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Abstract

The emergence of edge computing provides a new solution to big data processing in
the Internet of Things (IoT) environment. By combining edge computing with deep
neural network, it can make better use of the advantages of multi-layer architecture of
the network. However, the current task offloading and scheduling frameworks for edge
computing are not well applicable to neural network training tasks. In this paper, we
propose a task model offloading algorithm by considering how to optimally deploy
neural network model into the edge nodes. An adaptive task scheduling algorithm is
also designed to adaptively optimize the task assignment by using the improved ant
colony algorithm. Based on them, a collaborative cloud-edge computing framework is
proposed, which can be used in the distributed neural network. Moreover, this
framework sets up some mechanisms so that the cloud can collaborate with edge
computing in the work. The simulation results show that the framework can reduce
time delay and energy consumption, and improve task accuracy.

Keywords: Edge computing, Distributed neural network, Resource allocation, Task
offloading

1 Introduction
With the rapid development of the Internet of Things (IoT), cloud computing provides

enabling technologies for the storage and processing of sensor data [1], especially in

the industrial circle [2]. However, cloud computing leads to high latency and requires

high transmission bandwidth. In addition, the cloud is usually unreliable [3]. Edge

computing [4], which has emerged as a new calculation paradigm, can solve these

problems. Since the edge nodes are usually closer to the sensors than the remote cloud

[5], edge computing can reduce the latency and bandwidth, and it is safer than cloud

computing.

Recently, edge computing has been widely used for computationally intensive tasks

of artificial intelligence (AI) in the actual IoT environment [6]. Since the edge nodes

have the feature of resource-constrained and dynamic changes, it is significant to de-

sign an appropriate framework to offload and schedule computational tasks in the

edge. Zhang et al. in [7] proposed a multiple algorithm service model (MASM) to off-

load AI tasks to the cloudlet server and designed an energy-delay optimization model

specifically for the edge AI scenario. In [8], Wang et al. considered the problem of
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learning model parameters from the data that distributed among multiple edge nodes

and they proposed an adaptive federated learning framework. On the hardware level, Li

et al. in [9] presented an architectural design and implementation of a natural scene

text interpretation accelerator, which reduced the communication overhead from the

edge device to the server. There are also some works which considered multi-task pri-

ority edge computing [10] and maximized the profit of mobile network operator by

jointly optimizing service rate, transmit power, and subcarrier allocation with satisfying

power and delay constraints, which takes full advantage of edge node resources.

Deep neural network (DNN), also known as deep learning, is suitable to handle the

IoT tasks, because it learns feature automatically from the big data. DNN has been ap-

plied to many aspects of IoT, such as intelligent monitoring [11], smart home [12], and

industrial manufacture [13]. It can be imagined that if DNN can be deployed in the

edge distributedly, it will help to resolve computationally intensive tasks in the IoT.

Thus, it requires a suitable solution to offload and schedule tasks on the resource-

constrained edge nodes. For example, the fast-convolutional neural networks (fast-

CNN) [14] is widely used in intelligent monitoring. Since the calculation of each convo-

lution layer is independent, it is feasible to execute part layers of network separately on

the edge and the cloud [15].

[6–8] designed edge computing frameworks to handle AI tasks, but they were only

available when the resource of restricted IoT edge devices strictly meets the require-

ments of computation. Surat et al. in [15] proposed distributed deep neural networks

to limit use of edge nodes. Due to its distributed nature, the architecture could improve

fault tolerance for application execution within a sensing fusion system. Based on that

work, the encoding of feature space was proposed in [16] to enhance the maximum in-

put rate supported by the edge platform and reduce the energy of the edge platform. In

[17], Zhu et al. proposed a literal multi-dimensional anomaly detection approach using

the distributed long-short-term-memory (LSTM) framework for the in-vehicle network.

To enhance the accuracy and efficiency of detection, it detected anomaly from both

time and data dimension simultaneously by exploiting multi-task LSTM neural network

on mobile edge. Zhao et al. in [18] proposed the DeepThings framework, which used a

scalable converged tile partition convolutional layer to minimize memory footprint and

further implements distributed work-stealing methods to assign workload dynamically

in an inferential runtime environment of IoT.

These existing systems provide good ideas of deploying deep neural network into

edge nodes, but they do not consider the optimal offloading of task models and load-

balancing. In [19], Kang et al. designed a Neurosurgeon framework, which adapted to

various DNN architectures, hardware platforms, wireless networks, and server load

levels, intelligently offloading computation model. Many attempts have been made to

optimally balance the workload. Xiao et al. in [20] proposed a collaborative load-

balancing algorithm for the TS mechanism in edge computing nodes and achieved Pa-

reto optimality through the collaborative working to improve the performance of every

node [21]. presented a work-sharing model Honeybee, using an adaptation of the well-

known work- stealing method to load independent balance jobs among heterogeneous

mobile nodes, able to accommodate nodes randomly leaving and joining the system

[22]. studied a task scheduling problem to balance this tradeoff under cloud-edge archi-

tecture for reducing weighted transmission time, which considered learning accuracy.
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There are other network resources that can also be evaluated [23]; jointly obtain sub-

carrier and transmit power allocation policies for both the uplink and downlink trans-

missions with task scheduling and computation resource allocation at both the users

and the MEC server.

This paper presents a collaborative cloud-edge computing framework in distributed

neural network to handle the computationally intensive tasks of neural networks in the

IoT environment. A task model offloading algorithm (TMOA) is designed to configure

edge nodes with neural networks by analyzing the computational intensity and time la-

tency through the roofline model and the task arrival model and using the Lagrange

multiplier method to optimize the layering offload with multiple constraints of latency,

energy consumption, and process capability. An adaptive task scheduling algorithm

(ATSA) is also designed for load-balancing of edge nodes, through an improved heuris-

tic ant colony algorithm. A cloud dormancy mechanism and a parameter aggregation

scheme are established to coordinate cloud-edge computing adaptively and optimize

task model. This collaborative cloud-edge computing framework in distributed neural

network can balance workload and reduce latency, and it has less time latency, less en-

ergy consumption, and higher accuracy than existing other frameworks.

The rest of this paper is organized as follows: Section 2 discusses the architecture of

this system model and analyses the ATSA algorithm, the cloud dormancy mechanism,

and the parameter aggregation scheme. Section 3 elaborates TMOA algorithm in de-

tails, and Section 4 discusses the results of the simulation. Finally, Section 5 concludes

this paper.

2 System model and analysis
In this section, we firstly propose the holistic framework. Then, we illustrate the main

parts of the framework. We focus on task-scheduling and collaborative cloud-edge

learning. The main algorithm for edge node configuration will be proposed in section

III.

2.1 Cloud-edge framework

The workflow of the framework is shown in Fig. 1. When the cloud receives tasks from

the user, it completes edge node configuration of the distributed neural network

through task model offloading algorithm and offloads task model to the master node of

the edge side.

Next, the master node distributes the network model to the slave nodes and assigns

tasks adaptively according to the adaptive task scheduling algorithm. Meanwhile, the

slave nodes obtain the task data from terminal devices.

Finally, the collaborative cloud-edge learning is carried out according to the param-

eter aggregation scheme, and the cloud dormancy mechanism is executed dynamically

to process the neural network tasks.

2.2 Edge node configuration

In order to reduce the processing load of the cloud and to make full use of the

resource-constrained edge nodes, we propose the edge node configuration of the neural

network architecture.
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First, the user releases task information to the cloud, including task requirement and neural

network structure. The cloud communicates with the edge side, and the available edge nodes

are configured to form a resource pool. One master node is set randomly in the edge resource

pool, and other nodes are set as slave nodes. Assuming that there are x slave nodes on the

edge side, numbered separately as V= {v1, v2,…, vx} and a master node numbered as v0. The

cloud obtains the calculation speed of X slave nodes respectively, which is measured by the

maximum number of floating-point operations per second (FLOPS), denoted as F= {Fv1, Fv2,

…, Fvx}; it obtains X slave nodes’ maximum energy consumption, denoted as E= {Ev1, Ev2,…,

Evx}; it obtains X slave nodes’ memory space, denoted as P= {Pv1, Pv2,…, Pvx}; and it obtains

the throughput of per edge device, denoted as L= {Lv1, Lv2,…, Lvx}.

Second, according to the IoT task requirements, the cloud designs what task model

to be deployed in edge nodes. Taking convolutional neural network (CNN) as an ex-

ample, we assume the task model is an N-layers neural network. Then, we distribute

the CNN into two parts for deployment, as shown in Fig. 2. The first j layers from data

input to the middle layer are deployed in the edge nodes, and the(N-j) layers from the

middle layer to data output are deployed in the remote cloud. Therefore, we design a

task model offloading algorithm (details in Section 3) to determine the optimal offload-

ing position between the edge and cloud side, according to the constraints on process-

ing capability, task latency, and energy consumption of the edge nodes.

Finally, the cloud offloads the task model to the master node. The master node dis-

tributes the model to each slave node in a multicast manner. Then the edge nodes wait

for the transmission of task data.

2.3 Optimal task scheduling scheme

Data tasks will be assigned to every available node to execute. In order to reduce the

total task execution time, meanwhile maintain load-balancing of each edge node, it is

Fig. 1 The collaborative cloud-edge computing framework. The main parts of our framework, including
cloud side, edge side, and device side
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necessary to design an efficient task scheduling algorithm. The traditional method is

the first-come-first-served service (FCFS) [24]. Because it has a less time complexity, it

can reduce the scheduling time. However, for the resource-limited edge nodes, the per-

formance difference between different nodes is enormous. So, the FCFS mechanism

may not achieve optimal scheduling. In this part, we design a heuristic intelligent algo-

rithm based on ant colony optimization (ACO) [25] to optimally schedule tasks on edge

nodes.

Since tasks arrive dynamically in real time, a sliding window is set to adaptively

process tasks over the past period of time. Figure 3 shows the adaptive task scheduling

algorithm. We assume that the tasks satisfy the following conditions: (1) the tasks are

simply data intensive tasks, (2) there is no dependency between tasks, and (3) resources

are exclusive by one task in one time but not shared. If the sliding window is set as K

tasks A = {a1, a2,…, ak} that arrive in a period time, a weight parameter wai
v j

is set

whereas task ai executed on node vj, then wai
v j
¼ 1; else wai

v j
¼ 0. Besides, the execution

time etij of learning task ai on node vj can be calculated in advance, denoted as etij

¼ Zt j

Fi
, whereas Fi is the FLOP of edge node vj and Ztj is the offloaded models’ calcula-

Fig. 2 Cloud-edge offloading schematic. The neural network architecture that is divided into two parts for
deployment at the edge and the cloud as an example

Fig. 3 Task scheduling schematic. How the adaptive task scheduling algorithm optimally schedules tasks on
edge nodes
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tion amount. So, all the execution time of each task on each node can be expressed in

matrix form as follows:

ETij ¼
et11 et12 et13
et21 et22 et23

⋯ et1x
⋯ et2x

⋮ ⋮ ⋮
etk1 etk2 etk3

⋱ ⋮
⋯ etkx

2
64

3
75 ð1Þ

where etij indicates the execution time of learning task ai on node vj.

From wai
v j

and matrix ETij, we can know the total task delay of node vj, expressed as

tdv j ¼
Pk

i¼1w
ai
v j
etij. We define the path selection probability function as

Pai
v j
¼

τi; j
� �α

ηi; j
h iβ

P
v j∈V τi; j

� �α
ηi; j
h iβ 1≤α; β≤10ð Þ ð2Þ

where τi, j denotes the pheromone of task ai assigned to vj node, which can be seen

as the trend to allocate task ai to node vj. ηi, j denotes the heuristic information defined

in relation (4), which basic principle is to balance the workload meanwhile to make full

use of each node. And α and β represent the weights of pheromone and heuristic infor-

mation on ant routing.

To adaptively schedule the task path, while one ant ny ∈N = {n1, n2,…, nm} is looking

for the optimal path, the path selection probability function will be updated as the

pheromone concentration change according to the external natural environment. The

change formula for the iterations:

τi; j tþ 1ð Þ ¼ 1 − ρð Þτi; j tð Þ þ Δτi; j tð Þ
Δτi; j tð Þ ¼

Xk

y¼1
Δτyi; j tð Þ

0 < ρ < 1ð Þ
(

ð3Þ

where ρ represents the volatility coefficient of the pheromone, τi, j(t) is the current

pheromone that initialized to be the reciprocal of the average execution time of the

processor, Δτyi; jðtÞ is the pheromone of ant ny for task ai assigned to vj node, , Δτi, j(t)

represents the sum of pheromone of all ants that assign the task ai to the node vj in

one iteration. We calculate Δτyi; jðtÞ ¼ Q
Zy
, where Zy ¼

Px
j¼1

Pk
i¼1w

ai
v j
etij is the total time

used by ant ny in one iteration, and Q is the pheromone increment constant.

For the heuristic information ηi, j, it is mainly related with the memory usage percent

of the node vj, defined as μv j
.

μv j
tþ 1ð Þ ¼ μv j

tð Þ þ Pcur

Pv j

ηi; j ¼ δ 1 − μv j

� �
8><
>: ð4Þ

where Pcur indicates the memory required by the current task, Pvj indicates the total

memory available in the node vj, and δ represents the weight of the information.

According to the above relations, we designed an adaptive task scheduling algorithm

as algorithm 1.
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2.4 Collaborative cloud-edge learning scheme
In our framework, there are two different schemes to offload a task model onto the

edge nodes. One scheme is to deploy the pre-trained model directly to the edge nodes

according to the task model offloading algorithm. Another scheme is by real-time train-

ing of the task model through collaborative cloud-edge learning.

For the second scheme, the cloud transmits the initialization parameters of the net-

work model to the edge nodes. When the training tasks come, the node executes the

task model and delivers the j th layer output feature Map j
i to the cloud. The cloud exe-

cutes the remaining part of the model and calculates the loss function. The model is

trained through back-propagation, and the parameters are jointly optimized by aggrega-

tion [8], as shown in Fig. 4.

We define the loss function as F(w). Each node i has a local model parameter wi(t),

where t = 0, 1, 2, … denotes the iteration index. At t = 0, the local parameters for all

nodes are initialized to the same value. The local model parameter is updated once

every iteration, denoted as

wi tð Þ ¼ wi t − 1ð Þ − ξ � ∇F wi t − 1ð Þð Þ ð5Þ

where ξ > 0 is the step size, ∇F(w) is the gradient value.

And after every unit time, the model parameter of all nodes is subject to a global up-

date, aggregate to w(t), denoted as

w tð Þ ¼
Pu

i¼1Uiwi tð ÞPu
i¼1Ui

ð6Þ

where Ui is the number of tasks performed by node i per unit time. This parameter ag-

gregation scheme can maintain the parameter synchronization of every edge node.

Besides, we also establish a cloud dormancy mechanism to coordinate cloud-edge

computing adaptively, as shown in Fig. 4. Due to the wide distribution of edge nodes,
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they are usually far away from the cloud, and the network link quality is hard to guar-

antee. During a large degree of tasks, the cloud may not meet the latency requirement.

On the master node, we set a simplified cloud model consisted of a neural network

[26]. If the cloud-edge communication latency cannot meet the real-time task require-

ments, the task data will not be uploaded to the cloud but be calculated by the simpli-

fied model on the edge. And we optimize the parameters of the edge side and the

cloud jointly. The total loss function is denoted as

F wð Þ ¼ a � Fe wð Þ þ b � Fc wð Þ ð7Þ

We assume that the real-time delay from the edge to the cloud is Trd.To judge the

task in the edge side adaptively, we set the following rule, if the delay is less than the

average delay T0, that is, Trd≤ T0, then the cloud-edge collaboratively compute accord-

ing to the original step; more than delay, that is, Trd > T0, the cloud go dormant, and

the task will be computed totally on the edge side through the master node’s simplified

cloud model. This mechanism is in exchange for the robustness of the entire system at

a slight cost of accuracy and computational complexity on edge nodes.

3 Task model offloading algorithm
Above we have illustrated the main functional modules of the framework. In this sec-

tion, we will present the core algorithm of edge node configuration that determines the

optimal offloading position between the edge and cloud side. In our algorithm, we

analyze the computational intensity of the DNN through the roofline model and build

a task arrival model to calculate the latency. We use the Lagrange multiplier method to

optimize the layering offload with multiple constraints on latency, energy consumption,

and process capability.

Fig. 4 Collaborative cloud-edge learning schematic. The cloud dormancy mechanism and the parameter
aggregation scheme to optimize the task model
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3.1 Processing capability constraint

About the constraint on processing capability, it is mainly related to the memory foot-

print. We use the roofline model [27] to convert the memory footprint into the spatial

complexity of the model.

The different offloading positions of the task model determine the size of the mem-

ory footprint. In the neural network model, each layer performs numerous operations

and occupies a large amount of memory space. According to the roofline model, the

memory space occupancy is the sum of the parameter and the data size. Figure 5 shows

the memory footprint of different offloading positions in the ResNET-34 Model [28].

ResNET-34 is a 34-layer ResNet, which is short for residual networks, a classic neural

network which utilizes skip connections or shortcuts to jump over some layers, and is

used for many computer vision tasks. It can be seen that as the offloading position

gradually moves backward, the memory footprint increases slowly. But in the final off-

loading position, it has an exponential growth. It is because the last layers of the neural

network model are usually fully connected layers, which occupies a lot of memory

footprint.

In the roofline model, the theoretical computational performance that can be

achieved on the computational platform of the edge nodes is closely related to the

amount of computation and the amount of memory. Let the calculation amount of

each layer of network model execution be Z, denoted as Z = {Z1, Z2…Zn}. Let the mem-

ory space occupied by each layer of the network be D, denoted as D = {D1,D2…Dn}.

First, we consider the calculation amount of the network model. For the sake of simpli-

fication, we ignore the bias parameter. The calculation amount Zi (unit is FLOPS) per-

formed by the ith layer network is calculated by the output feature map area Mi2,

convolution kernel area Cki
2, the number of input channels Ci − 1 and output Ci com-

pletely, as Zi =Mi2 · Cki
2 ·Ci − 1 · Ci. According to the calculation amount Z of each layer

network, the total calculation amount Ztj of the pre-j layer neural network can be ob-

tained, denoted as

Fig. 5 Memory footprint of the model. The memory footprint of different offloading positions in the
ResNET-34 Model
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Zt j ¼
X j

i¼1
Mi2 � Cki2 � Ci − 1 � Ci ð8Þ

where the output feature map area M2
i itself is determined by the input matrix size

Msi, the convolution kernel size Cki, the pooling size Poi, and the step size Sti,

expressed as follows:

M2
i ¼

Msi − Cki þ 2 � Poi
Sti

þ 1

� �2

ð9Þ

For the memory footprint of the network model, it mainly includes two parts: the total

parameter quantity and the output characteristic map of each layer. The parameter quan-

tity is the total weight parameter of each layer of the model, and the feature map is the

size of the feature image output by each layer of the model during the running process.

The total parameter quantity Pari of the ith network is related to the convolution kernel

area Cki
2, the number of input channels Ci − 1 and the number of output channels Ci, as

Pari = Cki
2 ·Ci − 1 ·Ci. And the feature map size Mapi is only related to the output feature

map area M2
i and the output channel number Ci, as Mapi ¼ M2

i � Ci . Calculating the

memory footprint of the former j-layer neural network as Dtj, then we know

Dt j ¼
X j

i¼1
Pari þ

X j

i¼1
Mapi ð10Þ

If the memory footprint Dtj of the former j-layer network is less than the memory

space P of the edge node, the constraints can be met. It can be proved that the memory

space of the edge pool depends on the minimum of edge nodes, so we assume the

minimum values of the parameter P0 = min {Pv1, Pv2,…, Pvx}. Because the operating sys-

tem in the edge node takes up a certain amount of memory space, we have previously

defined some memory margin of the edge nodes. In this paper, we set a threshold that

the memory footprint Dtj of the former j-layer network is equal to λ0=80% of the mini-

mum memory space P0, that is, the edge node memory is already saturated.

3.2 Task latency constraint

About the constraint on task latency, the maximum delay Tmax allowed by the task is

mainly composed of the edge side delay Tes, the cloud processing delay Tcp, the edge-

to-cloud transmission delay Tec and the terminal-to-edge uplink transmission delay Tte.

In our past work [7], we established the task latency model. In the edge side, since

the distance between the edge nodes is very close, the communication delay is negli-

gible. So, the edge side delay Tes only includes the task waiting and execution delay.

We assume that there are K learning tasks that arrive in a certain period, denoted as

{l1, l2,…, lk}. From the FLOP Fi of edge node vj defined in II-B and the offloaded

models’ calculation amount Ztj of task lk, we can obtain the execution time as

tqp;e ¼
Z

Zt j

Fi
dlk ð11Þ

We assume that the task arrives independently; thus, the M/M/N queuing model can

simulate the queuing in the edge node. The waiting time can be calculated as
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tqp;w ¼ akZt j

Fi Fi − akZt j
� 	 ð12Þ

where ak is the arrival rate of task lk. The total task queuing and processing delay can

be denoted as

Tqp ¼ tqp;e þ tqp;w ð13Þ

We assume that the cloud calculation rate is Fc, the cloud processing delay can be de-

noted as

Tcp ¼
Z

Ztn − Zt j
� 	

Fc
dlk ð14Þ

For the edge-to-cloud transmission delay Tec, we can constrain it by the amount of

task data uploaded. In a link with insufficient bandwidth, if the edge-to-cloud transmits

a large amount of data, the task delay will be seriously affected. So, the amount of data

transmitted by the task should also be constrained which is up to the communication

network bandwidth WH, and the throughput of edge nodes L. The maximum data out-

put from the edge side to the cloud is:

C0 ¼ min WH ; Lif g � Tec ð15Þ

Since the edge-to-cloud data transmission amount is equal to the feature map size of

the j th layer of the network Mapj, the amount of data is certain. We can get the edge-

to-cloud data transmission delay Tec.

For the terminal-to-edge uplink transmission delay Tte, each task can select the near-

est edge node to process the task data, denoted as De. We have calculated the uplink

delay of task lk, as given by

Tte ¼
Xx

i¼1
Dek

Z
p vskð Þ
vsk

dvsk ð16Þ

where p(Fi) denotes the probability density function (PDF) of variable vsk, which can be

calculated by a kernel density estimation method. If there is transmission rate as Vs = {

vs1, vs2…vsl}, then the PDF can be calculated as

p vskð Þ ¼ 1
λk l

Xl

i¼1
exp −

vs − vsk;i
λk

� �2
 !

ð17Þ

where λk is the bandwidth parameter of the kernel used, as given by λk ¼ σkð 43lÞ
0:2. And

σk is the estimated standard deviation of vk.

Figure 6 shows the delay at the different offloading positions in the ResNET-34 Model. As

we can see, the total delay decreases gradually as the offloading position moves backward.

3.3 Energy consumption and Lagrange multiplier optimization

Regarding the last constraint, because of the resource-constrained nature of edge com-

puting, the energy of each node is usually limited. The energy consumption of the edge

node includes static power consumption and computational energy consumption of the
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computational task. The static power consumption can be calculated according to the

computational time of the task, denoted as

Es
i;k ¼ ei;k

Z Zt ji;k
Fi

dlk ð18Þ

where ei, k denotes the unit time energy consumption of the node vj in the task lk, Zt
j
i;k de-

notes the calculation amount of the node vj in the task lk, and Fi denotes the calculation

speed of the node vj. And the computational energy consumption can be calculated by

Ec
i;k ¼ ωi;kZt

j Fi ð19Þ

where ωi, k denotes the energy consumption of unit calculation amount and speed.

The energy consumption can be calculated by

Ei ¼
Xk

n¼1
Es
i;k þ Ec

i;k

� �
ð20Þ

It will meet the constraint if the task energy consumption is less than the maximum

energy consumption E allowed by the node. In summary, the j th layer is the optimal

model offloading position, which needs to meet the following constraints:

P1 : arg max f jð Þ 0≤ j≤Nð Þ ð21Þ

s:t: C1 : g jð Þ ¼
X j

i¼1
Pari þ

X j

i¼1
Mapi

� �
− λ0P0≤0

C2 : h jð Þ ¼
Xk

i¼1
Tqp þ Tec þ Tte
� 	

− Tmax≤0

C3 : y jð Þ ¼
Xx

i¼1

Xn

k¼1
Es
i;k þ Ec

i;k

� �
− E1;…; Exf g≤0:

ð22Þ

That can be converted into Lagrange multiplier optimization:

Fig. 6 Delay at the different offloading position. The time latency at the different offloading positions in the
ResNET-34 Model
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L j; α; β; γð Þ ¼ f jð Þ þ
X j

i¼1
αigi jð Þ þ

Xk

i¼1
βihi jð Þ þ

Xx

i¼1

Xn

k¼1
γi;kyi;k jð Þ ð23Þ

With the Karush-Kuhn-Tucker (KKT) conditions of satisfaction, it can obtain a feasible

solution by maximizing this function. The maximum value j is the optimal offloading pos-

ition. Algorithm 2 summarizes the specific process of the task model offloading algorithm.

4 Simulation results and discussion
In this section, we conduct an experiment to evaluate the effect of the collaborative cloud-

edge computing framework. We assume that the actual task is about the camera sensor iden-

tifying the object class. To simulate the complex environment in the actual Internet of Things,

the edge nodes select three different sets from {10,20,30} for testing, and we set a master node.

We perform experiments using the tagged CIFAR-10 dataset [29], which consist of ten cat-

egories with 50,000 training images and 10,000 test images. Each image is a 224 × 224 color

image, and each pixel includes three values of RGB, which is equivalent to three channels,

and the value ranges from 0 to 255. In our experiment, we implement this framework in Py-

thon, with ResNET-34 network deployed in our framework. We experience the simulation

tests on a laptop with python 3.6, 8GB RAM, Intel i5 1.6GHZ CPU, and Windows 10 operat-

ing system. Table 1 shows the offloading position of {10,20,30} nodes of ResNET-34 calculated

by the task model offloading algorithm (TMOA). As can be seen, the TMOA algorithm can

Table 1 Offloading position calculated by TMOA

Number of nodes Offloading position Output layer

30 nodes 7th layer 3 × 3 conv, 064

20 nodes 13th layer 3 × 3 conv, 128

10 nodes 20th layer 3 × 3 conv, 256
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determine the optimal offloading position, and with more edge nodes participate in the calcu-

lation, offloading position can be farther back.

As for the adaptive task scheduling algorithm (ATSA), we set pheromone weight α= 1.0,

heuristic information weight β= 5.0, pheromone volatility coefficient ρ= 0.5, and pheromone

increments constant Q= 5.0. As shown in Fig. 7, we compare the task execution time of our

ATSA algorithm with the FCFS algorithm [24] and the basic ant colony optimization (ACO)

algorithm [25] and particle swarm optimization (PSO) algorithm in 200 tasks. The experiment

shows that our ATSA algorithm has remarkably reduced the scheduling time than FCFS algo-

rithm and could achieve faster convergence than other optimal algorithms like PSO

algorithm.

Figure 8 compares the average data volume uploaded from only cloud computing

scheme, collaborative cloud-edge computing scheme, and the scheme with cloud dor-

mancy mechanism. It shows that our scheme can significantly reduce the amount of

Fig. 7 Task execution time of FCFS, ACO and ATSA. The comparison of task execution time of the ATSA
algorithm, the FCFS algorithm, and the basic ant colony optimization (ACO) algorithm in 10 edge nodes

Fig. 8 Average data volume of different schemes. The comparison of the average data volume uploaded
from only cloud computing scheme, collaborative cloud-edge computing scheme, and the scheme with
cloud dormancy mechanism
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data uploaded to the cloud, that is, to reduce bandwidth usage and transmission delay,

especially when the cloud dormancy mechanism is set.

Next, we compare the task delay and energy consumption of the framework of {10,

20,30} nodes with the BranchyNet model [20] of 10 nodes, MASM model [7] of 10

models, as shown in Table 2. We can see that with the number of edge nodes increases,

the average delay and the energy consumption decline gradually. It is because the

added nodes share the amount of computation. Because of the setting of cloud dor-

mancy mechanism, the amount of data uploaded to the cloud is significantly reduced.

Through the comparison of different frameworks in Table 2, we find that our frame-

work performs better in delay and energy consumption than other existing frameworks

of distributed neural network tasks.

Finally, we compare the accuracy of the framework with BranchyNet and the ResNet-

34 [17]. For our framework, we set a weight decay of 0.0001, the momentum of 0.9. It

starts with a learning rate of 0.1, which is divided by ten at 32k and 48k iterations. For

each training, we randomly select 128 image data for small-batch training, and the total

iterations are 64 thousand times.

Figure 9 shows the change in error rate as the number of iterations increases. It can

be seen that our framework achieves the same effect as ResNet after about 30 itera-

tions, which is better than BranchyNet.

Table 2 Delay and energy consumption

Model Delay (ms) Energy consumption(J)

ACEFLF (30 nodes) 25.7 42.5

ACEFLF (20 nodes) 40.2 46.7

ACEFLF (10 nodes) 57.1 49.6

B-Net (10 nodes) 69.1 62.9

MASM (10 nodes) 60.7 58.0

Fig. 9 Task accuracy of different frameworks. The error rate change of collaborative cloud-edge computing,
BranchyNet, and ResNet framework as the number of iterations increases
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5 Conclusion
In this paper, we have proposed a collaborative cloud-edge computing framework in

distributed neural network, which focus on the neural network tasks in the resource-

constrained IoT environment. We optimize the offloading position of task model by

proposing a task model offloading algorithm (TMOA). We design an adaptive task

scheduling algorithm (ATSA) to replace the FCFS mechanism for load-balancing of the

edge nodes. We also propose a collaborative cloud-edge learning scheme, including the

parameter aggregation scheme and the cloud dormancy mechanism. Experiments show

that the framework achieves better results than existing other edge frameworks for the

neural network task. A future direction is to develop a more efficient collaborative

computing scheme that can be better deployed on the edge nodes.
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