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Abstract
In this paper, we study the integration of unmanned aerial vehicle small cells (UAV-SCs)
for the purpose of augmenting or temporarily restoring service to an ultra-dense
cellular network. The aim is to minimize the overall power consumption of the network
by jointly optimizing the number of UAV-SCs, their placement, associations, and the
power allocation, subject to user QoS (quality of service), transmit power, and fronthaul
capacity constraints. As the resulting optimization problem is non-convex and
computationally inefficient to solve, we investigate lower complexity alternatives. By
reformulating the original problem, a linear structure can be obtained that is efficiently
solved by off-the-shelf solvers. Furthermore, we also propose a meta-heuristic method
that is based on particle swarm optimization. The performance of the proposed
methods is evaluated via simulation studies and compared to state-of-the-art
techniques. The results illustrate that the proposed methods consistently outperform
conventional techniques by deploying fewer UAV-SCs and also lowering the transmit
powers. Furthermore, considerable power savings were observed particularly for low
QoS demands and dense scenarios.

Keywords: Ultra-dense cellular networks, Unmanned aerial vehicle small cells,
Resource allocation, User association, UAV placement

1 Introduction
The use of UAVs in communication networks, as aerial base stations or relays, is justified
by their strong line of sight links, the possibility of rapid deployment, and modest costs.
For this purpose, low altitude platforms, e.g., rotary-wing UAVs, can be used for network
augmentation or alleviating high traffic by hovering at the deployed position for several
hours [1]. However, the integration of UAV-SCs into communication networks and their
coexistence faces many open challenges. Having full control on the 3D mobility of UAVs
raises the question of their placement. The authors in [2], developed a unified software-
defined framework for matching dynamic traffic demands using moving base stations. In
addition to the positioning of UAV-SCs, the optimization of user associations and power
control is also critical [3, 4]. This is because the associations between user demand nodes
and access points have a strong influence on the resources available for allocation [5], e.g.,
power and fronthaul capacity. This issue becomes particularly relevant to an interference-
limited ultra-dense network operating with limited capacity fronthaul links.
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Prior works [6–9] in literature have studied the user association optimization and
UAV-base station positioning, with fixed transmit power and negligible interference.
This problem is generally approached by finding the minimum number of UAVs that
will ensure non-overlapping coverage. The work in [10] similarly investigated the
deployment of a single UAV, while considering negligible interference and given user
associations. Reference [11] considered a stationary low altitude platform and used cir-
cle packing for providing maximum coverage at minimum cost. The authors in [12]
proposed an MINLP for the placement of a single UAV, subject to user signal-to-
noise ratio requirements. The original problem is decomposed to a coverage radius
solver, which aims to maximize coverage and a 2D placement problem that finds
the optimal 2D position for a fixed height by solving a mixed integer quadratic pro-
gram. However, the authors assumed orthogonal users and fixed power allocation.
The authors in [13] considered user mobility in a UAV augmented network and
applied Q-learning to determine the UAV position and user associations. Note that the
aforementioned works offer no insight on the optimal number of UAVs and power
allocation.
In contrast to the aforementioned works, joint power and sub-carrier allocation were

studied in [14], although no association or UAV positioning is considered. More relevant
works, such as [15], find the user associations, bandwidth allocations, and 3D placement
via a particle swarm optimization (PSO). Chang et al. [16] addresses user association,
trajectory design and power control via reinforcement learning. Most notably, [17] con-
sidered UAV-base station placement and transmit power allocation, subject to satisfying
the demand of users. The interference was avoided by assuming orthogonal users, and the
resulting problem is solved via transport theory. Furthermore, the coexistence of UAV-
base stations with an existing cellular network is not considered and the limited capacity
of fronthaul links is also ignored.
In this paper, we consider the augmentation of an ultra-dense centralized radio access

network (C-RAN) using UAV-SC. The contributions of this work are summarized as
follows:

• Different from existing works that assume orthogonal users and interference-free
models, we study the coexistence of UAV-SC with ground base stations for the
purpose of serving co-channel users. This is practically relevant since in an
ultra-dense network with finite spectrum resources and strong line of sight links
from the UAV-SCs, achieving orthogonal users may not be possible. Note that
studying the system under this assumption implies higher interference levels.
Furthermore, this also demands an optimization model that accordingly incorporates
the impact of interference depending on the user association and power allocation,
which is missing from the literature.

• With the aim of offering an energy-efficient solution, the power consumption is
minimized by optimizing the number of UAV-SCs, their placement, associations, and
the power allocation subject to demand node QoS requirements, power, and
fronthaul capacity constraints. As the resulting problem is non-convex and
computationally challenging to solve, we propose lower complexity alternatives.
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• The performance of the proposed techniques is evaluated via simulation studies. The
numerical results indicate the considerable power savings are achieved, especially for
small cell sizes or low QoS demands.

The remainder of this paper is organized as follows: The UAV augmented
C-RAN system model is defined in Section 2. While the power minimization
optimization problem is described in Section 3.1, along with the proposed frame-
works. In Section 4, the performance of the proposed frameworks is inves-
tigated and compared to state-of-the-art solutions. Lastly, Section 5 concludes
our work with a brief summary, while Section 6 explains the experiment
setup.

2 Systemmodel
2.1 C-RAN systemmodel

We consider the existing ground network to be a C-RAN, where a central unit (CU) sup-
ports multiple access points such as remote radio heads (RRHs) and UAV-SC, as shown
in Fig. 1. A set of ground co-channel downlink users, defined as K = {1, . . . ,K}, popu-
late the network. The average long-term QoS requirement of the kth user is known via
the average signal-to-interference-plus-noise ratio (SINR), denoted by γk , and equiva-
lent rate requirement (for fixed bandwidth), denoted by Rk . The set of operational RRHs
is defined as J = {1, . . . , J}, each with a maximum transmit power of Pmax

j , where j
denotes the index of the jth RRH. We assume that there exists a set of UAVs that can
be potentially used for network augmentation, given as I = {1, . . . , I}. Each UAV-SC
has a maximum transmit power of Pmax

i , where i denotes the index of the ith UAV-SC.
The spatial position of the ith UAV is described by (xi, yi, zi), which described the lon-
gitude, latitude, and altitude, respectively. The association between the ith UAV-SC and
the kth user is defined by αik ∈ {0, 1}, while the association between the jth RRH and
the kth user is described by βjk ∈ {0, 1}. Note that a 1 is used to represent an active
connection for both variables. The allocated power to the downlink channel between the
ith UAV-SC and the kth UE is denoted by pik , while pjk refers to the allocated power
of the corresponding RRH and UE. Note that the relationship between the association
and the transmitted power becomes evident, as a user only receives transmission by its
associated node.
As the focus of the work is the long-term resource allocation and deployment

of UAV-SCs, we consider a time-averaged scenario, neglecting short-term phenom-
ena such as small-scale fading and UAV vibrations. The channel between the RRHs
and users is denoted by hjk and consists of LoS and NLoS components. We assume

Fig. 1 General network layout of a UAV-SC augmented C-RAN
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that fronthaul connection between the RRHs and the CU has a finite capacity
of Cj.

2.2 RRH power consumption model

The overall RRH power consumption follows [18] and is comprised of a static and a load-
dependent component, as follows:

PRRHj = (
1 − λj

)
Pidle + λjPactive + �

∑

k
Pjk , (1)

in which � is the linear load-dependent power gradient, and λj indicates the binary state
of the RRH, where 1 indicates active and 0 vice versa. The static power in the active state,
represented by Pactive, accounts for the radio frequency (RF) transceiver chain, the base-
band (BB) interface, the direct current (DC) power supply loss, the main supply loss, and
the power amplifier (PA) efficiency denoted by PRF, PBB, μDC, μMS, and ηPA, respectively.
This static power is calculated at the minimum load Pmin = Pmax

j × 0.1% as shown below:

Pactive =
Pmin
ηPA

+ PRF + PBB
(1 − μDC)(1 − μMS)

. (2)

The values of the aforementioned parameters are summarized in Table 1. The sum of the
power allocated to all the users by a single RRH is subject to the maximum power budget,
described as:

∑

k
Pjk ≤ Pmax

j . (3)

2.3 UAV to ground channel model

The UAV-SC to user and CU to UAV-SC channels follow a common statistical model
from literature [12, 15] that is a function of the 3D spatial placement of UAVs, denoted by
hik (xi, yi, hi) and hCUi (xi, yi, hi), respectively. The path loss between the UAV-SC and the
ground node is given by:

PLUAV = FSPL + PLoSηLoS + (1 − PLoS)ηNLoS (4)

where FSPL represents the free space path loss and ηLoS and ηNLoS denote the additional
path loss due to LoS and NLoS as summarized in Table 2. The probability of LoS for the
UAV to ground channel depends on the elevation angle, denoted by θ , while the effect of
the environment is captured via constants a and b as shown below:

PLoS = 1
1 + a exp (−b[ θ − a] )

. (5)

Table 1 RRH parameter settings

Parameter Symbol Value

RF transceiver power PRF 12.9 W

BB interface power PBB 29.6 W

DC power supply loss μDC 0.075

MS loss μMS 0.09
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Table 2 UAV parameter settings

Parameter Symbol Value

Total weight mUAV 12.9 kg

Rotor radius r 0.228 m

Rotor number n 6

Hovering power Phover 936.3 W

2.4 UAV power consumptionmodel

For the purpose of UAV-SC placement, the dominant factors of the power consump-
tion consist of the hovering and data transmission, following [19]. The static power
consumption relating to the hovering of the UAV is defined as:

Phover =
√ (

mg
)3

2πr2nρ
, (6)

where m, r, n, g, and ρ denote the UAV weight, rotor radius, rotor number, gravitational
constant, and air density, respectively. The values of the aforementioned parameters are
summarized in Table 3. The transmission power of the UAV follows a load-dependent
model similar to the RRH, with the complete power model described as:

PUAVi = μi
(
Phover + Pactive

)
+ �

∑

k
Pik , (7)

where μi is a binary variable indicating whether a UAV-SC is deployed and� is the power
gradient. Similar to an RRH, the total power allocated by a UAV-SC to the users is subject
to a maximum transmit power limit as shown below:

∑

k
Pik ≤ Pmax

i . (8)

2.5 Fronthaul links

A wired fronthaul link with fixed capacity of Cj is assumed for the jth RRH, which leads
to the following constraint:

∑

k
αjkRk ≤ Cj. (9)

As the main focus of the work is the integration of UAV-SC, we assume a point to
point fronthaul link, with negligible interference on the access network. In practice, this
is realized by the advanced capabilities of the CU, which can achieve out-of-band wireless

Table 3 General system parameter settings

Parameter Settings

Carrier frequency 2 GHz

Bandwidth 10 MHz

Maximum transmit power 43 dBm

RRH fronthaul capacity 10 Gbps

Transmit power gradient 4.2

LoS path loss 103.4 + 24.2 log10 d

NLoS path loss 131.1 + 42.8 log10 d

PLoS RRH-UE min
( 0.018

d , 1
) (

1 − exp
(
− d

0.063

))

+ exp
(
− d

0.063

)

Noise level −134 dBm/Hz
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fronthaul links or create directive narrow beams. The achievable capacity of the wireless
fronthaul links is expressed as:

∑

k
αikRk ≤ BW log2

(

1 + PCUi hCUi
σ 2
i

)

, (10)

where BW and PCUi are the bandwidth and the power allocated to the wireless fronthaul
of the ith UAV-BS, respectively. Without loss of generality, henceforth, it is assumed that
both the user rate demand and the achievable capacity are normalized to the respective
bandwidths. The CU is considered to be subject to a transmit power budget:

∑

i
PCUi ≤ PCUTot . (11)

2.6 User associations

In this work, the user association indicates whether a particular user is receiving its data
transmission from an access point or not. Therefore, a connected user would incur both
a power and a fronthaul cost to the associated access point. Assuming a user can only
associate to a single access point, the association is modeled via the following:

Pik ≤ αikPmax
i , (12a)

Pjk ≤ βjkPmax
j , (12b)

∑

i
αik +

∑

j
βjk = 1, (12c)

where (12a) and (12b) relate the associations to the power allocation by ensuring that only
an associated user is allocated power, while (12c) guarantees that users connect to a single
access point. By this means, the user associations can also be used for defining the state
of the UAV-SCs and RRHs as shown below:

αik ≤ μi, (13a)

βjk ≤ λj, (13b)

where μi and λj represent the state of UAV-SC and RRH, respectively, with 1 indicating
active. Constraints (13a) and (13b) enforce the state of the corresponding access point to
be active if there is at least one associated user.

2.7 Signal model

The received downlink signal of the kth user, denoted by zk , can be described as:

zk =
∑

i

√
Pikhiksk +

∑

j

√
Pjkhjksk

+
∑

i,l �=k

√
Pilhiksl +

∑

j,l �=k

√
Pjlhjksl + nk ,

(14)

where sk is the data symbol and nk is the additive white Gaussian noise, with zero mean
and σ 2

k variance of the kth user. The first and second terms indicate the desired part of
the signal from the UAV-SCs and RRHs, respectively. While the third and fourth terms
represent the interference from UAV-SCs and RRHs.
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3 Problem formulation
In this section, we provide a joint design aiming at minimizing the total power con-
sumption via determining the number of UAV-SC and their hovering locations, the user
associations, and the power allocation. In the following, we will first provide the prob-
lem formulation and subsequently solve the problem via two approaches. Finally, the
complexity levels of the proposed approaches are discussed.

3.1 Problem formulation

The power minimization problem is formulated as follows:
P1:

min
αik ,βjk ,μi,λj ,
Pik ,Pjk ,PCUi ,

xi,yi,zi

∑

i
PUAVi +

∑

i
PCUi +

∑

j
PRRHj

s.t. (1), (3), (7), (8), (9), (10), (11),

(12a), (12b), (12c),
∑

i
Pik|hik|2 + ∑

j
Pjk|hjk|2

∑

i,l �=k
Pil|hik|2 + ∑

j,l �=k
Pjl|hjk|2 + σ 2

k

≥ γk , (15a)

Pik ,Pjk ,PCUi ≥ 0, (15b)

zi ≥ 0, (15c)

αik ,βjk ,μi, λj ∈ {0, 1} , (15d)

i ∈ I , j ∈ J , k ∈ K, (15e)

where (15a) describes the received SINR of the kth user. Note that the above optimiza-
tion problem is a mixed integer non-linear programming problem (MINLP), which is
NP-hard and computationally expensive to solve. While the binary variable constraints
(15d) are non-convex, the major complexity in solving P1 is due to the joint optimization
of power allocation and 3D placement in constraint (15a) (which itself is a non-convex
function of the 3D placement of a UAV). In practice, powerful off-the-shelf MILP solvers
can handle integer constraints efficiently given that they are linear, therefore making con-
vex approximations for the binary variables unnecessary. This motivates the development
of an optimization framework with only linear constraints as shown in Section 3.2. The
proposed quantization of space and subsequent reformulation is not only motivated by
obtaining a linear structure, but it also produces a framework that accommodates the
use of channel gains obtained from a radio heat map in the network planning phase. A
comparison to low complexity meta-heuristic approaches, such as the one proposed in
Section 3.3, provides clearer perspective on the performance.

3.2 MILP optimization based on quantizing the 3D space

We introduce a number of candidate UAV locations by quantizing the 3D spatial place-
ment into a set of N1 × N2 × N3 discrete candidate locations, where N1, N2, and N3
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represent the number discrete points in longitude, latitude, and altitude, respectively1. In
fact, when the number of candidate locations becomes sufficiently large, the optimal solu-
tion to the approximated (quantized placement) problem P2 becomes arbitrarily close to
the original problem P1. Hence, the introduction of the discrete candidate locations does
not lose the generality of the problem. In practice, there exists a trade-off in choosing the
number of candidate locations to balance between complexity and the performance of
obtained solution as studied in Section 4.
To this end, a set of candidate locations is introduced as Icand = N1 × N2 × N3

which contains the quantized fixed locations. By this means, although the variable size is
increased, the original problem can be linearized, which can be solved more efficiently,
by the following reformulation:
P2:

min
αik ,βjk ,μi,

λj ,Pik ,Pjk ,PCUi

∑

i
PUAVi +

∑

i
PCUi +

∑

j
PRRHj

s.t. (1), (3), (7), (8), (9), (10), (11),

(12a), (12b), (12c), (15a), (13a),

(13b), (15b), (15d)
∑

i
μi ≤ I, (16a)

i ∈ Icand, j ∈ J , k ∈ K, (16b)

Observe that in the above optimization problem, the continuous 3D spatial placement is
reduced to the candidate set of locations in Icand. The quantized 3D spatial UAV locations
(xi, yi, zi) are implicitly included, via their statistical channel gains as per Section 2, and
the optimal positions are selected by the UAV state indicator, described in Section 2. Fur-
thermore, as the objective aims to minimize the power consumption (comprised of static
power that is greater than its transmit power), the optimal solution to P2 also achieves the
minimum number of UAV-SCs. Moreover, constraint (16a) ensures that the total number
of deployed UAV-SC does not exceed the units available. This reformulation facilitates
the conversion of the original MINLP to an MILP, which can now be solved efficiently via
state-of-the-art solvers such as Gurobi and MOSEK without any further manipulation.

3.3 PSO

Motivated by the strength of meta-heuristic methods in solving complex problems with
modest run time, we propose a modified version of the PSO algorithm to solve P2. The
aim is to find the best 3D placement for UAVs as well as the power allocation and associ-
ation that minimizes the overall power expenditure. However, this requires a decoupling
of the problem. In order to incorporate binary decision-making for the association, we
assume that the user associations are updated after each iteration of the PSO algorithm
by using the new locations of the UAVs and selecting the nearest access node. As for find-
ing the optimal transmit powers, a simple power minimization with fixed associations
and UAV locations is solved efficiently via water-filling. The algorithm consists of a set of
independent particles, denoted by Q = {1, . . . ,Q}, which probe the solution space. Each

1In practice, the suitable locations for UAV deployment are usually restricted and can be known in advance, e.g., via
radio maps [20]; we also confirm the possibility of considering discrete candidate locations.
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particle has a local state Xq, and a velocity of Vq, which are updated as it explores the
solution space. The particle state essentially refers to the 3D placement of the access node
in continuous space. This approach means that if more than one particle converge to the
same location, they can be merged. Additionally, each particle remembers the best local
state and the best overall state in terms of the objective reached, denoted by Xbest

q and
Xbest
all , respectively. Note that the objective here is defined as the total power consumption.

Therefore, the particles aim to find locations that lead to the minimum power consump-
tion, consistent with the overall objective of the original problem P1. The velocity and the
state of the qth particle at the tth iteration are updated accordingly:

Vt+1
q ←

X
(
Vt
q + φ1

(
Xbest
q − Xt

q

)
+ φ2

(
Xbest
all − Xt

q

))
(17a)

Xt+1
q ← Xt

q + Vt+1
q (17b)

where X , φ1, φ2 influence the convergence of the algorithm as defined in [21]. We high-
light that (1) is different from those in literature, i.e., [15, 22], as it determines not only
the placement of the UAV-SC, but also the power allocation to the users. To this end,
after finding the associations and deployment positions that maximize a utility function,
a power allocation problem subject to QoS and power budget constraints is solved, via
water-filling or linear programming. Note that to ensure a suitable implementation of

Algorithm 1 PSO Joint association, power allocation, UAV-SC placement
1: Initialization: randomly distribute particles around the UEs positions
2: repeat
3: for q ← 1,Q do
4: Update Xq and Vq according to (17a) and (17b)
5: Update Xall (if necessary)
6: Update associations, state indicators and UAV locations by selecting nearest node
7: Solve P1 over only power allocations (water-filling)
8: end for
9: until Convergence
10: return Associations, power allocations, UAV locations and RRH states

the PSO algorithm, parameters, e.g., the number of particles, were set experimentally as
shown in Section 4.

3.4 Complexity analysis

As the structure of the original optimization problem is an MINLP, it is typically solved
in small sizes via exhaustive search, as the non-linearity makes it incompatible with off-
the-shelf solvers. Although P2 remains non-convex, due to the binary variables, the major
computational gain is the linear structure that offers compatibility with efficient solvers.
In practice, this can be solved by Gurobi in a matter of seconds [23]. Additionally, the
complexity now mainly depends on the number of candidate positions or the defined
resolution of the grid. Furthermore, we highlight that the framework serves the purpose
of network planning which is handled offline with loose time restrictions. Nonethe-
less, binary approximation techniques, such as [24–26], may be applied to reduce P2
to a linear programming problem with complexity n2s, where n is the size of the vari-
ables and s is the number of constraints. However, this reduction in complexity comes
at the expense of obtaining sub-optimal solutions. The computational complexity and
convergence behavior of the proposed PSO algorithm are studied in Section 4.
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4 Simulation results and discussion
In this section, the performance of the proposed techniques is studied via Monte Carlo
simulations, with results averaged over 200 realizations. The simulation scenarios are set
up in accordance with 3GPP LTE specifications, and the simulation parameters are sum-
marized in Tables 1, 2, and 3. Two operational RRHs and six ground downlink users are
uniformly distributed in a C-RAN of a radius of 800 m. The 3D grid of 42 candidate UAV-
SC deployment positions is defined to be equidistant and at heights of [ 31, 44, 57, 70]
meters.
The simulation studies begin with a brief investigation into suitable initialization values

for both of the proposed algorithms. We first study the trade-off between power con-
sumption and computation time with increasing quantization points. This helps find a
suitable setup for the other simulations. Similarly, the impact of the number of particles in
the PSO algorithm on the trade-off between power consumption and computation time is
studied to have a good initialization. As the PSO algorithm also uses a maximum number
of iterations for convergence criteria, we investigate a suitable initialization for this value.
After this, the difference between the obtained associations using the different methods
is highlighted. Lastly, the performance is evaluated and compared to conventional meth-
ods by varying the user QoS demand and cell radius. Note that only results with sufficient
feasibility are considered.
The computational complexity of the MILP approach is evaluated in Fig. 2, where it can

be seen that the number of candidate UAV positions increases the computation run time
substantially. However, what is interesting to observe is that increasing the resolution of
the quantized locations only leads to a marginal improvement (in fact only 0.6%) in power
consumption. The reason behind this is that the total network power consumption is
dominated by the static power consumption of deploying a UAV. This result justifies the
approach of using a quantized set of positions instead of the continuous 3D placement as
it suggests the number of points can be relatively small.
Firstly, the proposed meta-heuristic PSO algorithm was fine-tuned for the purpose of

simulation studies. The average power consumption and run time performance of the
proposed algorithmwere evaluated with a different number of particles. This is an impor-
tant parameter as it ensures that the algorithm sufficiently explores the solution space.
Figure 3 illustrates that increasing the number of particles beyond 18 offers a negligible
reduction in power consumption while significantly increasing the run time.
The convergence behavior of the proposed PSO algorithm was also investigated.

Figure 4 demonstrates how the relative power consumption is reduced per iteration. It
was observed that after 50 iterations, the power consumption of more than 95% of real-
izations remained with a 1% margin of its optimal value. This is particularly relevant for
setting the convergence criteria of the algorithm. It is worth mentioning that the drops in
power correspond to the convergence of two UAV-SCs to the same location, which makes
one of them redundant.
Figures 5 and 6 provide a comparison of the UAV-SC deployment association patterns

obtained from the proposed methods. It is evident that the MILP method, which jointly
optimizes the UAV-SC deployment, user associations, and power allocation, utilizes fewer
UAV-SC and results in a slightly different association pattern to the PSO method.
The power consumption performance of both proposed methods was investigated fur-

ther and compared to some existing techniques. Common strategies are to assume fixed
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Fig. 2 Trade-off between power consumption and computation time with increasing quantization points

user association, based on distance and SNR, which are represented by “ASSOC_DIST”
and “ASSOC_SNR.” Many works assume the power allocation to always be fixed to
maximum possible, regardless of the QoS constraint; this is shown as “FIX_POWER.”
Additionally, we also compare the performance of the proposedmethods to an alternative
meta-heuristic method known as simulated annealing, represented by “SA.”
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Fig. 3 Trade-off between power consumption and computation time with increasing number of particles
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Fig. 4 Convergence pattern of the proposed PSO

The power consumption of the different methods is compared in Fig. 7. It is evident
that the MILP method performs considerably better than the other techniques, achieving
around 20% power reduction for lower SINR requirements and up to 10% for higher
demands. Furthermore, it can be observed that the heuristic association schemes not only
consume the most power but are also incapable of supporting high demands. This is due
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Fig. 5 Associations and UAV deployment obtained via the proposed MILP method
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Fig. 6 Associations and UAV deployment obtained via the proposed PSO method

to the heavy interference experienced in these methods. A comparison of the number of
deployed UAVs, as illustrated in Fig. 8, shows that the MILP method consistently utilizes
the least number of UAV-SCs. Additionally, comparing the PSO and fixed power alloca-
tion scheme shows that although the PSO deployed slightly more number of UAV-SC, it
still has a lower overall power consumption. This comparison highlights the gain in jointly
optimizing the UAV-SC deployment position, user association, and power allocation.
The performance of the proposed techniques was also investigated with varying cell

radius as shown in Fig. 9. This is particularly insightful as it affects the user density and
the line of sights between UAV-SC and the users, and consequently the interference pat-
terns. As the cell radius increases, the overall power consumption raises exponentially for
all methods. However, theMILP-based solution leads to 15% less overall power consump-
tion, when considering smaller cluster sizes and up to 8% for larger cells. Additionally,
it is observed that even for a larger cell radius, the MILP and meta-heuristic methods
are superior to fixed association and power allocation strategies. This is attributed to the
deployment of fewer UAV-SC as well as a better power allocation as shown in Fig. 10.
We highlight that although the proposed PSO approach is inferior to the MILP, it bene-

fits from a much lower computation time and therefore can be deemed suitable to larger
size networks or perhaps used in real-time for dynamic network planning. Lastly, it is
worth mentioning that the MILP approach was the only method that attained a 100%
feasibility rate in the above simulation studies. Note that the feasibility rate is a measure
of what percentage of the 200 realizations the different methods could solve without
violating any constraints.



Zamani et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:192 Page 14 of 17

0 1 2 3 4 5 6 7

Minimum user SINR requirement [dB]

36.5

36.6

36.7

36.8

36.9

37

37.1

37.2

37.3

37.4

A
ve

ra
ge

to
ta

ln
et

w
or

k
po

w
er

[d
B

W
]

MILP
PSO
SA
ASSOC_DIST
ASSOC_SNR
FIX_POWER

Fig. 7 Average power consumption with different schemes for varying minimum user QoS demand (missing
points indicate infeasibility)

5 Conclusion and future works
In this paper, we considered the augmentation of a C-RAN with UAV-SC. We provided
a design aiming at minimizing the overall power via jointly determining the number of
UAV-SC, their hovering positions, associations, and the power allocation from the access
points under to QoS, power, and fronthaul capacity constraints. As the original prob-
lem is an MINLP and computationally inefficient to solve, we provide two alternatives
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Fig. 9 Average power consumption with different schemes for varying cell radius (missing points indicate
infeasibility)

approaching efficient solutions with relatively lower complexity. To this end, the origi-
nal problem is reformulated as an MILP by quantizing the 3D UAV spatial placement,
which can be solved efficiently via off-the-shelf solvers due to its linear structure. A faster
meta-heuristic alternative is also proposed, which can be deemed suitable for larger size
problems. Simulation studies suggest that the proposed methods consistently result in
a fewer number of deployed UAV-SC and lower overall network power consumption,
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Fig. 10 Average number of UAVs deployed with different schemes for varying cell radius (missing points
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in comparison to conventional techniques. In particular, considerable power savings are
achieved for low QoS demands and dense scenarios.

6 Methods/experimental
The aim of performing simulation studies is to provide a numerical evaluation of the per-
formance of the proposedmethods and a comparison to conventional techniques. For this
purpose, Monte Carlo simulations were performed, where channel realizations are gen-
erated according to Section 2 in MATLAB. The average power consumption is found by
averaging the result of each realization over the total number of realizations and provided
in watts. This provides a robust assessment of how the proposed techniques will perform
under various network realizations. The infeasibility provides an average measure of how
successful the method is in solving the different realizations. While the PSO algorithms
were implemented from scratch, the optimization problems were solved using the free
off-the-shelf solver, Gurobi.
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