is usually applied
to conduct the general CPD without a prior knowledge of the structure of matrix factors.
It is worth noting that since B obeys the Vandermonde structure, this problem at hand
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could be solved through Vandermonde constrained CPD (VCPD) [17], which has more a
relaxed uniqueness condition.
The noiseless matrix form of G could be obtained as 1-mode unfolding, which is

given by
G = BDH' (43)
where
B =[b(61),b(2),...,b(0k)] (44)
H=P*OP. (45)

Consider (43), we divide G into L overlapped submatrices, each of them has size M x 36
to obtain the spatial-smoothing of G along the spatial dimension. Firstly, we define the /th

selection matrix as

Ji =[0a1, xt—1) Ing, Opgxa—pl . 1 <1 <L (46)
The augmented covariance Gy is then constructed as

G; =[N1G,...,J.G] € CMs>36k (47)

=By1,®,...,9" ' DH” (48)

where My, = M — L + 1 and

® Sdiag (e 775, /T sintK) (49)

Bs =[ L, 057 11,1 B- (50)

Through the constuction of augmented covariance matrix, we restore the rank of G
to achieve a better estimate of the signal subspace. Performing SVD to G, a low-rank
approximation is obtained as

A 30 .~ o~ H
SVD(G,) = [US U,,] [0 z} [vs vn] . (51)
It follows from (50) and (51) that

U; = B,T (52)

where T represents a full-rank matrix. To proceed, we need to define the selection
matrices Js1 and Js, which are defined as

]slé[IMrl 0, —1)x1]
]szé[O(Mrl)xl IMS—l]- (53)

Recall that the steering matrix B; obeys Vandermonde structure, which indicates the
steering matrix has spatial invariance property. The elevation is estimated by applying
(52) and (53)

]slfjs(I> = ]sZﬁs' (54‘)

However, there exists subspace perturbation in both handsides. Here, we use the total

least squares (TLS) solution to eliminate the influence of subspace perturbation as follows

(]slUs + AUsl)(b = ]s2Us + AUs2 (55)
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where AU and AUy, represent the perturbation of signal subspace of both handsides.
Note that the left and right handsides of (55) are highly structured and share many ele-
ments, which in turn means that they share the same noises. In order to suppress the
noise shared in the sub-arrays, the structured least squares ESPRIT (SLS-ESPRIT) is tai-
lored for enhancing the performance of elevation finding. In particular, defining define
UsSLS = U, + AUy and the residual matrix as F (U;C’Ls, <I>) = ]SlUSSLSCID — ]ngSSLS as the
residual matrix, the SLS-ESPRIT method attempts to minimize

)

min

U, ® y AU

where y is the weighting factor which is used to avoid trivial solutions. Note that we use
the iteration method to solve (56). The rth iteration step is formulated as

F (UEI;—SO—I <I>,+1>

—F (U;“j&s + AUSLS, @, + ACDr) (57)
=T (USES + AUSES) (@, + Ad,)

oo (U5 + AUSS) (58)
=F(USSS, 0,)
+Ja (U§55A¢r + AU;“;&S@,) — JoAUSLS, (59)

Neglecting the second-order term of (58), we have

AD F (USLS, @
min |a;| oo |+ (Vs; SLSr) (60)
AUSLS, A®, AUy y AUy
where
A SLS 1) _
a, = ]sl Us,r r]sl ]s2 ) (61)
0 y1

Thus, the updates of @, and USS,];S could be expressed in a closed-form, expressed as

AD . | F(USLS @
SI}:S — _ASI ( S, SLsr) (62)
AUs,r yAUs,r

where (-)" represents the pesudo-inverse operator. After several iterations, the solution
of (56) is achieved. Although the proposed SLS-VCPD method is not optimal, it realizes
a tradeoff between computational burden and estimation accuracy.

4.2 Azimuth and polarization joint estimation
In the above subsection, the estimates of elevations have been determined. This allows us
to construct B(#), leading to the LS estimate of H as

A=g’ (B(é’)T)T (63)

where H consists of K vectors, that is

Page 12 of 23



Cao et al. EURASIP Journal on Wireless Communications and Networking (2020) 2020:153 Page 13 of 23

H =[h;,hy,..., hel. (64)

Recalling (45), the kth column of H is indeed an outer product of polarization vectors.
Dividing hy into six equally sized concatenated vectors and stack them along column to
form a square matrix, we have

mat(hy) = Apx o pf € CO<° (65)

Performing SVD to mat(hy), an approximate estimate of the polarization information
vector is obtained as

Pk = 0y (66)

where G stands for the singular vector associated with the largest singular value.
We now have achieved an estimate of the polarization vector. According to (4), the
estimated Poynting vector of kth source is

~ lAl*
B = o x —k (67)
llexll  ||hy|
It follows that the estimated azimuth is calculated as
i = arctan(Dy/fLx) (68)

Substituting 9/( and dA)k into (4), we achieve the estimate of o k- The polarization
parameters associated with kth signal are hence calculated as

V% = arctan ékl (69)
Ck2
fe=28a k=1,2,..,K (70)
where
T, afa
& =18 )’ = Ebr. (71)

Note that DOA and polarization associated with the same source is auto-paired since
they share the same eigenvector. Thus, no extra pairing step is needed. Table 1 concludes
the DOA and polarization estimation procedure.

5 Identifiability and CRB

5.1 Identifiability

In this subsection, we first review the sufficient uniqueness condition with EMVS array
from the CPD perspective. Note that an N-dimensional tensor is defined as a rank-one
tensor if it could be written into a outer product of N vectors. Thus, G is rank-K since it is
the minimal number of K rank-one tensor as given in (38). Consider a three-dimensional

Table 1 Algorithm of Joint Elevation-Azimuth-Polarization Estimation
) Calculate the SCM R based on (16)

ii) Construct Gpest according to (34) and permute it to get G

iii) Unfold gg,” to a three-dimensional tensor, remove the repeated and rearrange the spatial phase factors to
uild G according to (38)

(

(i

(

(iv) Build G through 1-mode matrization as (43)

(v) Compute Gs by performing spatial-smoothing (50)

(vi) Apply SLS-ESPRIT to achieve the estimate of elevation (51)-(62)

(vii) Calculate the estimates of azimuth and polarization parameters via (63)-(70)
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X e ChxBxls with rank-K which means that it is a sum of K outer product of three
vectors, which could be expressed as

K

X =) anibicisk. (72)
k=1

The uniqueness condition of a tensor with CPD relies on KrusKal’s condition. The
Kruskal-rank, termed as k7, is defined as the maximum number of J such that every J
columns of a matrix are linearly independent. And it is denoted as kr(a) = J. Thus, the
KrusKal’s condition provides a sufficient uniqueness condition for a three-dimensional
tensor. That is, three matrix factors satisfy

kr(a) + kr(B) + kr(C) > 2K + 2 (73)

a, B, and C are unique up to scaling and permutation [14].

For a complete six-components EMVS, its observation data always has kr(P) > 3. Thus,
for an M-elements EMVS ULA, the upper bound for the uniqueness condition when
sources are uncorrelated gives

K <M + rank(P) — 2. (74)

Usually, it holds that rank(P) > 4 for arbitrary DOA and polarization parameters. So the
maximum number of identifiable sources is

K<M+2. (75)

Comparing with the scalar-sensor ULA, the EMVS array could resolve more sources.
Now, we consider the nested EMVS array, the sufficient uniqueness condition with the
proposed model (38) yields

kr(B) + kr(P*) + kr(P) > 2K + 2. (76)

Since B is a Vandermonde matrix, it is straightforward to obtain kr(B) = M. Also,
the manifold of a six-component EMVS is free of rank-2 ambiguity, which indicates
that kr(P) > 3 [32]. Substituting kr(P) = 3 into (76) to obtain the upper bound of
identifiability with CPD yields

M
K < 5 + 2. (77)

Comparing with (75), the nested EMVS array obviously provides more DOFs. However,
the uniqueness condition could be further relaxed if we take the Vandermonde structure
of B and ESPRIT method together into consideration. According to the results in [17], we
could directly obtain the upper bound of identifiability after applying spatial smoothing as

K < min(6(M — L + 1),6L). (78)

It should be noted that the proposed method perhaps cannot resolve the maximum num-
ber of sources provided by the upper bound since there exists errors between the SCM
and covariance matrix when the number of samples is finite, and SNR is not sufficient
high. For more discussions about this phenomenon, readers can refer to [27].

5.2 Underdetermined CRB
The stochastic CRB with EMVSs array model has been well discussed in literature. How-
ever, the existing CRB could not be directly applied to the underdetermined case in which
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the number of sources excesses the number of EMVSs. Under the assumption that Ry is
a diagonal matrix, we extend the stochastic CRB for underdetermined DOA estimation
with scalar-sensor array to the EMVSs array cases. Indeed, the derived CRB generalizes
the existing results so that the scalar-sensor array could be regarded as a special case of the
EMVS array. For simplicity, the variance of noise is assumed to be known. The parameter
vector composed by DOAs, polarization, and source powers is defined as

¢=(0"¢",y" 0", a" (79)
According to [33], the (m,n)th element of the Fisher information matrix (FIM) is
given by
FIM,, = Ttr | R g1 IR g1 (80)
S T T

where tr(-) represents the trace operator. Since tr(aB) = vec(aT) Tvec(B) and vec(aXB) =
(BT @ a)vec(X), we have

ar 17 or
FIM,y = Ttr | —— (R—T R) | 81

mn r |:3 » ] ® ) 9, (81)
where r 2 vec(R), ® denotes the Kronecker product. The first-order derivatives of r with
respect to each element of ¢ is defined as

or [ or or Jr or
0¢ 361" 00k 01 0
or or or or Or or
T A e e e g |- (82)
1 dyk Im Ik dpy Py
According to (33), it is straightforward to get
ar
oz~ Ben(ls © P aves] (83)
where a%)st = al(,l)* Oay+a,0 al(,l) and
a) — [331’ L .
4 361 30K 3¢ ddx
aapaapaapaap} (84)
dy1 dyk Im ank
To proceed, we need to define the following matrices
1/2
W= (RToR™)
Qi = Way,(Is @ P)
Q2 = Wayest. (85)
Then, the FIM could be expressed into a compact form as
H H
Q2 Ql Q2 Q2
The underdetermined stochastic CRB of 8, ¢, ¥, n with nested EMVS array is calculated

as

1
CRB = ?binv(QIf Mg, Q1) (87)
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where Héz =1- Qg(Qg Qz)’ngl , and binv(-) stands for blockwise inverse operator
which takes inverse of the block matrices with size K x K on the main block diagonal
of (87).

6 Simulation results and discussions

This section gives various numerical examples to show the performance of the proposed
SLS-VCPD method. First, we evaluate root mean square error (RMSE) performance of
our proposed method for elevation, azimuth, and polarization estimations. Second, we
compare the proposed approach with the state-of-the-art tensor-based schemes which
use the SLS-VCPD technique and EMVS array. Throughout all simulations, a nested
EMVS array with M = 6 EMVSs is adopted, which is depicted in Fig. 2. The position of
these EMVSs are placed on z = %[ 1,2,3,4,8,12]7.

The RMSE of elevation estimation is defined as

K

RMSE, = |E {11( > - ek)Z}. (88)
k=1

Note that RMSEs of azimuth and polarization are computed by the same formula, but the

variables are different. In addition, the SNR is defined as 10log,,, (||APS||12: / ||N||12r) where

[| - ||r represents the Frobenius norm.

6.1 Performance analysis

In Figs. 5 and 6, we present the RMSE performances of elevations, azimuth, and polariza-
tion, respectively. The parameters of two sources are set as § =[30°,40°], ¢ =[30°,60°],
y =[20°,45°], and n =[15°,30°], respectively. It is seen that the RMSE performances
improve when SNR or the number of samples increases.

In Fig. 7, we study the influence of the number of iterations on the proposed
SLS-VCPD method. In this simulation, the parameters of four sources are ran-
domly chosen as # =[49.0°,3.8°,44.8°,74.3°], ¢ =[103.1°,101.4°,33.2°,67.7°], y =
[14.7°,46.9°,65.2°,33.7°], and 5 =[—67.0°, —101.7°, —114.2°,30.5°]. The number of
receive samples is set as 7 = 100. The curves of SLS-VCPD with iteration number, i.e.,
n = 1 and n = 3, are also plotted for comparison. We observe that the proposed SLS-
VCPD method outperforms the LS-VCPD scheme as expected. Also, the performance
of SLS-VCPD remains unchanged as the number of iterations increases, which indicates
that the proposed SLS-VCPD method has convergenced within one iteration.

6.2 Overdetermined case

In this subsection, we focus on the elevation estimation performance in the overde-
termined case. To examine the performance of the nested EMVS array, two array
configurations are considered, i.e., ULA and nested array. The number of elements in the
EMVS ULA is set as M = 6 with K = 2 impinging sources. We compare CPD with
EMVS ULA, namely, ULA-CPD [18], tensor-MUSIC [30], SS-CPD [31], and proposed
SLS-VCPD methods using the nested EMVS array. Note that the tensor-MUSIC, SS-CPD,
and SLS-VCPD methods are constructed using nested array, and thereby, we conceal the
item “nested array” for simplification. Note that the SLS-VCPD method only uses one
iteration step. The number of spatial smoothing is set as L = 2 for both SS-CPD and
SLS-VCPD methods. For comparison, the polarization states of sources are prior known
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Fig. 5 DOA estimation performance analysis of SLS-VCPD method versus SNR with different number of
samples. A nested EMVS array is equipped with M = 6 sensors. The number of sources is set as K = 2

to the tensor-MUSIC method to reduce the computational burden. Also, the stochastic
CRB with nested EMVS array is plotted as a benchmark. The Monte-Carlo trials for each
simulation are set as 1000.

In Fig. 8, we compare the elevation RMSEs of all methods while varying SNR from —4 dB
to 20 dB for a fixed T = 50 samples. The parameters of two sources are the same as those
in Fig. 5. It is seen that the SLS-VCPD approach results in the lowest RMSE among the
aforementioned schemes. The nested EMVS array offers more DOFs comparing with the
EMVS ULA. Thus, we can observe better RMSE performance. However, the RMSEs of
parameter estimation methods with nested EMVS array converges to nonzero value since
there exists errors according to (17) when the source covariance matrix is not strictly diag-
onal [27]. In addition, we also give average CPU run time for each method for comparison.
The ULA-CPD, tensor-MUSIC, SS-CPD, and SLS-VCPD methods demand 0.23 s, 3.31 s,
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Fig. 6 Polarization estimation performance analysis of SLS-VCPD method versus SNR with different number
of samples. A nested EMVS array is equipped with M = 6 sensors. The number of sources is set as K = 2

0.47 s, and 0.51 s, respectively. It could be seen that the proposed SLS-VCPD method
has a modest computation complexity among four method. The tensor-MUSIC method
requires multi-dimensional searching over the whole parameter space, which needs the
most computations.

In Fig. 9, we examine the elevation RMSEs of all methods while varying the number
of samples from 7" = 20 to T' = 200 with fixed SNR=10 dB. The parameters of sources
remain the same as those in Fig. 5. It can be observed that the SLS-VCPD algorithm is
clearly advantageous when compared with the other methods.

In Fig. 10, we compare the elevation resolvabilities of all the above approaches, T = 50
samples are used and 500 Monte-Carlo trials have been carried out. Two spatially closely

sources are assumed to impinge on the array with § =[20°,22°], ¢ =[30°,30°], y =
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Fig. 7 Performance analysis of the influence of iteration number of the RMSE versus SNR for four signals with

M=6

[0°,15°],and n =[15°, 30°]. The resolvable condition defined for the elevation estimation

is given as [34]

A 161 — 02

|6 — k| < — (89)
where O, k = 1,2, represents the estimated elevation of two sources. We can see that the
SLS-VCPD method provides the best resolvability among all the schemes. SLS-VCPD,
ULA-CPD, and SS-CPD methods attain one in terms of probability of successful resolu-
tion when SNR >12 dB. However, the Tensor-MUSIC method fails to provide the reliable

detection even though SNR becomes sufficiently large.
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Fig. 8 RMSE versus SNR for two sources with M = 6 and T = 50
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Fig. 9 RMSE versus the number of samples for two sources with M = 6 and SNR=10 dB

6.3 Underdetermined case

In this subsection, the underdetermined case where the number of sources is more than
the number of elements in the original EMVS array. Recall that an M-elements EMVS
ULA could resolve up to M + 2 sources. Here, we consider an M = 6 elements nested
EMVS array with K = 10 impinging sources, which is called the underdetermined case.
In this scenario, the ULA-CPD method [15, 18] cannot resolve these sources. The param-
eters of ten sources are randomly chosen. We examine the performance of the ALS-CPD
with our proposed model (38), SS-CPD and SLS-VCPD methods based on the nested
EMVS array. The tensor-MUSIC method is no longer included since the polarization state
is very difficult to be a prior known when the number of sources is so large. Also, the
computational burden of tensor-MUSIC method becomes intolerable.

&
— —

—>— Tensor MUSIC
—<$~-ULA-CPD
—+— 8S-CPD
—*— SLS-VCPD 1

Probability of resolution

16 20

SNR (dB)

Fig. 10 Resolution ability versus SNR for two spatial closely located sources with M = 6, and the number of
samplesis setas T = 50
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Fig. 11 RMSE versus SNR for ten sources with M = 6 and T = 2000

Figure 11 shows the elevation RMSEs of three methods versus SNR for T = 2000
samples. It is obvious that the SLS-VCPD method offers the lowest RMSE especially
when SNR <8 dB. When SNR>16 dB, the ALS-CPD, SS-CPD, and SLS-CPD schemes
have almost the same RMSE performance. The RMSE curves saturate as SNR is suffi-
ciently high. This phenomenon is caused by the approximation of (17) since the SCM
cannot be strictly diagonal when the number of samples is finite as we discussed in the
overdetermined case.

In Fig. 12, we study the elevation RMSEs versus the number of samples with SNR=10 dB.
The proposed approach outperforms the other two algorithms when 7' < 1600. More-
over, it is observed that the SLS-VCPD and SS-CPD methods result in the almost same

performance when the number of samples is greater than 1600.
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Fig. 12 RMSE versus the number of samples for ten sources with M = 6 and T = 2000
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7 Methods

A tensor modeling method for elevation, azimuth, and polarization estimation with
nested electromagnetic vector-sensor arrays is proposed. Since the signals are uncorre-
lated, we build the SCM into a CP model through tensor permutation. The spatial and
polarization information are separated. Then, the SLS-VCPD method is implemented on
this model to calculate the elevation and azimuth. Next, the polarization is estimated

based on the structure of the vector-sensor.

8 Conclusions

The issue of joint elevation, azimuth, and polarization estimation in underdetermined
case with the nested EMVS array has been addressed in this work. This array could be
modeled into a high-dimensional tensor. The property of tensor permutation is intro-
duced to separate the spatial and polarization vectors which are originally coupled in the
steering matrix. This allows us to develop a tensor model of the nested EMVS array with
extended spatial aperture. Furthermore, since the spatial and polarization are decoupled,
which enables an efficient computational method for auto-pairing parameter estima-
tion, avoiding exhaustive multi-parameter searching. We also investigate the uniqueness
condition offered by the proposed SLS-VCPD approach. Besides, the underdetermined
stochastic CRB with nested EMVS array is derived. Numerical examples confirm the

superiority of our proposed method.
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