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Abstract

In this paper, the direction of arrival (DOA) estimation of signals in the presence of
impulsive noise environment is studied. Complex isotropic symmetric alpha-stable
(SαS) random variables are modeled as impulsive noise, then a novel second-order
statistic method that correntropy-based covariance matrix (CBCM) is defined, based
on the combination of the CBCM of the array sensor outputs with the signal
subspace technique (e.g., multiple signal classification (MUSIC)), which can be
achieved source localization under impulsive noise environments. The Monte-Carlo
simulation results illustrate the improved performance of CBCM-MUSIC for DOA
estimation under a wide range of impulsive noise conditions.

Keywords: Direction of arrival, Correntropy, Complex isotropic symmetric alpha-
stable

1 Introduction
Array signal processing is an important branch in modern signal processing. It is

widely used in the field of radar [1], sonar [2], 5G communication [3–6], and

smart antenna [7]. DOA estimation algorithms under additive white noise have

been extensively studied in the past several decades. However, literature [8–11]

studies show that atmospheric environments, sea clutter, ground clutter, radar

backscatter echoes, and urban mobile radio channels, sudden bursts, or sharp

spikes are exhibited at the array outputs which can be characterized as impulsive;

an impulsive environment can be well modeled by alpha-stable distribution [12],

compared with the mixture Gaussian distribution, and the alpha-stable distribution

has “thick tail” statistical characteristics of impulse noise, which makes it have

strongly impulse characteristics in the time domain. Second-order statistics are not

finite [12] under alpha-stable distribution. In order to suppress these impulsive

outliers, researchers have proposed a series of DOA estimation methods based on

fractional lower-order statistics (FLOS).

In [13], the authors proposed new subspace methods based on fractional lower-

order moment (FLOM) covariance estimates, and the robust covariation-based
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MUSIC (ROC-MUSIC) used covariations under the assumption that the signals

and the additive noise are jointly SαS, which does not hold always because signals

of interest are generally of finite variances, and the ROC-MUSIC is defined only

for 1 < α < 2.

In [14], the authors proposed a new class of covariance matrices named FLOM matri-

ces for impulsive noise. The FLOM outperforms the ROC-MUSIC from the fact that it

handles all types of signals. However, it is limited in the range of α (α > 1) for robust

covariation.

In [15], the authors introduce a new subspace algorithm based on the phased frac-

tional lower-order moment (PFLOM), and the new subspace algorithm based on the

PFLOM covariance estimation shows a higher resolution capability and lower estima-

tion error.

In [16], the authors proposed a new operator referred to as the correntropy-based

correlation (CRCO), and it can be applied with MUSIC algorithm; despite the CRCO-

MUSIC shows robustness in highly impulsive noise environments or in low generalized

signal to noise ratio (GSNR) situation, the formulation for the robust CRCO statistics

needs quite a number of snapshots.

Professor Principe’s team first proposed the correntropy in [17]. The correntropy

is a new statistic that can quantify the time structure as well as the statistical dis-

tribution of two stochastic random processes. The correntropy function conveys in-

formation about the quadratic Renyi’s entropy of the generating source. At the

same time, correntropy can well suppress impulse noise and does not depend on

the prior knowledge of alpha-stable noise. Therefore, it has been widely used in

signal detection [18], time delay estimation [19], adaptive filtering [17], and image

processing [20].

In this paper, we focused on the issue of DOA estimation algorithm in extremely

high impulsive noise environments along with low generalized signal to noise ratio

(GSNR) levels and fewer snapshots and introduced a new operator based on cor-

rentropy, namely, correntropy-based covariance matrices (CBCM), which can be

combined with subspace algorithm, such as MUSIC algorithm, that is CBCM-

MUSIC algorithm. The CBCM-MUSIC algorithm exhibits an evident performance

in low GSNR or in strong impulsive environments.

Our major contributions are listed as follows:

(1) Consider the problem of DOA estimation in impulsive noise and proposes a new

method to rebuild the covariance matrix based on correntropy.

(2) Several experiments have been made for the selection of kernel size and

suppression parameter.

(3) The performances of different algorithms are compared, and the effectiveness of

the proposed method is verified.

The paper is organized as follows: in Section 2, we define the problem of

interest and briefly review some preliminaries on α-stable distributions. In

Section 3, we provide the CBCM-MUSIC algorithm. Finally, some simulation

examples are presented in Section 4, and the conclusion is given in

Section 5.
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Notation: Lowercase (capital) bold symbols denote vector (matrix). (·)T, (·)*, and

(·)H denote transpose, complex conjugation, and conjugate transposition, respect-

ively; E{·} denotes expectation operator; and |·| stands for an absolute value of a

random quantity.

2 Problem definition
Here, the array signal model has given in Section 2.1, and then the impulsive noise

model (alpha-stable noise) is presented in Section 2.2.

2.1 Data model

Consider a uniform linear array (ULA) with M sensors and P narrowband far-

field signal source impinging on the ULA from angular direction θp, which space

half of the wavelength. The sensor received signal kth sample can be modeled as

X kð Þ ¼
XP
p¼1

ASk θp
� �þ N kð Þ ð1Þ

where X(k) is the array received observation vector

X kð Þ ¼ X1 kð Þ;X2 kð Þ;⋯;XM kð Þ½ �T∈CM�N ð2Þ

Am is an ideal steering matrix when setting the first sensor as the reference

A ¼ 1; e − jπ sin θpð Þ;⋯; e − j M − 1ð Þπ sin θpð Þh iT
∈CM�P ð3Þ

Sk(θ) is the signal vector

Sk θð Þ ¼ Sk θ1ð Þ; Sk θ2ð Þ;⋯; Sk θPð Þ½ �T ð4Þ

N(k) is alpha-stable noise

N Kð Þ ¼ N1 kð Þ;N2 kð Þ;⋯;NM kð Þ½ �T ð5Þ

Our objective is to estimate the DOA (θ1, θ2, …, θp) of the source from X(k), the

second-order statistical is the most commonly used method, that is

R ¼ E XXH
� � ð6Þ

In practice, the covariance matrix R can be estimated with a finite number of snapshots via

R
∧ ¼ 1

N

XN
k¼1

X kð ÞXH kð Þ∈CM�M ð7Þ

By performing eigenvalue decomposition (EVD) on R^, we can obtain

R
∧ ¼ UΛUH ¼ USΛSU

H
S þ UnΛnU

H
n ð8Þ

where U = [Us, Un], Us, and Un are the noise and signal subspace matrices and Λs

and Λn are the corresponding eigenvalue matrices. According to the orthogonality be-

tween noise and signal subspaces [21], Us⊥Un, spatial power spectrum can be obtained

from
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PMUSIC ¼ 1

aH θð ÞUnUH
na θð Þ − 90° ≤θ≤90° ð9Þ

2.2 Alpha-stable noise (SαS)

Recent studies show that alpha-stable distribution is well suited for describing impul-

sive noise [12], which is defined by a characteristic function

ϕ tð Þ ¼ exp jξt − γ tj jα 1þ jβsign tð Þωðt; αÞ½ �ð Þ ð10Þ

where

ω t; αð Þ ¼
tan

απ
2

� �
; α≠1

π
2

log tj j; α ¼ 1

8<
: ð11Þ

signt tð Þ ¼
1; t > 0
0; t ¼ 0
− 1; t < 0

8<
: ð12Þ

As can be seen from the above Eqs. (10, 11 and 12), alpha-stable distribution is

determined by α, β, γ, and μ, and its characteristics are as follows.

(1) α is the characteristic exponent which is characterized the strength of the

impulsiveness, the smaller α, the heavier the tails of the alpha-stable probability

density function, 0 < α ≤ 2;

(2) β is the symmetry parameter which is characterized by the level of out-of-center

for alpha-stable probability density function. Alpha-stable distribution is called

symmetric alpha stable (SαS) when β = 0, − 1 ≤ β ≤ 1;

(3) γ is the dispersion parameter which is characterized by the degree of out-of-mean

for the random variable, γ > 0;

(4) ξ is the location parameter which is determined by the central position of alpha-

stable distribution. ξ denotes the mean of the random variable when the α satisfies

with 1 < α ≤ 2; ξ denotes the median of the random variable when the characteris-

tic exponent satisfies 0 < α < 1, − ∞ < ξ < + ∞.

Figure 1 presents the symmetric α-stable probability density functions, and Figs.

2 and 3 are the SαS distributed signal in the time domain. There are some espe-

cial distributions as follows: Gaussian (α = 2, β = 0, γ = 1, ξ = 0), Cauchy (α =

1, β = 0, γ = 1, ξ = 0), Levy (α = 0.5, β = − 1, γ = 1, ξ = 0). The Matlab code

was used to generate a complex isotropic symmetric alpha-stable distribution

reference as ROC-MUSIC [13].

3 Proposed solution
In this section, we proposed a new operator correntropy-based covariance matrix

(CBCM), and it applied with MUSIC to estimating DOA in the presence of an im-

pulsive noise environment. We present the definition of correntropy in Section 3.1

and correntropy-induced metric (CIM) in Section 3.2. Correntropy-based
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Fig. 1 Symmetric α-stable probability density functions with different α (β = 0, γ = 1, ξ = 0)

Fig. 2 SαS distributed signal with α = 1.5
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covariance matrix was proposed in Section 3.3, and then the implementation of

CBCM-MUSIC algorithm is given.

3.1 Correntropy

For two arbitrary random variables X and Y, the cross correntropy defined by [17]:

V σ X;Yð Þ ¼ E κσ X − Yð Þ½ � ð13Þ

where κσ(•) is the kernel function that satisfies Mercer’s theory, σ is the kernel size, and

E[•] represents the mathematical expectation. In practice, the joint probability density func-

tion (pdf) is unknown, and only a finite number of data {[xi, yi]
N
i = 1} can obtain to estimate

the correntropy for random variables X and Y,

V
∧

σ X;Yð Þ ¼ 1
N

XN
i¼1

κσ xi − yið Þ ð14Þ

In general, we use the Gaussian kernel kσ(•), using Taylor series expansion for Eq.

(14), and the correntropy can be rewritten as [17]

kσ �ð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ

exp −
�ð Þ2
2σ2

 !
ð15Þ

V σ X;Yð Þ ¼ 1ffiffiffiffiffiffiffiffi
2πσ

p
X∞
n¼0

− 1ð Þn
2nn!

E
X − Yð Þ2n
σ2n

" #
ð16Þ

Equation (16) indicates that correntropy involves all the even-order moments of the

(X-Y); note that if n = 1, we can get

E X − Yð Þ2� � ¼ E X2
� �þ E Y 2

� �
− 2E XY½ � ð17Þ

Equation (17) reveals that correntropy includes the conventional relation.

Fig. 3 SαS distributed signal with α = 2
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3.2 Correntropy-induced metric

Correntropy can also induce a metric (CIM) [18]. There are two vector a = (a1, a2,

···,aN)
T and b = (b1,b2,···,bN)

T, and the function CIM defines as

CIM a; bð Þ ¼ κσ 0ð Þ −V a; bð Þð Þ0:5 ð18Þ

Apparently, when the Gaussian kernel is used,

κσ 0ð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ

ð19Þ

The properties of CIM can be listed as follows:

(1) Nonnegativity:

CIM(a,b) ≥ 0, CIM(a,b) = 0 if and only if a = b;

(2) Symmetric:

CIM(a,b) = CIM(b,a);

(3) Triangle inequality:

CIM(a,c) ≤ CIM(a,b) + CIM(b,c).

Figure 4 shows the contours of distance from X to the origin in a 2D space, and Fig. 5

displays the surface. Compared with the conventional metric, CIM presents “mix norm”

property. From Fig. 4, we can see that three zones have been divided. This metric divides

space into three regions named the Euclidean region, transition region, and rectification

Fig. 4 The contours of CIM σ = 2
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region [18]. In the Euclidean region, CIM behaves as l2-norm, in the transition region,

CIM behaves as l1-norm, and in rectification region, CIM behaves like l0-norm. The ker-

nel size σ controls the bandwidth of the CIM “mix norm.”

3.3 Correntropy-based covariance matrix

Theorem 1 If X and Y are jointly SαS and have a symmetric distribution, the

correntropy-based covariance matrix by using the Gaussian kernel of X and Y can be

defined as

RCBCM ¼Δ E exp −
X − μYð Þ2 þ Y − μXð Þ2

2σ2

 !
XY

" #
0 < μ < 1 ð20Þ

where μ is the suppression parameter and σ is the kernel size.

The proof of the boundedness of CBCM reference as Appendix B [16], here, inspired

by the phase fractional lower-order moment; the suppression parameter μ is introduced

to exert different suppressed effects on random variables X and Y. Equation (21) can be

expressed as

RCBCM ¼Δ E exp −
X − μYð Þ2
2σ2

 !
X exp −

Y − μXð Þ2
2σ2

 !
Y

" #
0 < μ < 1 ð21Þ

3.4 The implementation of CBCM-MUSIC

Summarizing the existing algorithms, knowing that the key to implementing DOA is to

modify the conventional covariance matrix to suit for impulsive noise environment,

then the DOA estimation can be implemented in combination with the subspace tech-

nology. Inspired by correntropy and Gaussian kernel function to suppress impulse

noise, and the prior parameters of noise do not need to know, this paper proposed a

Fig. 5 CIM surface plot showing to distant regions σ = 0.4
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modified covariance matrix (CBCM) based on correntropy with Gaussian kernel

function.

CBCM cannot only preserve the similarity measure in the sense for two random vari-

ables, but also it can suppress the “outliers” by using the rapid reduction of the expo-

nential function; thus, CBCM achieves the purpose of adapting to the environment.

The main steps of the CBCM-MUSIC are summarized as follows:

Step 1. Compute the M × M matrix R^, whose (i,j)th entry is

Ri; j ¼ 1
N

XN
n¼1

exp ‐
xi nð Þ‐μx j nð Þ
� �2

þ x j nð Þ‐μxi nð Þ� �2
2σ2

0
B@

1
CAxi nð Þx�j nð Þ

2
64

3
75 0

< μ < 1 ð22Þ

Section 4.1 gives the discussion for the selection of the suppression parameter μ and

kernel size σ.

Step 2. Perform eigenvalue decomposition (EVD) on the covariance matrix R^ to

obtain the noise subspace matrix Uˆ
n

Step 3. Compute the corresponding CBCM-MUSIC spatial spectrum via

PCMCB − MUSIC ¼ 1

aH θð ÞUNUH
Na θð Þ − 90° ≤θ≤90° ð23Þ

Step 4. Choose P local peaks of PCMCB-MUSIC as the estimates of DOAs.

4 Simulation and results
To assess the performance of the CBCM-MUSIC, two performance criteria are used to

evaluate the proposed algorithms: the probability of resolution and RMSE (root-mean-

square-error). The two sources are recognized to be successfully resolved if and only if

[6]

f θ1ð Þ þ f θ2ð Þ
2

> f
θ1 þ θ2

2

	 

ð24Þ

where ƒ(·) stands for the spectral value. Root-mean-square-error (RMSE) can be

expressed as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
400

X200
i¼1

X2
p¼1

θi;p
∧

− θp

	 
2
vuut ð25Þ

where θp is the actual angle of the pth signal, and θˆi,p is the estimated angle of θp in

the ith Monte-Carlo trial, where i = 1, 2, · · · , 200. All the numerical results were ob-

tained with 200 independent trials.
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In the following experiments, this paper considers two sources (Gaussian, QPSK,

BPSK, QAM, PAM) that have the same variance imping on a uniform linear array

(ULA), an M = 8 elements ULA with an interelement spacing equal to half a wave-

length, supposing that the source number is known. A generalized signal-to-noise

(GSNR) ratio was used to describe signal-to-noise ratio [13], that is

GSNR ¼ 10 lg
σ2S
γ

	 

ð26Þ

σ
∧2

S ¼
1
N

XN
n¼1

σ
∧2

s nð Þ
����

����
2

ð27Þ

where N indicates the snapshots, γ indicates the dispersion parameter, and σ2s indi-

cates the signal power.

Section 4.1 gives the recommendations for the selection of parameters; Section 4.2

compares the DOA spatial spectrum for ROC-MUSIC, FLOM-MUSIC, PFLOM-

MUSIC, CRCO-MUSIC, and CBCM-MUSIC; finally, the performance of analysis for

CBCM-MUSIC presents in Section 4.3.

4.1 Parameter selection

In this section, we have discussed the selection of the parameters of the CBCM-MUSIC

algorithm, including the kernel size σ and suppression parameter μ. According to the

correntropy, the kernel bandwidth σ is full and controls the scale of the CIM norm,

that is, a small kernel size will lead to a tight linear region (L2 norm) and to a large L0
region. The selection of the kernel size is described as conventional signals that fall into

L2 norms and impulse signals that fall into L1 and L2 norms.

In order to make kernel size σ and suppression parameter μ widely applicable, differ-

ent types of communication signals were used to DOA’s sources embedded in complex

isotropic SαS noise, such as quaternary amplitude modulation (QAM), binary phase-

shift keying (BPSK), quaternary phase-shift keying (QPSK), and Gaussian source, note

that BPSK is noncircular signals.

4.2 Suppression parameter μ

Suppression parameter μ is limited in the range of [0, 1], and the covariance matrix de-

generates into a traditional covariance matrix when μ = 1. Snapshots N = 256, a moder-

ate impulsive noise condition with α = 1.4, GSNR = 8 dB, ULA with 8 sensors, we

select the kernel size σ = 8 tentatively.

Figure 6 illustrates the influence of the suppression parameter, we can see that

μ∈[0.5, 0.9] would be the optimal fields for CBCM-MUSIC, and the suppression param-

eter μ is relatively small over a wide range of μ∈[0.4, 0.9] to Monte-Carlo runs in terms

of RMSE of CBCM-MUSIC. According to Figs. 6 and 7, the desired results are achieved

at μ = 0.7; hence, in the following experiment, we perform Monte-Carlo runs with

μ = 0.7.

4.2.1 Kernel size σ

Snapshots N = 256, μ = 0.7, and GSNR = 8 dB. α = 1.4, ULA with 8 sensors. From Figs.

8 and 9, it can be seen that the CBCM-MUSIC algorithm obtains better DOA
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estimation performance in the range of σ ∈[6, 20], but the optimal value of the kernel

size cannot be determined.

Since the selection of σ is closely related to GSNR [16], the rectification region is af-

fected by the kernel size. Below, the RMSE and probability of resolution are analyzed at

different GSNR σ ∈[2, 20], μ = 0.7, and α = 1.4. From Figs. 10 and 11, we can observe

that kernel size σ = 10 would be the optimal value for CBCM-MUSIC to reach its best

performance. In particular, the probability of resolution in low SNR and high impulsive

environments is shown in Fig. 10. Based on the above description and discussion, the

Fig. 6 Probability of resolution against suppression parameter μ

Fig. 7 RMSE against suppression parameter μ
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simulations in Section 4.2 and Section 4.3 are implemented by setting μ = 0.7 and

σ = 10.

4.3 Spatial spectrum estimation

In order to directly show the performance of the proposed CBCM-MUSIC algorithm,

we also compare spatial spectrum with that of the ROC-MUSIC (p = 1.1) [13], FLOM-

MUSIC (p = 1.1) [14], PFLOM-MUSIC (p = 0.2) [15], and CRCO-MUSIC (μ = 0.5, σ =

Fig. 8 Probability of resolution against kernel size σ

Fig. 9 RMSE against kernel size σ
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1.4sqrt(σs
^2)) [16], where σs

^2 is the estimated variance of the noise-free signal S and p

is the order of the moment. Consider a uniform linear array of 8 sensors with an inter-

spacing of half a wave is used, two uncorrelated Gaussian sources (θ1 = − 5°, θ2 = 5°)

impinge on this array, GSNR = 8 dB, snapshots N = 256, and α = 1.4.

The results of 10 runs of the normalized spatial spectrum are displayed in Fig. 12.

Comparing the results of the above five algorithms, we can observe that CBCM-

MUSIC algorithm shows better focus ability for true DOA under impulsive noise envi-

ronments, the performance of MUSIC is degraded seriously and 10 runs fail to

Fig. 10 Probability of resolution against kernel size σ under different GSNR

Fig. 11 RMSE against kernel size σ under different GSNR
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distinguish two incident signals successfully. Seeing the performance degradation of the

MUSIC, ROC-MUSIC, FLOM-MUSIC, and PFLOM-MUSIC algorithms in the impul-

sive noise environment by no means, further analyses are made in the following

experiments.

4.4 Performance analysis

In this section, the performance of the proposed CBCM-MUSIC algorithm is compared

with CRCO-MUSIC (μ = 0.5, σ = 1.4sqrt(σs
^2)) [16] and SCM-MUSIC [22]. In terms of

resolution probability and RMSE, the performance of the number of snapshots, GSNR,

characteristic exponent α, and angular separation is investigated in this experiment.

4.4.1 Effect of the number of snapshots

In the first experiment, we study the effect of the number of snapshots and the results

are exhibited in Figs. 13 and 14. An M = 8 element ULA with an interspacing of half a

wave is used, two independent QAM sources are located at θ1 = − 5° and θ2 = 5°, the

complex isotropic SαS is α = 1.4, and the GSNR is set as a constant at 8 dB. From Fig.

13, we can observe that CBCM–MUSIC gains a more evident decrease in RMSE than

the other algorithms as the number of the snapshots increases. Figure 14 displays the

probability of resolution against snapshots.

4.4.2 Effect of the GSNR

Figures 15 and 16 illustrate the performance of CBCM-MUSIC, CRCO-MUSIC [16],

and SCM-MUSIC [22] under a wide range of GSNRs from 0 to 10 dB, and the number

of snapshots available to the algorithms is N = 256. A moderate impulsive noise α = 1.4

embedded in two QAM sources (θ1 = − 5°, θ2 = 5°). Figures 15 and 16 depict the im-

proved performance of CBCM-MUSIC over that conventional algorithm both in terms

of resolution probability and RMSE.

Fig. 12 The normalized spatial spectrum of the algorithms (black lines: true DOAs)
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4.4.3 Effect of the characteristic exponent α

In this experiment, we study the robustness of the CBCM-MUSIC algorithm under a

wide range of characteristic exponent α from 0.6 to 2. Consider two QAM sources (θ1
= − 5°, θ2 = 5°) impinge on the ULA with 8 sensors, the GSNR = 8 dB and the number

of snapshots N = 256. Fig. 17 and Fig. 18 give the simulation results. We note that

CBCM-MUSIC showed better performance than SCM-MUSIC and CRCO-MUSIC as

the characteristic exponent α is decreased.

Fig. 13 RMSE against snapshots

Fig. 14 Probability of resolution against snapshots
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4.4.4 Effect of the angular separation

In the final experiment, we study the variation of the algorithmic performance with re-

spect to the angular separation of the two incoming QAM signals, for N = 256, GSNR

= 10 dB, and α = 1.4. As expected, by contrast with the performance of the SCM-

MUSIC and CRCO-MUSIC, the resolution capability of CBCM-MUSIC algorithms is

improved with increasing angle-separated value between the two sources based on

Figs. 19 and 20.

Fig. 15 RMSE against GSNR

Fig. 16 Probability of resolution against GSNR
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5 Discussion
In this paper, we proposed a novel method that formulated the covariation matrix of

the sensor outputs under the impulsive noises, which is based on correntropy. The im-

proved performance of the proposed CBCM-MUSIC algorithm in the presence of a

wide range of impulsive noise environments was demonstrated via Monte-Carlo

experiments.

Fig. 17 RMSE against characteristic exponent α

Fig. 18 Probability of resolution against characteristic exponent α
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This paper assumed sources are independent that illuminated the array sen-

sor. In many practical conditions, the sources are coherent signals due to mul-

tipath; hence, future research includes the development of methods for the

DOA of the coherent signals in the presence of impulsive noise. Secondly, we

will address the problem of localizing multiple wide-band sources in impulsive

noise

Fig. 19 RMSE against the angular separation

Fig. 20 Probability of resolution against the angular separation
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