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Abstract

A novel Toeplitz fourth-order cumulant (FOC) orthonormal propagator rooting
method (TFOC ‐OPRM) of direction-of-arrival (DOA) estimation for uniform linear
array (ULA) is proposed in this paper. Specifically, the modified (i.e., reduced-
dimension) FOC (MFOC) matrix is achieved at first via removing the redundant
information encompassed in the primary FOC matrix; then, the TFOC matrix which
possesses Toeplitz structure can be recovered by utilizing the Toeplitz approximation
method. To reduce the computational complexity, an effective method based on the
polynomial rooting technology is adopted. Finally, the DOAs of incident signals can
be estimated by exploiting orthonormal propagator rooting method. The theoretical
analysis coupled with simulation results show that the proposed resultant algorithm
can reduce the computational complexity significantly, as well as improve the
estimation performance in both spatially white noise environment and spatially color
noise environment.

Keywords: Direction-of-arrival (DOA), Fourth-order cumulants (FOC), Polynomial
rooting, Toeplitz approximation, Orthonormal propagator method (OPM)

1 Introduction
Direction-of-arrival estimation based on antenna array is one of the important direc-

tions of research hotspot in array signal processing, which has wide prospects of appli-

cation in military and civil fields such as wireless communications, radar, passive

sonar, biomedicine, and seismic exploration [1–4]. Various high-resolution algorithms,

such as multiple signal classification (MUSIC) algorithm [5] and estimating signal par-

ameter via rotational invariance technique (ESPRIT) [6] approaches, have been pro-

posed to achieve direction-of-arrival (DOA) estimation of narrowband far-field signal

sources. However, these subspace-based DOA estimation algorithms described above

are not only very sensitive to the noise, but also require the noise’s characteristics of

the sensors in advance. Furthermore, it is restricted that the total number of sources

acting on the array must be less than or equal with sensors [7]. When the constrained

condition cannot be met in practical environments, the estimation performance of

those aforementioned algorithms may run into a stone wall. Fortunately, much more
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attentions have been paid to this issue, and much more efforts have been made to over-

come the above drawbacks. Motivated by the truth that the high-order cumulant-based

(HOC) is asymptotically insensitive to Gaussian noise, which can be recognized as a

promising technique for direction finding by adopting sensor array [8–10]. Besides, an-

other key motivation of using HOC is the ability to resolve more number of sources

than or equal to that of the array elements [11]. However, the process of eigenvalue de-

composition (EVD) or singular value decomposition (SVD) requires large amount of

calculation and time taken, which greatly affects the development of rapid source loca-

tion. Marcos and co-workers [12, 13] firstly proposed so-named propagator method

(PM) to obtain the signal and noise subspaces by executing a linear-partition operation,

which can decrease the computational complexity effectively. Specifically, the algorithm

under the conditions of medium and high signal-to-noise ratio can achieve the same

performance as that of the traditional high-resolution algorithms but with higher calcu-

lation efficiency. Base on [12, 13], numerous modifications of PM have been proposed,

such as [14, 15], to achieve the low-complexity DOA estimation. In [16], an efficient

HOPM algorithm was proposed by making full use of intrinsic multi-dimensional char-

acteristics and affordable computability. AFOC ‐ based and OPM ‐ like (FOC ‐OPM) al-

gorithm [17] was proposed to gain good location performance. However, the

computational complexity of this method is high due to a great number of redundant

information still existing in the FOC matrix. To mitigate this shortcoming, the im-

proved FOC algorithm [18] was proposed to reduce the computational complexity.

However, the performance of the algorithm cannot be asymptotically optimal due to

the estimation error of the FOC matrix. Zhang et al. [19] derived a root ‐MUSIC

method using a co-prime linear array to improve the estimation accuracy with low

complexity. In [20–22], a similar polynomial root-based method was chosen to realize

low-complexity for DOA estimation. In [23–28], the fractal structure modeling based

was utilized to improve the performance of the fractal antennas. In [29, 30], the wavelet

analysis-based method was proposed to deal with application in signal processing.

In this paper, a novel TFOC ‐OPRM algorithm is introduced. The contributions

of this paper are twofold: Firstly, the reduced dimension matrix is obtained to re-

duce the computational complexity by removing a large number of redundant ele-

ments from the original FOC matrix while maintaining the effective aperture of the

virtual array in unchanged state. Secondly, the Toeplitz structure is recovered by

the Toeplitz operation of the reduced dimension FOC matrix, and the DOA esti-

mation of the recovered Toeplitz structure matrix is performed based on the poly-

nomial root method.

2 Data model
Consider M narrowband far-field sources si(t), (i = 1,⋯,M) impinging on a uniform

linear array(ULA) with N equispaced omnidirectional sensors, where the distance be-

tween adjacent sensors is equal to half the wavelength. Assume that the incoming

sources are stationary and mutually independent. The noise is the additive white/color

Gaussian one and statistically independent of the sources. Let the first sensor be the

reference, and then, the observed data received in time t at the kth sensor can be

expressed as
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xk tð Þ ¼
XM
i¼1

ak θið Þsi tð Þ þ nk tð Þ; k ¼ 1;⋯;N ð1Þ

where si(t) is the ith source, nk(t) is the Gaussian noise at the kth sensor, and ak(θi) is

the response of the kth sensor corresponding to the ith source and can be expressed as

ak θið Þ ¼ exp j2π d=λð Þk sinθið Þ ð2Þ

where λ is the central wavelength and d is the spacing between two adjacent sensors.

Therefore, the matrix form of (1) can be expressed as

X tð Þ ¼ AS tð Þ þN tð Þ ð3Þ

where X(t) = [x1(t),⋯, xN(t)]
T is the N × 1 received source vector, S(t) = [s1(t),⋯, sM(t)]

T

is the M × 1 radiating source vector, A = [a(θ1),⋯, a(θM)] is the N ×M array manifold

matrix, and N(t) = [n1(t),⋯, nN(t)]
T denotes the N × 1 complex Gaussian noise vector.

Assuming that the source signals are zero-mean stationary random process, the FOC

can be defined as

cum k1; k2; k
�
3; k

�
4

� � ¼ E xk1 tð Þxk2 tð Þx�k3 tð Þx�k4 tð Þ
� �

−

E xk1 tð Þx�k3 tð Þ
� �

E xk2 tð Þx�k4 tð Þ
� �

−

E xk1 tð Þx�k4 tð Þ
� �

E xk2 tð Þx�k3 tð Þ
� �

−

E xk1 tð Þxk2 tð Þð ÞE x�k3 tð Þx�k4 tð Þ
� �

k1; k2; k3; k4∈ 1;⋯;N½ �
ð4Þ

where xkmðm ¼ 1; 2; 3; 4Þ is the stochastic process. Apparently, cumðk1; k2; k�3; k�4Þ has

N4 values with the change of k1, k2, k3, k4. For simplicity, Eq. (4) can be written in

matrix form, which is denoted by cumulant matrix C4, and cumðk1; k2; k�3; k�4Þ appears

as the [(k1 − 1)N + k2]th row and [(k3 − 1)N + k4]th column of C4.

C4 k1 − 1ð ÞN þ k2; k3 − 1ð ÞN þ k4½ �
¼ cum k1; k2; k

�
3; k

�
4

� �
¼ BCsB

H
ð5Þ

where B and CS represent the extended array manifold and the FOC matrix of incident

source signals, respectively. B =A⊗A and each column of B is bðθÞ ¼ aðθÞ � aðθÞ. It
is obvious that bðθÞ is a N2 × 1 vector, which means that the array aperture of ULA is

extended. That is, the number of resolved source signals is no less than that of sensors.

3 The proposed method
3.1 The effective array aperture extended

As proven in [31], an array of N arbitrary identical omnidirectional sensors can be ex-

tended to at most of N2 −N + 1. Especially, the number of virtual elements is 2N − 1 for

ULA according to [31]. In order to discuss the effective aperture of ULA, four real ele-

ments (N = 4) are considered, and bðθÞ can be expressed in detail as follows:
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b θð Þ ¼ a θð Þ � a θð Þ
¼ ½1; z; z2; z3; z; z2; z3; z4;

z2; z3; z4; z5; z3; z4; z5; z6�T
ð6Þ

where z = exp(j2π(d/λ) sin θ). Equation (6) shows that there is a lot of redundancy in

expanded steering vector bðθÞ. That is, only from 1st to Nth and all kNth (k = 2,⋯,N)

items of the bðθÞ are valid, while others are redundant ones. To eliminate these repeti-

tive elements, a (2N − 1) × (2N − 1) matrix R4 is defined firstly. Next, the 1st to Nth and

all kNth (k = 2,⋯,N) rows of C4 are taken out in sequence, and then these rows are

stored in the 1st to (2N − 1)th row of the new matrix R4. The same operation is per-

formed on the 1st to Nth and all kNth (k = 2,⋯,N) columns of C4 to obtain the 1st to

(2N − 1)th columns of R4. Similar to Eq. (5), R4 can be expressed as

R4 ¼ DCsDH ð7Þ

where D denotes the extended array manifold without redundancy, and each column of

D has the form of d(θ) = [1,⋯, z2N − 2]T. Therefore, the reduced-dimension R4 not only

contains all of the information about original matrix C4, but also keeps the extended

array aperture unchanged.

3.2 The TFOC-OPRM method

When the incident targets are considered as statistically independent signal sources,

the ideal R4 has a Toeplitz structure. However, in practical applications, for example,

due to finite sampling snapshots and the low SNR, the matrix R4 obtained at this time

does not meet the Toeplitz structure anymore; instead, it becomes a diagonally domin-

ant matrix. The happening of such condition will have a negative impact on the per-

formance of the final DOA estimation. In order to improve the DOA estimation

accuracy of the antenna array, the first task is to recover the Toeplitz structure of

matrix R̂4 , that is, to get Toeplitz matrix R̂4T . Then, a R4T of Toeplitz matrix can be

approached to the real reduced dimension by solving the following optimization

problem:

min
R4T∈ST

R4T − R4k k ð8Þ

where ST represents Toeplitz matrices, and the entries of the Toeplitz matrix R4T can

be written as

γh ¼ 2N − 1 − hþ 1ð Þ − 1
X2N − 1 − hþ1

p¼1

rp pþh − 1ð Þ ð9Þ

where the element rp(p + h − 1) denotes the pth row and (p + h − 1)th column of R4,

h ∈ [1,⋯, 2N − 1]. And then R4T can be obtained by the following Toeplitization

operator:

R4T ¼ Toep γ1;……γ2N − 1

� � ð10Þ

where Toep stands for the Toeplitization operator.

Although conventional algorithms, such as MUSIC and ESPRIT, can be applied to

estimateDOAs based on the R4T, the computational burden is much heavier due to the
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EVD and SVDinvolved. Therefore, we apply OPM for estimating the DOAs to reduce

the complex computations effectively.

The presented propagator method is based on the following partition

R4T ¼ R4T1

R4T2

� �
ð11Þ

where the dimensions of R4T1 and R4T2 are M × (2N − 1) and (2N − 1 −M) × (2N − 1),

respectively. The M × (2N − 1 −M) propagator matrix P is defined as a unique linear

operator which satisfies the following condition

PHR4T1 ¼ R4T2 ð12Þ

Define QH = [PH − I2N − 1 −M], and combine with equation (11)

QHR4T ¼ PH − I2N − 1 − M
� 	 R4T1

R4T2

� �

¼ 0 2N − 1 − Mð Þ� 2N − 1ð Þ
ð13Þ

Equation (13) shows that the R4T is orthogonal to the columns of QH, and the propa-

gator matrix P can be obtained by minimizing the cost function ξ(P)

ξ Pð Þ ¼ R4T2 − PHR4T1



 

2
F

ð14Þ

where ‖•‖F indicates the Frobenius norm, and the optimal solution P is given by

P ¼ R4T1RH
4T1

� � − 1
R4T1RH

4T2 ð15Þ

In order to introduce the orthonormalization, the orthonormalized matrix Q0 is ob-

tained as follows

Q0 ¼ Q QHQ
� � − 1=2 ð16Þ

Therefore, the following spectral function p(θ) can be formed to estimate the DOAs

of source signals

P θð Þ ¼ 1

dH θð ÞQ0Q0
Hd θð Þ ð17Þ

It can be seen from function (17) that the MDOAs of the incoming signals can be ob-

tained by means of one-dimensional (1 −D) spectrum-peak search over θ. However, to

further reduce the computational burden, we can improve function (17) to derive a

more efficient search-free modification estimator in computation based on polynomial

rooting [32]. In order to further reduce the computational complexity of the algorithm,

the method based on polynomial roots is used to improve the spatial spectrum estima-

tion function, so as to obtain more efficient estimators in the calculation, with the spe-

cific description of the algorithm given as follows.

Set z = exp(j2π(d/λ) sin θ), we have d = d(z)

d zð Þ ¼ 1;…; z2N − 2
� 	T ð18Þ

Then, the denominator of the estimator (17) can be re-expressed with the following

polynomial format
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f zð Þ ¼ dH zð ÞQ0Q0
Hd zð Þ ð19Þ

In an ideal condition, there should be exactly M numbers of roots, that is, z1, z2, ⋯,

zM distributing over the unit circle, and these M numbers of roots are exactly the roots

of the polynomial f(z). However, in practical application, due to the influence of various

complex factors in the environment, the M roots of the equation f(z) cannot be strictly

distributed on the unit circle. In this case, only M roots close to the unit circle need to

be selected, similarly to the Root ‐MUSIC approach [32–34]. After M roots {z1,⋯, zi,

⋯zM} are obtained, the DOA estimation of the incident target signal source can then

be completed by the following formula

θi ¼ arcsin
λ

2πd
angle zið Þ

� �
i ¼ 1;…;M ð20Þ

So far as it is concerned, the specific operational steps of the proposed Toeplitz

fourth-order cumulant orthogonal propagation method based on polynomial roots

under limited sampling snapshots can be summarized as follows:

Step 1 Estimate C4 from the received data by (5).

Step 2 Obtain the dimension reduction matrix R4 by removing the redundant items

from the expanded matrix C4.

Step 3 Reconstruct the Toeplitz matrix R4T by performing Toeplitz approximation on

R4 as formulas (9) and (10).

Step 4 Estimate the linear operator P according to Eqs. (14) and (15), then calculate

the standard orthonormalized matrix Q0 based on Eq. (16).

Step 5 Obtain the polynomial function (19), and further to it, obtain the M roots

closest to the unit circle, i.e., the roots of the f(z).

Step 6 Obtain the direction estimation of the incoming wave of the incident target

signal source from (20).

3.3 Complexity analysis

As for the analysis of computational complexity, the main parts of computation are

considered, that is, the construction of the cumulant matrix, the linear operation, the

spectral peak search operation, the Toeplitz operation, and the polynomial rooting op-

eration. To further prove the superiority of the TFOC ‐OPRM algorithm in terms of

computational complexity, FOC ‐OPM and MFOC ‐OPM are used as the comparative

algorithms.

For the FOC ‐OPM technique, the main operation amount comes from three major

parts, that is, to calculate the N2 ×N2 cumulant matrix, to perform the linear operator

of cumulant matrix, and to execute one spectral search. Therefore, the computational

complexity of the FOC ‐OPM technique is O((9N4L) + (MN4) + (180/Δθ)N4), in which

L and Δθ denote the number of snapshots and the interval of the angular scanning, re-

spectively. For the MFOC ‐OPM algorithm, the main calculation amount comes from

constructing one (2N − 1) × (2N − 1) cumulant matrix, performing the linear operator

of cumulant matrix, and executing one spectral search. Therefore, the computational

load of the MFOC ‐OPM is O(9(2N − 1)2L +M(2N − 1)2 + (180/Δθ)(2N − 1)2).
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For the proposed TFOC ‐OPRM algorithm, the major computational complexity

comes from forming one (2N − 1) × (2N − 1) cumulant matrix, to perform Toeplitz op-

eration, to perform the linear operator of cumulant matrix, and to execute once poly-

nomial rooting operation. Therefore, the computational complexity isO(9(2N − 1)2L +

2(2N − 1) − 1 + (2(2N − 1)2 − (2N − 1)) + 2(2N − 1) − 1 +M(2N − 1)2 +MN).

From the above analysis, it can be obviously seen that the computational complexity

of TFOC ‐OPRM algorithm proposed in this paper is significantly lower than that of

both FOC ‐OPM algorithm and MFOC ‐OPM algorithm. The main reason is that the

polynomial root method has been involved to reduce the computational complexity

further.

4 Results and discussion
In this section, the proposed TFOC ‐OPRM algorithm, as well as FOC ‐OPM [17]

andMFOC ‐OPM [18] algorithms that are used for the purpose of comparison are sim-

ulated in the environment of spatial white noise and spatial color noise respectively to

verify the superiority of the proposed algorithm. In the simulation experiment, the

ULA composed of three antenna elements(N = 3) is used, in which the interval between

adjacent antenna elements is d = λ/2. It is assumed that there are three far-field

narrow-band statistically independent target signal sources (M = 3), whose incident an-

gles are {− 45°, 15°, 40°} respectively, with the Gaussian white/color noise being consid-

ered. Both the proposed TFOC ‐OPRM algorithm and these two comparative

algorithms take 500 Monte-Carlo simulations each time as their estimated performance

value. Two performance indexes, namely, normalized probability of success (NPS) and

estimated root-mean-square errors (RMSEs), are defined to evaluate the performance

of these three algorithms. And the RMSEs and NPS are respectively expressed as

RMSEs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

500M

X500
i¼1

XM
n¼1

θ̂n ið Þ − θn
� �2

vuut ð21Þ

NPS ¼ ϒsuc

Τtotal
ð22Þ

where θ̂nðiÞ refers to the estimated value of the reference value θn in the ith time

Monte Carlo trial. The ϒsuc and Τtotal denote the times of successes and Monte Carlo

trial, respectively. Furthermore, it should be noted that the defined success of a simula-

tion experiment satisfies maxðjθ̂n − θnjÞ < ε, and ε in the formula equals to 0.8 and 1.5

for experiments 2 and 3, respectively.

4.1 Experiment 1: the spatial spectrum estimation

In the first experiment, the input SNR and the number of snapshots are set to be 10 dB

and 500, respectively. Figure 1 shows the spatial spectrum of the proposed TFOC ‐

OPRM, FOC ‐OPM, and MFOC ‐OPM algorithms in both spatially white noise and

spatially color noise environments. It can be observed from the curves in Fig. 1 that all

of the three algorithms have successfully located the sharp peak corresponding to the

incident angle. Note that the angular resolution performance of the three algorithms in

spatially white noise situation provides better than that of spatially color noise situation.
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Further analysis indicates that no matter whether in spatially white noise situation or in

spatially color noise situation, the angular resolution of the proposed TFOC ‐OPRM al-

gorithm is much higher than that of both MFOC ‐OPM and FOC ‐OPM algorithms.

The reason is that the proposed TFOC ‐OPRM algorithm can recover the Toeplitz

structure of R4, making the Toeplitz matrix R4T closer to the real situation.

4.2 Experiment 2: RMSEs and NPS versus SNR

The main objective of this experiment is to evaluate the performance of the TFOC ‐

OPRM algorithm, FOC ‐OPM algorithm and MFOC ‐OPM algorithm in terms of

RMSEs and NPS with the change of input SNR. The number of sampling snapshots is

L = 2000, the input SNRchanges from 8 to 24 dB, with the step being 2 dB. Figures 2

and 3 plot the RMSEs and NPS of DOA estimation with the proposed TFOC ‐OPRM

algorithm and the comparison algorithms as the input SNR changes, respectively. As il-

lustrated in Fig. 2, the RMSEs of the three algorithms decrease monotonically with the

increase of the input SNR. Further analysis shows that in the environment of spatial

white noise, with the increase of input SNR, the RMSEs performance curve of TFOC ‐

OPRM algorithm is better than that of FOC ‐OPM algorithm and that of MFOC ‐

OPM algorithm; in the environment of spatial color noise, the RMSEs performance

curve of TFOC ‐OPRM algorithm is better than that of MFOC ‐OPM algorithm. That

is, no matter whether in spatially white noise situation or in spatially-color noise situ-

ation, the RMSEs performance of the proposed TFOC ‐OPRM algorithm achieves bet-

ter than that of both MFOC ‐OPM and FOC ‐OPM algorithms. In addition, when the

input SNR changes between 8 and 14 dB, the proposed TFOC ‐OPRM algorithm man-

ages to achieve almost the same RMSE performance as the FOC ‐OPM algorithm. But

when the input SNR is higher than 14 dB, the performance of TFOC ‐OPRM becomes

better than that of FOC ‐OPM. From Fig. 3, it can be concluded that the NPS perform-

ance of the proposed TFOC ‐OPRM algorithm is better than that of the FOC ‐OPM
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algorithm and MFOC ‐OPM algorithm in the case of low input SNR (between 8 and

10 dB) in spatially white noise situation. With the increase of input SNR, theNPS of all

of the three algorithms ultimately is 1. It is also worth noting that when the SNR

changes between 8 and 16 dB in spatially color noise situation, the performance of the

proposed algorithm is better than that of the compared algorithms. In addition to that,

the proposed algorithm not only removes a lot of redundant data in the original FOC,

but also restores the Toeplitz structure of the reduced dimensional FOC. Moreover, it

adopts the method of finding roots of polynomials. Therefore, the proposed TFOC ‐
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OPRM algorithm not only reduces the computational complexity, but also improves

the accuracy of DOA estimation.

4.3 Experiment 3: RMSEs and NPS versus snapshots

The main objective of this experiment is to verify the performance of the RMSEs and

the NPS of TFOC ‐OPRM algorithm, FOC ‐OPM algorithm, and MFOC ‐OPM algo-

rithm when the number of sampling snapshots changes under the environment of

Gaussian white noise and color noise. The input SNR is set to 10 dB, the number of

sampling snapshots changes from 400 to 2000, with the step of 200. Shown in Figs. 4

and 5 are the performance curves of RMSEs and NPS of the proposed algorithm and

the comparative algorithms as the number of sampling snapshots changes. It can be

seen from the performance curves demonstrated in Figs. 4 and 5 that when the number

of sampling snapshots varies from 400 to 1000, both RMSEs and NPS show the pres-

ence of a large degree of jitter. The main reason for this unsatisfied performance is that

the number of sampling snapshots is relatively small, resulting in too little data ac-

quired. In other words, the estimated matrixR̂4 deviates greatly from the ideal matrix

R4 due to the number of sampling snapshots that is relatively small. With the increas-

ing number of sampling snapshots, we can see that the performance curves tend to be

stable gradually. At the same time, it can be observed that the TFOC ‐OPRM algorithm

proposed in this paper achieves more satisfactory estimation performance thanMFOC ‐

OPM and FOC ‐OPM algorithms, either in the condition of spatial-white noise or in

the condition of spatial-color noise. And the estimation performance of the three algo-

rithms in spatially-white noise situation provide better than that of spatially color noise

situation. Note that the computational complexity of proposed algorithm is significantly

lower than that of the FOC ‐OPM algorithm due to the fact that the redundant infor-

mation of the original cumulant matrix is removed. Moreover, the Toeplitz approxi-
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mate method is performed on the reduced-rank R4 to improve estimation performance.

Meanwhile, compared to MFOC ‐OPM method, the TFOC ‐OPRM algorithm has

lower computational burden, which exploits polynomial rooting instead of spectral

search.

4.4 Experiment 4: the calculation complexity versus snapshots

In this simulation experiment, we further verify the advantages of TFOC ‐OPRM algo-

rithm in terms of computational complexity, also by comparing the algorithms with

FOC ‐OPM and MFOC ‐OPM. The number of incident target signal sources and the

number of array elements of ULA are set as M = 3 and N = 3 respectively, with the

interval of angular scanning being defined as Δθ = 0.01. Figure 6 shows the calculation

complexity of the proposed TFOC ‐OPRMalgorithm and the comparison algorithms as

the number of sampling snapshots changes (the number of sampling snapshots changes

from L = 400 to L = 2000). Viewing from the simulation results in Fig. 6, with the in-

creasing number of sampling snapshots, the computational complexity of the proposed

TFOC ‐OPRM algorithm is significantly far lower than that of the FOC ‐OPM algo-

rithm and the MFOC ‐OPM algorithm, and this advantage will be more obvious with

the further increase of the number of sampling snapshots. The reason is that the pro-

posed TFOC ‐OPRM algorithm not only eliminates a large number of redundant data

in the original FOC, but also adopts the polynomial root method. This is consistent

with the theoretical analysis given in Section 3.3 and testify the high-efficiency of the

proposed TFOC ‐OPRM algorithm.

5 Conclusions
In this paper, a novel low computational complexity TFOC ‐OPRM localization algo-

rithm for DOA estimation has been proposed in the presence of spatially white noise

400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Snapshots

N
P

S

FOC-OPM White Noise
MFOC-OPM White Noise
TFOC-OPRM White Noise
FOC-OPM Color Noise
MFOC-OPM Color Noise
TFOC-OPRM Color Noise

Fig. 5 NPS of the DOAs versus snapshots

Shi et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:193 Page 11 of 14



and spatially color noise environments. Specifically, we reconstruct a new Toeplitz

matrix, which is close to the Toeplitz structure information in ideal condition via the

Toeplitz approximate method. By exploiting the polynomial root method, the proposed

TFOC ‐OPRM localization algorithm does not include large amount of EVD or SVD

computation load, which are required in conventional DOA estimation algorithms such

as the MUSIC or ESPRIT algorithms. All simulation results validate the superiority of

the proposed TFOC ‐OPRM localization algorithm. Moreover, the simulation results

indicate that the proposed TFOC ‐OPRM localization algorithm achieves lower com-

putational complexity and better accuracy than the FOC ‐OPM algorithm and the

MFOC ‐OPM algorithm both in spatially white noise and spatially color noise

situations.
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