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Abstract

Driven by industrial development and the rising population, the upward trend of electricity consumption is not going
to curb. While the electricity suppliers make every endeavor to satisfy the needs of consumers, they are facing the
plight of indirect losses caused by technical or non-technical factors. Technical losses are usually induced by short
circuits, power outage, or grid failures. The non-technical losses result from humans’ improper behaviors, e.g.,
electricity burglars. Due to the restrictions of the detection methods, the detection rate in the traditional power grid is
lousy. To provide better electricity service for the customers and minimize the losses for the providers, a leap in the
power grid is occurring, which is referred to as the smart grid. The smart grid is envisioned to increase the detection
accuracy to an acceptable level by utilizing modern technologies, such as cloud computing. With the aim of
obtaining achievements of anomaly detection for electricity consumption with cloud computing, we firstly introduce
the basic definition of anomaly detection for electricity consumption. Next, we conduct the surveys on the proposed
framework of anomaly detection for electricity consumption and propose a new framework with cloud computing.
This is followed by centralized and decentralized detection methods. Then, the applications of centralized and
decentralized detection methods for the anomaly electricity consumption are listed. Finally, the open challenges of
the accuracy of detection and anomaly detection for electricity consumption with edge computing are discussed.
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1 Introduction
The development of the industry and the rise in popu-
lation have increased the consumption of electricity. The
upward trend of electricity consumption is not going to
curb [1, 2]. While the electricity providers make every
effort to fulfill the electricity consumption and to provide
the best service to the customers, the service providers
are suffering losses in technical and non-technical forms.
Technical losses are usually caused by short circuits,
power outage, or grid failures. Non-technical losses are
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mainly caused by humans’ inappropriate usage of elec-
tricity and electricity theft, etc. [3, 4]. In the USA alone,
electricity theft was reported to cost the providers around
$6B/year. Energy theft has been a serious problem in the
traditional power system [5].
Identifying the non-technical factors and mitigating

the losses incurred by them are the major concerns of
the electricity service providers [6, 7]. The approach of
anomaly detection in the traditional power grid was as fol-
lows: If abnormal electricity consumption behaviors were
detected by manually monitored, the inspection team
would be sent to the detected locations for further inspec-
tion. The detection result was considered abnormal if
the electricity consumption changes drastically from the
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normal consumption in either way if it was increased
or decreased. This traditional approach required tedious
man-hour and money and added more burden to the elec-
tricity service providers. Meanwhile, the approach had a
low detection rate of below 5% [8].
The requirements for greater efficiency, reliability, and

security, as well as the concerns of anomaly detection for
electricity consumption, constantly highlight the necessity
of a leap in the power grid. This leap is referred to as the
smart grid. The smart grid is defined as an electricity net-
work that efficiently integrates the behaviors and actions
of all users connected to it such as generators, consumers,
and those that do both [9, 10]. The smart grid is capa-
ble of delivering electricity more efficiently and making a
timely response to wide-ranging events, such as detect-
ing abnormal electricity consumption and adopting the
corresponding strategies [11, 12].
As a key technology in the smart grid, advanced meter-

ing infrastructure (AMI) can reduce the probability of
electricity theft through its excellent monitoring capaci-
ties and the detailed usage measurements [13]. Due to the
widespread popularity, smart meters provide the oppor-
tunity for the utilizers to collect massive electricity con-
sumption data. High-resolution data collected by smart
meters provide information on electricity consumption
and the lifestyles of the consumers [14]. With the analysis
result of customs’ normal power consumption, irregular
statistics can reveal some malicious activities. However,
the detection rate is limited by some shortcomings in
existing classification schemes:

1 Data imbalance. The numbers of normal and
abnormal samples are out of proportion. Benign
samples are easy to get through analyzing historical
data. In contrast, abnormal samples or theft samples
are rare or do not exist in the dataset. Lack of
exhaustive dataset limits the detection rate.

2 Non-malicious factors’ interference. The detection
rate can be influenced by several non-malicious
factors, such as the dynamical change of consumers’
energy demands and the diversity of appliances’
categories, etc. If these non-malicious factors are not
properly distinguished and dealt with, they are likely
to be mistaken for the false alarm which can result in
bad performance of the detection.

To achieve acceptable detection accuracy and manage
plenty of smart meters in safe and reliable ways, utilities
have to extend existing systems to a distributed data cen-
ter. Cloud computing, in this respect, is considered to play
the key role [15]. It refers to a new computation paradigm,
which has extensively spread among industries, academic
organizations, and individual clients. In the smart grid,
cloud computing can deal well with the massive data

generated by millions of smart meters which are deployed
in every corner of the city [16]. Cloud computing is capa-
ble of improving the detection rate of energy consumption
for the following reasons [17]. Managing massive data
and distinguishing the malicious factors are complex and
beyond the processing capability of the existing system
in the smart grid. Therefore, with the aim of achieving a
higher detection rate, cloud computing can be utilized to
optimize information processing due to the storage and
computing mechanisms [18].
The paper is organized as follows. Section 2 intro-

duces the definitions of anomalies and anomaly detec-
tion. Section 3 surveys proposed frameworks of anomaly
detection for electricity consumption and the frame-
work of anomaly detection for electricity consumption
in edge-cloud computing. Section 4 presents the cen-
tralized detection of anomaly electricity consumption
with big data analysis and decentralized detection of
anomaly electricity consumption with edge-cloud com-
puting. Section 5 describes the applications of central-
ized and decentralized methods for anomaly electricity
consumption. Section 6 discusses the open challenges
of the accuracy of detection and anomaly detection for
electricity consumption with edge computing.

2 Definition
In this section, we first elaborate on the definitions of
anomalies and anomaly detection, respectively, then dis-
cuss three categories of anomaly detection techniques,
and particularly focus on anomaly detection for electricity
consumption.

2.1 Anomaly electricity consumption
Anomalies, in general, are also known as outliers,
deviants, discordance, or exceptions [19]. Generally,
anomalies encompass the following types:

i Point anomalies. While a data point is distinct from
the rest of the data, it could refer to as a point
anomaly. A point anomaly is the simplest case and is
very common.

ii Contextual anomalies. While a data point is
anomalous in one specific context, it could refer to as
a contextual anomaly. In other words, contextual
anomalies often are identified in time-series and
spatial data.

iii Collective anomalies. While a collection of data is
anomalous, it could refer to as a collective anomaly.
Generally, the term “collective” represents the spatial-
temporal collection. Even if a set of data is a collective
anomaly, it may not be a point anomaly, respectively.

Table 1 lists four definitions of anomalies, respec-
tively. Definitions are all from the perspective of the
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Table 1 Definitions of anomalies and anomaly detection

Term Definition Reference

Anomalies One that appears to
deviate markedly from
other members of the
sample in which it occurs.

Xue et al. [22]

An observation that
deviates so much from
other observations as to
arouse suspicion that it
was generated by a
different mechanism.

Pauwels et al. [23]

A data point that is very
different from the rest of
the data.

Moghaddass et al. [24]

An observation in a
dataset that appears to be
inconsistent with the
remainder of that set of
data.

Miao et al. [25]

Anomaly
detection

The problem of finding
patterns in data that are
not consistent with
expected behavior.

Sabokrou et al. [26]

The task of identifying that
test data differ in some
respect from the data that
are available during
training.

Patel et al. [27]

The work of detecting
fault data by constantly
monitoring specific
features of data and
comparing the real-time
data with either the
features of normal data or
those for faults.

Hodge et al. [21]

discrepancies of data [20]. However, for a more compre-
hensive definition, Johnson et al. [21] not only considered
the distinctions of data but also discussed the individ-
ual characteristics of each data point. Given aberrant data
may do harm for analysis and lead to deviated parameters
and faulty results, anomaly detection is a key task to scale
down such potential risks. In addition, three definitions of
anomaly detection are also presented in Table 1.
Due to the data explosion and the hidden disadvantage

of aberrant data, detecting anomalous events is becoming
essential increasingly. In Table 2, these three categories of
anomaly detection techniques are summarized.

1) Classification:

i) Bayesian network. Khosravi et al. [29]
leveraged an improved dynamic Bayesian
network to satisfy the demand of a detection
model that recognizes anomalous events in
the data.

ii) Support vector machine (SVM). Miao et al.
[25] proposed a distributed online one-class

Table 2 Techniques for anomaly detection

Field Technology References

Classification Bayesian network Gan and Zhou [32]

Support vector machine Ou et al. [33], Babaei
et al. [34]

Neural network Wazid and Das [35]

Nearest neighbor KNN Ghezelbash et al. [36]

Relative density Schmutz et al. [37],
Krishnaveni et al. [38]

Clustering Regular clustering Xiang et al. [39]

Co-clustering Zhai et al. [40]

SVM algorithm to discover anomalous data
via wireless sensor networks and get a
decentralized loss function.

iii) Neural networks. Sabokrou et al. [26] used an
unsupervised fully convolutional neural
network providing anomalous detection in
the video stream.

2) Nearest neighbor:

i) KNN algorithm. Wang et al. [41] used the
KNN algorithm based on the design and
simulation of the QualNet simulation
platform.

ii) Relative density-based method. Gan et al. [32]
proposed a method using an improved local
outlier factor (LOF) algorithm for
implementing adaptive dynamic adjustment
of parameters in network traffic scenarios.

3) Clustering:

i) General clustering. Wazid et al. [35] put
forward a new intrusion approach using the
k-means clustering algorithm for the hybrid
anomaly in the wireless sensor network.

ii) Co-clustering. In [44], a novel scheme of
anomaly detection based on co-clustering was
developed, respectively.

2.2 Cloud computing
Recently, with the speedy advances of the economy and
improvement of residents’ living standards, the amount of
power usage is getting higher increasingly and the require-
ment of utilizing electricity tends to diversify. In 2007, the
Energy Independence and Security Act (EISA) stated a
national policy to support the National Institute of Stan-
dards and Technology (NIST) to create a new power grid
[45]. Therefore, to make an extensive distributed power
delivery network, a novel power grid, the smart grid, was
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proposed that is informative, digital, automatic, and inter-
active. Moreover, there are several characteristics of the
smart grid concluded by EISA, including improving power
reliability and quality, optimized utilization, higher capac-
ity, and efficiency of the electric network [46]. Given the
emergence of smart meters and sensors, anomaly detec-
tion could be better adapted to get access to real-time
measured data in smart grids aiming to identify the irrele-
vant data or events that happen infrequently. In particular,
the detection of anomalous electricity consumption is one
of the most serious issues for electricity providers in smart
grids. In this section, losses of electricity in smart grids
were discussed; after that, we will show leveraging cloud
computing platforms to detect electrical consumption
anomalies.

1) Losses of electricity: Due to the rapid advances in
modernization and industrialization, the
consumption of electricity rises rapidly. Meanwhile,
energy providers could face serious problems with
anomalous electricity consumption since there are
billions of dollars which are lost in energy utilization.
In recent years, anomaly detection attracted much
attention to electricity consumption in the power
systems since it is beneficial for electricity providers
to find unusual events that happen infrequently or
unconventionally, enhance operational safety, and
diminish revenue losses. Particularly, as shown in
Table 3, losses of electricity are typically classified
into two categories as follows: (i) Technical
losses—in the power grid, technical losses are caused
by power dissipation, transmission, and distribution
loss or equipment failure, which means it occurs
inevitably and naturally. Technical losses give rise to
financial losses and inefficient usage of energy for a
country. Therefore, the improvement of technical
losses should be considered from the perspective of a
country rather than an institution or an organization.
(ii) Non-technical losses (NTLs)—NTLs, on the
other hand, are specifically caused by utilizing
electricity illegally, electricity theft, meter failure, or
bill fraud [47, 48]. Compared with technical losses,
NTLs make up the most portion of electricity losses

Table 3 Techniques for anomaly detection

Type Examples Research focus Avoidable

Technical losses Power
dissipation,
internal electrical
resistance

Equipment
efficiency,
transmission
efficiency

×

Non-technical
losses

Energy theft, bill
fraud, meter
failure, illegal
power utilization

Detecting
electricity theft

�

and lead to a huge amount of economic cost. The
electricity theft by connecting to the power grid
illegally or unauthorized tampering of electric meter
is one of the most typical cases in NTLs. It is
estimated that up to $25 billion was lost in electricity
usage due to power theft worldwide every year.

2) Using cloud platforms to detect power consumption
anomalies: During the last decade, a novel
computation paradigm, cloud computing, has been
developing dramatically, which has extensively
spread among industries, academic organizations,
and individual clients. In general, the principle of
cloud computing is to leverage distributed data
centers or central servers to satisfy the demand of
computer resources, specifically data storage (e.g.,
cloud storage) and data computing, at any time for
different customers [49]. With the development of
smart grids in recent years, the electricity
requirement from consumers has increased sharply
in diverse periods. The pressure from discovering
anomalous electricity consumption, especially NTLs,
as well as security analysis and communication
efficiency, is growing for smart grid systems.
Consequently, electricity providers need to integrate
most resources into cloud computing platforms for
more powerful computation capability and a higher
efficient communication network. Compared with
the conventional identifying patterns for power
consumption, a novel detecting model of electricity
consumption with cloud computing [50], which will
be elaborated on in Section 3, can boost the
efficiency of resource utilization and reduce the time
of computation. Therefore, energy providers can
discover anomalous electricity usage in real-time by
leveraging cloud platforms.

3 Framework
Considering that anomalous electricity consumption
could give rise to multiple revenue losses, significant
efforts have been spent on identifying unusual events of
electricity use by energy service providers. In this section,
the frameworks of anomaly detection for electricity con-
sumption were reviewed, and we propose a framework
with a particular focus on cloud computing.

3.1 Surveys on proposed frameworks of anomaly
detection for electricity consumption

In general, anomaly detection in smart grid systems
relates to unusual power consumption, especially NTLs
which encompass illegal electricity usage, theft of power,
and bill fraud. It could lead to numerous economic costs
every year globally. Electricity theft, in particular, plays
a key role in NTLs using power by unauthorized con-
nection to power systems or faking bills without paying
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[51]. There is a considerable body of studies in anomaly
detection for electricity consumption to identify aberrant
activities of power theft and minimize financial costs for
energy providers. This section introduces a survey on
existing frameworks of anomaly detection for power con-
sumption, then summarizes it in Table 4. Moghaddass
et al. [45] put forward an anomaly detection framework
in real-time to discover the events, conditions, and behav-
iors that occur infrequently. Such a framework is much
different from existing works that it is designed based
on the hierarchical structure of the grid and smart grid

Table 4 Proposed frameworks of anomaly detection for
electricity consumption

Reference Purpose References

Rajasegarar et al. [57] Discover unusual
events in
real-time

• It could be a predictor
before anomalies
happening.

• It might identify
multilevel anomalies.

Chou and Telaga [58] Assess the energy
consumption for
discovering
potential power

• It was designed two
schemes to identify
energy theft attacks and
faulty meters.

theft •NTLs’ detection precision
was improved and false
positives were reduced.

• Technical losses also
could be estimated.

Liu et al. [59] Detect electricity
theft and
discover
consumers
involved

• Energy theft detection
model can work for both
dependent and
independent data.

• The predictor variables
were uncorrelated unless
power theft occurs.

Arayaa et al. [60] Describe the
patterns of
consumers’
electricity
consumption

• Users were mapped into
the 2D plane through PCA
for showing data and
detecting anomalies.

• Grid processing
technology was used.

Xu et al. [61] More accuracy of
energy theft
detection

• An information fusion
method was used to
discover energy theft
attempts.

• Data mining techniques
were utilized to detect
anomalies by
non-intrusive load
monitoring.

•A practical household
load simulator was
created to assess diverse
techniques.

data and solves significant challenges, includingmultivari-
ate counting data, missing points, high-dimensionality,
and variable selection. Yip et al. [46] proposed a novel
anomaly detection framework aiming to assess the elec-
tricity usage of consumers for discovering the possible
behaviors of power theft, energy fraud, and meter errors.
Due to the existing approaches for discovering NTLs that
do not perform very well, it is necessary to utilize a
new framework that can availably identify electricity theft
for minimizing revenue costs. Therefore, they proposed
such a framework using linear programming to address
the problems concerning existing detection methods. Tao
et al. [47] developed a statistical framework that can
detect electricity theft and discover consumers involved
based on information usage of higher-order statistics of
energy consumption. Owing to the financial losses by
electricity theft, advanced metering infrastructure (AMI)
has emerged to control the occurrence and decrease the
potential risk of energy theft. To improve the capability
of monitoring anomalous events, smart meters and sen-
sors are utilized extensively. Qiu et al. [48] designed a
monitoring and alarm framework that describes the pat-
terns of consumers’ electricity consumption by acquiring
multiple features. To improve the detection efficiency, the
framework leverages the grid processing technology that
chooses outliers of low-density regions. Xu et al. [56] put
forward an AMI intrusion detection framework aiming
to integrate the sensors and consumption data, as well as
integrate meter audit logs of events to the anomaly detec-
tion model for detecting electricity theft with higher pre-
cision. Although several proposed frameworks, as men-
tioned above, can discover and recognize electricity theft-
related events, they may have some drawbacks as follows:
(i) Limited computation resources—driven by the increas-
ing requirement of electricity, the scale of power data or
information from meters or sensors generated by con-
sumers is expanding constantly. The local data servers in
power systems are not able to execute such computational
and processing tasks due to finite computing power. (ii)
Limited storage capability—in general, the storage capa-
bility of local servers in power systems is hard to satisfy
the infinite storage. Once the storage limit will be reached,
the data center needs to extend the number of servers,
which is inefficient, unadaptable, and costly. Therefore, in
the next section, we will propose a novel framework of
anomaly detection for electricity consumption by using
cloud computing.

3.2 Framework of anomaly detection for electricity
consumption with cloud computing

Besides the overview of proposed frameworks, we further
propose a framework of anomaly detection for electric-
ity consumption by utilizing cloud platforms, as illus-
trated in Fig. 1. The goal of such a framework is to
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Fig. 1 The framework of anomaly detection for electricity consumption with cloud computing

identify anomalous power consumption with high scala-
bility, availability, and reliability. Main components of this
framework are described as follows:

1) Data collection: Due to the improvement of
industrialization and modernization, the amounts of
power consumption are getting higher significantly.
One of the big features of smart grids is the data
explosion generated from meters or sensors.
Compared with the conventional meters, the
capability of smart meters is gathering electricity
consumption from customers and appending more
power information, including the values of voltage,
phase angle, and frequency [62]. Smart meters can
also read real-time electricity use and transmit these
data to the energy providers. In our framework, the
data collection phase contains three steps to collect
higher accurate, complete, and consistent data.

Step 1: Data acquisition. Multiple data of power
consumption generated from industries,
buildings, and households are collected by
smart meters or sensors. All these electrical
data do not store to the database or data
centers immediately; however, they could be
transferred to executing further processing in
the next step.

Step 2: Data cleaning. Although numerous electricity
consumption data are gathered, we may need
to remove irrelevant data. Smart grid data
have the characteristics of time-series, such as
intra-week, intra-day, intra-hour, and
real-time. There may have some incomplete
data, error data, duplicated data, or noise.
Therefore, before utilizing these raw data to
identify anomalous events, they could be
cleaned.

Step 3: Data transmission. After pre-processing
collected data, these ready data will be
transmitted to a cloud data center. Smart
grids could utilize the characteristics of cloud
platforms which can provide high
fault-tolerance through redundancy and
rollback-recovery through versioned copies
[63]. Furthermore, cloud data centers could
extend the existing communication network
to a distributed network for satisfying the
demand of sending smart meter data in a
reliable, real-time, and elastic way.

2) Anomaly detecting: In this stage, a detection model,
deployed in the cloud computing platform, will be
used to identify anomalous electricity consumption
data in smart grids, especially power theft. Compared
with the conventional detection model distributed on
local servers, the utilization of cloud computing can
offer consumers a virtualized infrastructure and raw
materials of hardware (e.g., processing, memory, and
servers). The virtual machines with different
configurations based on clients’ requirements are
provisioned, which improves the flexibility and
customization for using computing resources. The
size of ready data generated from smart meters or
sensors is considerable. Therefore, traditional data
centers of power grids may not be capable of
processing such scale data due to limited computing
performance, while the cloud data center has a more
powerful computing capability. After data cleaning,
the features of pre-processed data will be calculated.
The data size could be scaled down by removing data
with duplicated or similar features to reduce the data
dimension. Moreover, several methods are available
for detecting anomalous electricity consumption,
including neural network, support vector machine,
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KNN algorithm, and Bayesian network [64]. Such
approaches run in real-time for anomaly detection in
cloud platforms, which is the key part of this stage.
The results of the anomaly detection model could
depend on the selected method and its outputs. After
that, the outputs are analyzed and evaluated to
identify anomalies.

3) Results evaluation: In this stage, we need to provide
insight into different factors that could influence the
performance of anomaly detection for electricity
consumption. For a better intuition about its
advantages and limitations, the following metrics
could be used to evaluate the performance of the
detection model: (i) Accuracy—the accuracy is the
percentage of the number of correctly detecting
values Nc out of the total number of the detected
values N. The accuracy rate Ra is calculated by
Ra = Nc/N . For example, a high Ra means a better
detection performance. (ii) False positives—if some
negative samples are identified with the positive or
non-negative samples by detection method, that case
is referred to as false positives [65]. Supposed that the
number of false positives is FP, and the number of
true negatives is TN, the false positive rate FPR is
calculated by FPR = FP/(TN + FP). (iii) False
negatives—on the other hand, if some positive
samples are identified with the negative or
non-positive samples by detection method, that case
is referred to as false negatives. Supposed that the
number of false negatives is FN, and the number of
true negatives is TP, the false negative rate FNR is
calculated by FNR = FN/(TP + FN) [66].

4 Methods for prevention of anomaly power
consumption

Currently, plenty of studies have been carried out which
point to the anomaly detection of electricity. In this
section, we will methodically present, categorize, and
outline the extant methods both in the centralized and
decentralized aspects.

4.1 Centralized detection of anomaly electricity
consumption with big data analysis

Centralized detection of anomaly electricity consump-
tion methods can be generally separated into two sides:
the mathematical analysis methods and machine learning
algorithms. In this section, we will discuss these two sides
in great detail.

4.1.1 Mathematical methods
In truth, there is presently no state-of-the-art method that
has been proposed in the mathematical area of anomaly
detection for electricity consumption, and the existing
methods may all have different benefits and weaknesses.

Therefore, we extract mathematical analysis methods to
high-dimensional random matrix methods and sequence
discretization methods [67]. In this section, we take a
holistic view of these methods, with the hope of setting a
clear direction for future research.
Tasfi et al. [68] described the merit of minimum vari-

ance distortionless response beam-forming (or Capon
beam-forming). Moreover, the author analyzed the need
of estimating the inverse covariance matrix of the received
signals from data. Besides, the author designed an estima-
tor to optimize the inverse covariance, which is suitable
for high-dimensional settings.
Rashid et al. [69] identified and defined factor models

to reduce dimension. Furthermore, the author presented
a new approach to estimate high-dimensional factor mod-
els, using the empirical spectral density of residuals. The
proposed method is robust to noise or the presence of
weak factors. Whereas the method failed to employ more
general residual modeling, so further study is needed to
calculate the distribution readily.
Morris et al. [70] paid attention to the problem of

low-rank plus sparse matrix decomposition for big data.
Meanwhile, the author proposed an approach that trans-
forms the decomposition problem into a subspace learn-
ing problem. In addition, the author proposed adap-
tive sampling algorithms to address the problem of col-
umn/row sampling.
Basumallik et al. [71] performed an average case analy-

sis of the generalization dynamics of large neural networks
trained using gradient descent. Especially, the author
studied the practically-relevant “high-dimensional” to use
random matrix theory and exact solutions in linear mod-
els. As a result, the author identified two novel phenom-
ena underlying this behavior in over-complete models.
Table 5 shows the benefits andweaknesses ofmathemat-

ical methods.

4.1.2 Machine learning algorithms
During the post-more law age, the hash rate ceases
to be the restraining factor in the big data process-
ing area. Therefore, machine learning algorithms have
become mainstream in the electricity consumption detec-
tion industry. In this section, we will explain the applica-
tions of machine learning algorithms based on the most
common model: deep neural networks (DNN) and recur-
rent neural networks (RNN).
Rashid et al. [69] proposed a revised method based

on the non-intrusive load monitoring theory. They con-
structed a workload model by using the REFIT dataset
from smart-meter devices and regarded it as a built-in pre-
diction model for the method. The method focuses on
estimating the electricity consumption based on the built-
in model to detect the anomaly consumption, if and only
if the worker node is in running.
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Table 5 Benefits and weaknesses of mathematical methods

Reference Benefits Weaknesses

Tasfi et al. [68] The method can gave
an extract detection
for a number of
abnormal
consumptions.

The inherent dataset
has a significant
impact on
performance of the
method.

Rashid et al. [69] The method identifies
the abnormality
character dynamically.

The method is
vulnerable to the
operation load
signature.

Yen et al. [70] The proposed
pretreatment can
filter the dummy date
effectively.

The method heavily
subsidized on
consistency of
time-series data.

Basumallik et al. [71] The dataset matrix
helps user to detect
the abnormal
electricity
consumption in a
short time.

The mass data makes
precise the abnormal
area location more
difficult.

Eldali et al. [73] investigated the influence of acquisition
frequency in the electrical power system and proposed
a detecting method by regulating the frequency dynami-
cally for every worker node in the system. By incorporat-
ing the detecting rate of different acquisition frequencies
under the normal condition and the sudden increase con-
dition, they found the corresponding frequency for each
situation. The method detects anomaly consumption by
looking for changing data under the appropriate acquisi-
tion frequency.
Guarany et al. [74] proposed a classification method

base on the CNN model. They identified the problem
as a multiclass classification problem and combined the
electricity consumption data (e.g., worker nodes’ states,
aggressive behaviors, common time sequences) as a mul-
tivariate vector for feeding the CNN model.
Kou et al. [75] collected the electricity consumption

dataset generated by the smart sockets and used the
dataset to build the user behavior model. They proposed a
classification method by inferring users’ abnormal behav-
iors, based on estimating the operating states of users’
smart home devices in view of the user behavior model.
Table 6 shows the benefits and weaknesses of machine

learning algorithms.

4.2 Decentralized detection of anomaly electricity
consumption with edge-cloud computing

The centralized detection methods mainly focused on
detecting the unnatural value in the dataset but neglect
the trend of period series [76]. Instead, we use decentral-
ized detection methods to find the anomaly trend in the
dataset generated by smart appliances [77]. In this section,
we will review some significant decentralized methods.
Buzau et al. [78] argued that the following two

steps can identify anomalies: (1) electricity consumption

Table 6 Benefits and weaknesses of machine learning algorithms

Reference Benefits Weaknesses

Eldali et al. [73] They expose the REFIT
dataset with detailed
annotation for
anomaly electricity
consumption.

The dataset excludes
uncommon
anomalous features,
which led to an
increase in MSE. The
application of loss
estimation and theft
detection is not
sufficient.

Cui and Wang [72] The method improves
the speed of
detection effectively.

Changing the
acquisition frequency
constantly may cause
harm to smart meters.
The over-fitting
challenge brings out
a high false positive.

da Silva et al. [74] The classification
method detects
anomaly detection in
early time as for
real-time data.

The method has
lower detecting
accuracy. The slight
electronic abnormal
consumption owns
the great impossibility
to be detected.

Liu et al. [75] The detection
method does not
affect the operation of
smart home devices.

It is difficult to make
accurate detection
when users are using
non-smart devices by
this method.

forecasting and (2) anomaly detection. Consequently, the
author proposed a shared connected deep neural net-
work for forecasting electricity consumption time-series
anomaly. What is more, the method of transferring learn-
ing knowledge between domains significantly to improve
the forecasting results has been proposed.
García et al. [65] described the great impact of ana-

lyzing consumption to find unexpected behaviors. The
research conducted by the author presents an experi-
mental study of supervised and unsupervised neural net-
works for anomaly detection in electrical consumption.
Besides, the result of experiments shows that the super-
vised approach has a significant improvement in the
anomaly detection rate.
Xiang et al. [80] identified detecting consumption

anomalies with a real-time big data analytic problem.
Moreover, the author proposed a supervised learning and
statistical-based anomaly detection method, and imple-
mented a lambda system using the in-memory distributed
computing framework, Spark, and its extension Spark
Streaming.
Ahn and Wang [67] proposed a residential electrical

load anomaly detection framework that includes a hybrid
one-step-ahead load predictor and a rule-engine-based
load anomaly detector for the goal of improving predic-
tion and detection accuracy. Meanwhile, through employ-
ing the Bayesian information criterion, the author reduced
the influence of the over- or under-fitting problem.
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Zhou et al. [82] utilized two subnetworks: one performs
reconstruction and uses unlabeled data, while the other
one performs classification with labeled data. On this
basis, the author presented a deep semi-supervised con-
volutional neural network with confidence sampling for
electrical anomaly detection.

5 Applications
5.1 Applications of centralized detection methods for the

anomaly electricity consumption
The centralized detection methods for the anomaly elec-
tricity consumption process and analyze the obtained
electricity consumption data uniformly, and the methods
which are based on the big data have been widely used in
practice. Advanced metering infrastructure (AMI), such
as smart meters, can measure the user’s electricity con-
sumption at fine-grained intervals, including the user’s
electricity consumption, voltage level, and the switching
status of power services. The smart meter sends these
data to the data processing center for processing and anal-
ysis. In this process, the methods based on big data or
other centralized detection ways are used to analyze the
electricity data generated by a large number of electric-
ity meters and these methods have provided a suitable
solution for the detection of the anomaly electricity con-
sumption. Cui et al. [72] used the centralized detection
method and built a system to help a facilities manage-
ment company to detect and visualize anomalous events
in the school electricity consumption data. This system
based on the centralized detection method can greatly
improve the performance when detecting the anomaly
electricity consumption in the school. Eldali et al. [73] got
the AMI data through the smart meters and applied the
AMI data to anomaly detection. They developed a kind of
open-source computer software based on the centralized
detectionmethods, and this software can analyze the AMI
data and visualize the anomaly detection results. Silva
et al. [74] anticipated the occurrence of anomaly electric-
ity consumption with the centralized detection method.
They applied this method to the data generated by the
building in 20 weeks and achieved the expected result.
At the same time, this method can be used for anomaly
prediction directly.

5.2 Applications of decentralized detection methods for
the anomaly electricity consumption

The decentralized detection methods for the anomaly
electricity consumption distribute and analyze a large
number of electricity consumption data by installing an
electricity meter device in each household [86]. In the lat-
est smart-grid architecture, millions of smart devices are
distributed across buildings and homes over a wide geo-
graphical area and use smart meters to monitor electricity
consumption. A large number of data will be generated

under the architecture of the smart grid, but these data
are difficult to handle with cloud computing alone and
often lead to a large number of latency [87]. In this case,
adopting edge-cloud computing or fog computing can
effectively reduce delay and improve data processing effi-
ciency[88]. In the process of electricity anomaly detection,
the data such as current and voltage are obtained from
the sensor of the smart electricity meter firstly, and then,
the obtained data are trained and analyzed with an appro-
priate model so that the abnormal data can be extracted
efficiently. EI-Awadi et al. [74] used fog computing to solve
the problem of anomaly electricity consumption detec-
tion. They applied this method to the microgrid of the
University of Vigo and detected the anomaly electric-
ity consumption through the distributed collaboration of
terminal devices. Qi et al. [89] used the decentralized
detection method based on deep learning and extract the
high-level representation from the data acquired automat-
ically from the smart meters. This method has a good
prospect for intelligent applications and can improve the
efficiency of calculation. Buzau et al. [78] used an end-to-
end solution based on the decentralized detection meth-
ods to solve the problem of the non-technical losses in
anomaly electricity consumption, and this model has been
used in Endesa, which is the largest electricity company in
Spain.

6 Open challenges
The existing methods show good performance in anomaly
electricity consumption detection, but at the same time,
there are some shortcomings. In order to improve the
accuracy and security of anomaly electricity consumption
detection and ensure the reliable and efficient operation
of the smart grid, the challenges in anomaly electricity
consumption detection need to be further analyzed.

6.1 The accuracy of detection
Centralized and decentralized detections of anomaly elec-
tricity consumption can effectively know whether the
user has anomaly electricity consumption, but in practical
application, the accuracy of the two methods needs to be
further improved [91]. At the same time, when we receive
the electricity consumption data, we should ensure the
security of the data transmission.

1 Some anomaly detection methods use the AMI data
to analyze the behavior of power users. But the AMI
data do not have a common data format, so it is
difficult to share the data generated by different
providers.

2 The smart grid consists of a large number of smart
nodes, and this kind of network may be more
vulnerable to malicious attacks. To ensure the
security of the smart grid, it is necessary to detect any
unusual behaviors in the smart grid.
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3 In the electric system, the malfunction of measuring
instruments is almost inevitable and will affect the
detection accuracy. Using the double devices or
backing up the electricity consumption data is
helpful to rectify the erroneous data.

6.2 Anomaly detection for electricity consumption in
edge computing

After obtaining more accurate anomaly electricity detec-
tion data, the next step is to further improve the real-time
performance of anomaly electricity detection. Real-time
detection of anomaly electricity consumption needs to
use a large amount of data, and it needs to be able to
quickly process a large number of data streams in the
real-time environment and use the edge calculation which
can effectively improve the concurrency of data process-
ing [92]. In the future anomaly electricity consumption
detection, smart electricity meters with calculation per-
formance can be set in each power consumption place,
and a large amount of data calculation can be distributed
to each smart electricity meter, so as to realize real-time
detection of anomaly electricity consumption[93].

7 Conclusion
With the development of the industry and the popula-
tion rise, the upward trend of electricity consumption
is not going to cease. Meanwhile, due to some techni-
cal and non-technical factors such as electricity theft,
anomaly detection for electricity consumption in the tra-
ditional power grid needs to be upgraded. As a result, the
smart grid is an enhancement of the traditional power
grid. With the utilization of advancing technologies, for
instance, cloud computing, anomaly detection for elec-
tricity consumption in the smart grid can achieve accept-
able accuracy. In this paper, the definition of anoma-
lies and anomaly detection was first introduced. Then,
comprehensive surveys on the proposed framework of
anomaly detection for electricity consumption were con-
ducted, and the framework of anomaly detection for
electricity consumption with cloud computing was pro-
posed. Afterward, overviews of methods and applica-
tions of centralized and decentralized detection were
provided. Finally, the open challenges of the accuracy
of detection and anomaly detection for electricity con-
sumption with edge computing were discussed. We hope
the survey is capable of eliciting further research on
anomaly detection for electricity consumption with cloud
computing.
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