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Abstract

To automatically detect dynamic EEG signals to reduce the time cost of epilepsy
diagnosis. In the signal recognition of electroencephalogram (EEG) of epilepsy,
traditional machine learning and statistical methods require manual feature labeling
engineering in order to show excellent results on a single data set. And the
artificially selected features may carry a bias, and cannot guarantee the validity and
expansibility in real-world data. In practical applications, deep learning methods can
release people from feature engineering to a certain extent. As long as the focus is
on the expansion of data quality and quantity, the algorithm model can learn
automatically to get better improvements. In addition, the deep learning method
can also extract many features that are difficult for humans to perceive, thereby
making the algorithm more robust. Based on the design idea of ResNeXt deep
neural network, this paper designs a Time-ResNeXt network structure suitable for
time series EEG epilepsy detection to identify EEG signals. The accuracy rate of Time-
ResNeXt in the detection of EEG epilepsy can reach 91.50%. The Time-ResNeXt
network structure produces extremely advanced performance on the benchmark
dataset (Berne-Barcelona dataset) and has great potential for improving clinical
practice.
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1 Introduction
Epilepsy is a brain disease that is caused by persistent susceptibility to recurrent sei-

zures and the neurobiological, cognitive, psychological, and social consequences that

result. According to estimates by the World Health Organization (WHO), about 2.4

million people worldwide are diagnosed with epilepsy every year [1]. Prolonged, fre-

quent, or severe seizures can lead to further brain damage and even persistent neuro-

psychiatric disorders. Sudden epilepsy (SUDEP) is a serious complication of epilepsy

and is one of the most common causes of death in younger patients with epilepsy. The

timely diagnosis of the presence and type of epilepsy is critical to its prognosis and

choice of treatment options [2]. However, the diagnosis of epilepsy is relatively diffi-

cult, especially for the detection of seizures in newborns [3, 4]. The usual clinical ex-

perience is judged by observing the behavior and other seizures of the newborn, but

this is easily confused with other normal behaviors [5].
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Epilepsy is often attributed to excessive abnormal discharges of neurons in the brain

[6, 7]. Electroencephalogram signals provide a powerful tool for the diagnosis of epi-

lepsy. Experienced neuropathologists interpret EEG signals by observing the patterns of

seizures and the period of seizures, and have formulated certain international standards

to find specific signal characteristics in multi-channel electroencephalography [8, 9].

Then, the condition of the patient is judged by the EEG signal rule that is manually ex-

plained. This method is relatively time-consuming and subjective, and it is objectively

prone to errors [10, 11]. Therefore, a suitable mechanism is needed to automatically in-

terpret and classify EEG signals in patients with epilepsy.

EEG signal automatic classification methods usually use traditional manual feature

machine learning and statistical methods, such as time-frequency analysis using wavelet

transform [12], detection method using entropy estimator [13], and discrete wavelet

transform and approximate entropy method [14]. In addition, there are also methods

for detecting using shallow neural networks using artificial features, such as Elman and

probabilistic neural networks [15], which use approximate entropy as input features of

the network, artificial neural networks [16]. The method uses Volterra system and cel-

lular nonlinear network [17] and so on.

With the development of the field of machine learning in recent years, a large num-

ber of excellent machine learning classification algorithms have emerged, the most rep-

resentative of which is the deep neural network algorithm. Especially in the field of

image classification, deep learning methods, such as VGG [18] network, Google Incep-

tion [19] network, and ResNet [20] network, have powerful automatic feature extrac-

tion capabilities [21], which have been completely completed in some fields Beyond

traditional machine learning and statistical methods and shallow artificial neural net-

work methods, it can even identify targets that are difficult to distinguish with the

naked eye, surpassing humans. In addition, many large companies have also adopted

the method of deep learning as one of their core competitiveness [22–24].

This paper draws on the excellent deep neural network structure in the image field

and designs an excellent end-to-end network structure based on ResNeXt [25] and suit-

able for EEG signal epileptic detection. And the performance of the network is verified

on a public standard dataset (Berne Barcelona EEG dataset [26]) and compared with

traditional algorithms [27–30] using this dataset, for us the performance of the algo-

rithm is evaluated.

2 Data preparation
2.1 Data description

The data are from the EEG database of Berne Barcelona and are divided into two categor-

ies: EEG signal data during the onset of epilepsy patients and EEG signal data during the

onset of epilepsy patients. Each category has 3750 pieces of data, each piece of data has 2

signal channels with a length of 10240 and a sampling frequency of 512Hz (the time

length of each piece of data is 20 s). Part of the original EEG image is shown in Fig. 1.

2.2 Training data preparation

Due to the balanced data classification, there is no data deviation. So there is no data

enhancement for a single category. Only the data set is divided to prepare for model
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training. The method is shown in Table 1. The original data set is randomly divided

into a training set (3000 items/category), a validation set (250 items/category), and a

test set (500 items/category).

3 Network model design
3.1 Model design ideas

ResNeXt’s deep learning network model structure design idea is followed. According to

the data characteristics of EEG signals, a network structure Time-ResNeXt is designed

for EEG time series classification.

According to the traditional idea of designing network structures to improve the ac-

curacy of the model, most of them are to deepen or widen the structure of the network,

but as the number of hyperparameters (such as the number of channels, the size of the

convolution kernel) increases, neural network design and the difficulty and computa-

tional overhead also increase greatly. The algorithm in this paper benefits from the re-

peated topology of the ResNeXt network sub-modules, which enables it to have a very

high accuracy rate while slightly increasing the amount of network calculations, while

also greatly reducing the number of hyperparameters.

First, I have to mention the classic VGG network and Inception network. The design

idea of VGG network is modularize the neural network to increase the depth, but such

a deep network will cause network degradation due to gradients. The structure of VGG

network key modules is shown in Fig. 2.

Fig. 1 Part of the EEG image

Table 1 Data allocation

Training set Validation set Test set

Epilepsy signal 3000 250 500

Non-epileptic signal 3000 250 500

Total 6000 500 1000
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The design philosophy of the Inception network is exactly the opposite: the width of the

network is increased by the split-transform-merge method, but the settings of the various

hyperparameters of this Inception network are more targeted and need to be performed

when applied to other data sets. There are many modifications, so scalability is average.

The structure of the key modules of the Inception network is shown in Fig. 3.

The ResNeXt network is based on the design idea of ResNet’s cross-layer connection,

and combines the VGG and Inception networks. And through the structure of ResNet

cross-layer connection to improve the shortcomings of VGG network too deep degrad-

ation, the cross-layer connection structure is shown in Fig. 4.

The transformation set structure is shown in Fig. 5.

The convolution modules of the transform set are all the same. ResNeXt uses a trans-

formation set to replace the transformation structure of the Inception network. Because

each aggregated topology is the same, the network no longer needs to modify too many

hyperparameters on different data sets, which has better robustness.

Fig. 2 Structure of key modules of VGG network

Fig. 3 The structure of the key modules of the Inception network
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Fig. 4 Cross-layer connection structure

Fig. 5 Transform set structure
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3.2 Model design process

The original ResNeXt-50 has five stages and a large number of parameters, as shown in

Fig. 6.

During training, it is found that the results are difficult to converge and tend to be

completely random. Therefore, it was determined that the network structure was too

complicated. Starting from the complexity of the network, the network was tailored to

try to find a suitable structure. The test results are shown in Table 2.

Through the above experiments, the layers and depth of the network are continu-

ously explored to train the model. Finally, it is concluded that a ResNeXt network with

Fig. 6 ResNeXt-50 module

Table 2 Model optimization

Included network phase Network depth
at each stage

Training result
(correct rate)

Model parameter
amount

First and second stage -,1 0.8413 63,682

First and second stage -,2 0.9050 132,802

First and second stage -,3 0.8886 201,922

First second and third stage -,2,1 0.8847 473,282

Wang et al. EURASIP Journal on Wireless Communications and Networking        (2020) 2020:195 Page 6 of 12



two stages and a depth of 2 in the second stage has the best performance, namely the

final structure of Time-ResNeXt.

3.3 Time-ResNeXt network structure

The structure of Time-ResNeXt neural network is shown in Table 3.

It has two phases in total. The detailed network structure of the first phase is shown

in Fig. 7.

The depth of the second phase of the network structure is 2, that is, two network

structure sub-modules, each of which contains cross-layer connections, activation

layers, convolutional layers, batch normalization layers, and transform set modules.

The main structure is the transformation set module, which uses a network design

structure in a network, is a module for forming a convolution transformation set by

connecting 32 convolutional structural blocks as shown in Fig. 8 in parallel, which is

the main feature extraction module.

Table 3 Time-ResNeXt neural network structure

Resnext

7*7,64,stride 2

3*3 max pool,stride 2

1�1 128
3�3 128
1�1 256

2
4

3
5� 2; C ¼ 32

Global average pool
1000-d fc,softmax

Fig. 7 Detailed network structure of the first phase of Time-ResNeXt
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4 Model training
4.1 Optimizer

Use Adam’s algorithm as the optimizer. The Adam algorithm is an algorithm that per-

forms a stepwise optimization on a random objective function. This algorithm is based

on adaptive low-order moment estimation, has high computational efficiency and low

memory requirements. The adaptive learning rate of different parameters can be calcu-

lated by estimating the first and second gradients. In addition, the gradient rescaling of

Adam’s algorithm is invariant, so it is very suitable for solving problems with large-

scale data or parameters.

The advantages are as follows: easy to implement, efficient calculation, less memory

required, invariance of gradient diagonal scaling, and only minimal tuning. The param-

eter settings of the Adam optimizer are shown in Table 4.

Among them, lr refers to the step size, that is, the step size of each gradient descent.

Decay is a weight decay factor, which avoids overfitting by adding a regular term to the

loss function.

4.2 Loss function and evaluation index

The loss function uses the cross-entropy function of L2 regularization attenuation. The

cross-entropy function is calculated as follows.

L ¼ −
XN

i¼1
y ið Þ logŷ ið Þ þ 1 − y ið Þ

� �
log 1 − ŷ ið Þ

� �
ð1Þ

In which, y(i)is the true label of each instance, and ŷðiÞ is the predicted probability

value of each instance. Then, add regularized attenuation to the loss function to avoid

overfitting. The method is shown in the following formula.

C ¼ C0 þ λ
2n

X
ω
ω2 ð2Þ

Fig 8 Time-ResNeXt detailed network structure in the second stage

Table 4 Adam optimizer parameters

Parameter name Parameter value

Lr 0.001

beta_1 0.9

beta_2 0.999

Epsilon 1e− 8

Decay 0.01
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In which, C0 is the original loss function, which is the cross-entropy function. The

second term λ is a regular term coefficient, n is the number of training samples, and w

is a parameter of the network. Weight decay (L2 regularization) can effectively prevent

overfitting.

The evaluation index adopts the correct rate index. Here, the concepts of TP (true),

TN (true negative), FP (false positive), and FN (false negative) are introduced first.

The accuracy calculation method is:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

ð3Þ

4.3 Early stop

In order to further avoid overfitting, an early stopping training strategy is adopted.

When the model exceeds 30 consecutive generations of evaluation indicators and does

not improve on the validation set, training is stopped. This can prevent the model from

over-learning on the training set, avoid excessive bias, and reduce the generalization

performance of the model.

4.4 Training process records

The results of the training set are shown in Fig. 9, the X-axis is the training algebra,

and the Y-axis is the training evaluation index.

The results of the validation set are shown in Fig. 10.

Fig. 9 Training set results

Fig. 10 Validation set results
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The results show that at 74th generation, the model performs best on the validation

data, with a correct rate of 0.9150.

5 Results and discussion
Through continuous training of the model, the accuracy rate finally reached 0.9050,

achieving an extremely advanced performance. Its pair is shown in Table 5.

Other related evaluation indicators are shown in Table 6.

In addition, there are many areas in this mission where you can continue to improve.

For example, you can use hard example mining to train difficult samples. Increasing

the amount of data is also an extremely good method. The causes of epilepsy are com-

plex. Trying more detailed multi-classification will help decouple the data and further

reduce the difficulty of model training.

All in all, our classifier has achieved an extremely good performance and has excel-

lent scalability on the Bern dataset in Barcelona. As the amount of data in real business

scenarios increases, it will show even better performance.

6 Conclusion
Automatically detect dynamic EEG signals to reduce the time cost of epilepsy diagnosis.

In the signal recognition of epilepsy electroencephalogram (EEG), traditional machine

learning and statistical methods require manual feature labeling engineering in order to

show excellent results on a single data set. Based on the design idea of ResNeXt deep

neural network, this paper designs a Time-ResNeXt network structure suitable for time

series EEG epilepsy detection to identify EEG signals. The accuracy of Time-ResNeXt

in EEG epilepsy detection can reach 91.50%. The Time-ResNeXt network structure

produces extremely advanced performance on a benchmark dataset, with great poten-

tial to improve clinical practice.

Table 5 Model comparison

Reference Method Accuracy (%)

Sharma et al. [27] Empirical mode decomposition (EMD) 87

Sharma et al. [28] Discrete wavelet transform (DWT) 84

Das et al. [29] EMD-DWT 89.04

Bhattacharyya et al. [30] EME-DWT + SVM (50 pairs) 90.0

Our method Small ResNext on EEG 91.5

Table 6 Time-ResNeXt network evaluation

Evaluation index Calculation formula Corresponding value

Correct rate Accuracy ¼ TPþTN
TPþTNþFPþFN

0.9150

Specificity Specificit ¼ TN
TNþFP

0.8480

Recall Sensitivity ¼ TP
TPþFN

0.9620

Missed diagnosis rate FNR ¼ FN
TPþFN

0.0380

Misdiagnosis rate FPR ¼ FP
FPþTN

0.1520
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