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regularization (TV2++) to take advantage of the time dimension information of the
images, further improving the utilization of useful information in the images. In
addition, the union of global low rank regularization and TV regularization further
enhances the image super-resolution recovery. And we extend the exponential-type
penalty (ETP) function on singular values of a matrix to enhance low-rank matrix
recovery. A novel image super-resolution algorithm based on the ETP norm and TV2++
regularization is proposed. And the alternating direction method of multipliers (ADMM)
is applied to solve the optimization problems effectively. Numerous experimental
results prove that the proposed algorithm is superior to other algorithms.
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1 Introduction
The super-resolution technology [1-4] is to restore high-frequency details lost during
hardware acquisition of images, thereby improving image quality, making the image more
rich in texture and providing better visualization. Super-resolution technology is widely
applied to face recognition [1], CT diagnosis [2], high-definition television [3], remote
sensing image [4, 5], etc. These studies based on image processing are of great signifi-
cance to the construction of the Internet of Things (IoT) [6] and smart cities. Although
SR technology has been researched and improved a lot, its efficiency is still far from the
requirements of real-time applications. The research and implementation of cloud com-
puting [7] provides new ideas for the improvement of SR technology. Unfortunately, the
system based on cloud environment has many shortcomings [8, 9].

At present, the mainstream of super-resolution algorithms can be divided into two

types of categories, namely, the reconstruction-based methods [10-13] and the learning-
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based methods [14-17]. Recently, learning-based methods have gained huge attentions
because of its efficiency and generalization. The learning-based methods acquire the
co-occurrence prior knowledge between the low-resolution and high-resolution image
blocks through the learning process. From sparse representation [15, 18], anchored
neighborhood regression [16] to later transformed self-exemplars [17, 19] and deep
convolutional networks [20-22], by learning from examples based on huge databases
consisting of low-resolution and high-resolution image pairs, these methods can recover
details and enhance texture information. Extracting the high frequency information based
on local features from the training images and then adding the high frequency detail
for low-resolution image can guide a high-resolution image reconstruction [14]; how-
ever, it also results that these methods deeply rely on selected data and sometimes may
bring some artifacts. Moreover, learning-based methods usually require a large number of
training sets and a large amount of time to complete the training, which makes it impos-
sible to meet the requirements in real time. Because the model relies too heavily on the
data set, it does not have independence [17, 19]. A lot of time and pretreatment also make
this method inefficient so that it cannot achieve the desired effect. The edge calculation
based on big data [23, 24] can improve the processing efficiency of the system model to a
certain extent. We propose to use ADMM to optimize the calculation of the model, which
greatly improves the running speed and efficiency.

Conversely, the bulk of reconstructed based methods usually get high-resolution image
from a sequence of low-resolution images by optimizing the cost function which have
prior restriction [10]. The reconstruction based methods are to invert high-resolution
images from the low-resolution image through the image degradation model, which is to
solve the inverse problem of the image, and often requires prior knowledge of gradient
[25], sparse [15, 26, 27], spatial-temporal feature [28, 29] and so on. Iterative back pro-
jection method (IP) proposed by Pejman et al. [11] obtained the high-resolution image
through iterative back projection for deviation of simulated low-resolution image and
observed image. Non-local means (NLM) [12, 24] is a SR method based on the non-local
property. It explains that analogous pixels are not limited to a local area, such as long edges
and texture structures. As seen in [13, 30], a framework of maximum a posteriori (MAP)
estimation is proposed to performs joint blur identification and high-resolution image
reconstruction. And the algorithm addresses blind image super resolution by fusing mul-
tiple blurred low-resolution images to render a high-resolution image. In recent years,
many popular super-resolution algorithms based on total variation regularization (TV)
[10, 31-34] have emerged through reconstruction perspective. The TV function is usually
defined as the integral of absolute value of image gradient, as shown in [31, 35]; the total
variation of the signal is used as a regularizing functional. Since the signal with too much
and possibly false details has a high total variation, i.e., the integral of the absolute gradient
of the signal is high. According to this principle, the total variation of the signal is reduced
to closely match the original signal, removing unnecessary details while retaining impor-
tant details such as edges. In the case of low signal-to-noise ratio, total variation denoising
is also very effective in retaining edges while smoothing out noise in flat areas. This also
leads to a total deterioration that will make the restored image too smooth, and in some
more detailed images, the restored image will lose details. Therefore, it is the focus of
research to keep more details while removing noise.Farsiu et al [33, 36] proposed a bilat-
eral total variation (BT'V) regularization prior algorithm, which used the same smoothing
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coefficient to process adjacent pixels at the same position, and smoothed the images in
all directions while retaining certain edge information. In [5, 37], the authors formu-
lated a new time dependent convolutional model for super resolution based on the TV
regularization. And in [38], a spatially weighted TV image super-resolution algorithm is
proposed, in which the spatial information distributed in different image regions is added
to constrain the super-resolution process. In addition, Li et al. [39] further improved the
above algorithm based on TV regularization. They proposed a new regularization term
named steering kernel regression total variation (SKRTV), in which the local structural
regularity properties can be fully exploited. Furthermore, in [32, 40], a partial differential
equation (PDE) model is proposed for SR based on a constrained variational model which
uses the nonlocal total variation (NLTV) as a regularization term. As known from these
algorithms, TV regularization has a good effect on retaining image edge information [36, 41].

However, these TV-based regularization methods act only on the space dimension and
does not take into account the dependence of the time dimension [42, 43]. And there are
many images with temporal similarities between frames, such as sequence images [44]
and medical CT images [45, 46]. In addition, for the time dimension in TV regularization,
Li et al. [47] proposed that one can directly treat the time component as an additional
space variable and form the corresponding seminorm. In this form, all dimensions are
coupled, and the expected behavior is uniform in all directions.The time component is
directly regarded as a spatial variable, which ignores the similarity in the time dimension
and the difference between the temporal variable and the spatial variable. Without con-
sidering time and space separately, picture details and edge information will be ignored.
Therefore, considering the differing behaviors of the spatial and temporal components,
we decouple the spatial dimensions from the temporal one when constructing TV2++.
Moreover, TV2++ could allow for more flexibility in penalizing. Admittedly, TV regular-
ization is so susceptible to noise that often causes staircase effects. To weaken this flaw,
we added a global low-rank constraint on the image, as Feng et al. [10] did. The global
low-rank constraint in the model is to enhance global consistency and improve noise
immunity. In addition, we introduce the exponential-type penalty (ETP) norm [48] to con-
strain the image with low-rank. Non-convex penalty functions such as ETP are extended
on singular values of a matrix as surrogate functions of -norm to enhance low-rank matrix
recovery more effectively, which has been proven in [49]. The ETP is characterized by a
positive parameter, which establishes a connection with the €0 and £1 penalties.

In this paper, we introduce the ETP global low-rank regularization [48, 50] and
design a TV regularization on the space dimension and the time dimension (TV2++)
to construct the basic framework of the algorithm. Overall, our contributions are
threefold:

e The algorithm, which designs TV2++ regularization based on spatio-temporal,
utilizes image time dimension similarity and further strengthens image detail
recovery.

¢ A novel framework based on TV2++ regularization and ETP norm low-rank
regularization is constructed; TV2++ regularization helps retain image edge
information; ETP norm low-rank regularization does well in global consistency and
improving noise immunity.

e We use an efficient alternating direction method of multipliers (ADMM) [51]-based
approach for problem optimization.
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2 Background
In this part, we first introduce a basic model in the TV methods, and then we introduce
the exponential-type penalty function and IRNN algorithm for solving the nonconvex

low-rank minimization problem.

2.1 Basic model

We first suggest the basic model in the TV methods. In this model, we take noise and
blur into consideration. Then, we solve the SR problem through this model. The basic
observation model is:

T =DSX +N (1)

where T means the image we observed and X is the HR image we expect to recover. D
symbolizes the down-sampling operator and S is the blurring operator. At the same time,
N represents the noise which influencing our observation results.

We want the HR image to be as perfect as possible.In mathematics, we can get the
optimal solution in the basic model. So, we deform the above model to build a new cost
function as follows:

min | DSX — T|? (2)

When we solve the optimization problem, then we can get the optimal X, which we can
define as X. The cost function consist of one penalizing term about LR image T and HR
image X.

To better solve this ill-posed problem, we can add regularization terms.
min  [DSX = TI|* + Ap(X) (3)

where p(X) means the regularization term. This term usually depends on prior knowl-
edge and we will illustrate this term in the following part.X is the parament controlling
the weigh of regularization terms in the whole model.

2.2 Nonconvex low-rank minimization

Variable selection problems are typically addressed under a penalized optimization
framework. Nonconvex penalties such as the exponential-type penalty (ETP) [48, 52]
have been demonstrated to have the properties of sparsity practically and theoretically.
The exponential-type penalty is characterized by a positive parameter, which establishes
a connection with the and penalties. More specifically,the limits of ETP are the £0 and
£1 penalties when this parameter approaches oo and 0 respectively. And it is easy to
extend the exponential-type penalty functions on singular values of a matrix as surrogate
functions of -norm to enhance low-rank matrix recovery. In addition, matrix completion
algorithm [53] is based on the assumption that recovered matrix has low rank and then
the missing entries can be filled in by minimizing the difference between the input matrix
and the estimated one.

However, different from convex optimization, solving the nonconvex low-rank mini-
mization problem is much more challenging than the nonconvex sparse minimization
problem. Iteratively reweighted least squares (IRLS) algorithm [54] has been recently
extended to handle the nonconvex Schatten-p norm penalty. Actually, it solves a relaxed
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smooth problem which may require many iterations to achieve a low-rank solution. It
cannot solve the general nonsmooth problem.

Recently, Lu et al. [49] propose an iteratively reweighted nuclear norm (IRNN) algo-
rithm to solve the nonconvex nonsmooth low-rank minimization problem. The IRNN
algorithm takes advantage of the following properties of exponential-type penalty func-
tion: the exponential-type penalty function is concave and monotonically increasing on
[0,00], and its gradient is a decreasing function. IRNN algorithm iteratively solves a
weighted singular value thresholding (WSVT) problem. By setting the weight vector as
the gradient of the concave penalty function, the WSVT problem has a closed form
solution.

m
k . k k k koM k|2
X1 = argmin gwioi+f(X)+(Vf<X )X —x )+§HX—X HF
i=

(4)
= n 1 2
- n}én;m +5 ”X— <Xk - (Xk>>

where w is the weight coefficient, o is the singular value, and Vf (Xk ) is the super gradient.

F

3 Our method

In this part, we will propose our own model, namely LRTV2++. As we know, rank is the
important property, often calculated by the minimum of columns and rows containing
non-zero elements. Rank is often thought about the richness of information contained in
images. In regularization, if a matrix has low rank property, we can recover some losing
columns or rows linearly expressed by some known rows and columns. This theory is
widely used in matrix completion. We often represent the low rank function about matrix
X from the certain norm, in this paper, we use ETP function to approximate Ly norm.

N

R(X) =1y _ o | Xllprp (5)
i=1

where X is the number of dimensions, and «; is the weigh. Especially, o; satisfies two
constraints:

N
aiZO;Zaizl (6)
i=1

Gao etal. [17] proposed a non-convex continuous surrogate function called exponential
type penalty (ETP), as follows:

- _erX
1Xllere = T— = (1-e") )
And its super gradient is defined as:
Ay o o
INXllprp = ——=e 7" (8)

(=)

As we know, TV function on the vertical horizontal is usually defined as:

TV(X) = // | VX | dxdy 9)
Q
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where Q is spatial domain, and € R?. And then, we consider temporal dependency and
get the difference term of the time dimension 9,X. Its formula is as follows:

WX = Xa — Xp (10)
Therefore, TV2++ can be expressed as:

|y 3:X0% + (9,X)

+ A2 [10: X1 (11)
1

The first of Eq. (11)is the spatial regularization term, and the latter is the temporal regu-
larization term. Then, adding the ETP low rank regularization and TV2++ regularization,
the super-resolution reconstruction model can be further expressed as:

min | DSX — TN + o [IX| grp

(12)
V(@)% + (ayX)ZH + A 119:X1I;
1

In this method, we separate 9;X from 9,X and 9,X, separating spatial dimensions from

+ M

temporal dimensions, considering the difference of the temporal dimension and spatial

dimensions.

4 The optimization

To solve the optimization problem of the cost function Eq. (11), we use the alternating
direction method of multipliers (ADMM) algorithm. ADMM is proved to be an efficient
algorithm and a widely used optimization method for constrained problems when a cost
function includes multiple variables. This algorithm solve one variable through other dual
variables and iterate this variable to solve other variables. Repeat this process, then we
can complete the optimization problem of our cost functions. We will show how to use
ADMM to optimize our cost functions in the following contents.

min | DSX — T 4o M| grp

21 [y @X02+(3,X02| +x2 U
1 (13)
s.t. X=M;
8tX = U;

where M and U are the auxiliary variables. Further derivation of Eq. (13), the augmented
Lagrangian function can be obtained as follows:

LX, M, ) = |IDSX — T|*> + & | M|l gp

+ 21 [V 0207 + (3,X)

+ A2 Ul + (Y1, X — M) (14)
1

P1 P2
+ 5 IX - M2+ (Yo, X — U) + - 10X — ujz
4.1 Sub-problem 1: updating X

min |DSX — T + 2

(0:X)% + (3,X)?
1

+ (Y, X — M) + % X — M2 + (o, 3,X — U) (15)

P2
+ 5 10X — ujz
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equivalent to:

IDSX — T2 + 1 ||y (3:)2 + (8,X)°

SIS PRV A8 +— 8 X — u+ﬂ
2 o1 2 02
Take the derivative of the above function :
Xn+1 —_ X"
— = 2.8T @ DT(DSX — T)

0xX - 0x +0yX - 0
lx x 'y y+ (X 1/’1)

M+ —
(0202 + (3,)°

P1
+py-0f (BtX u+ 1//2)
P2

From Eq. (17), we can easily get the equation of X in TV2++ method:

X" = X"+ de2- ST @ DT(DSX — T)

3X - 0y + 0,X - D

—— s (X M+1/f1)
(3:X)% + (3,X)

Pr1
+pp-0f (8;X U+ ‘/’2>
P2

M

4.2 Sub-problem 2: updating M

. P1
mina | Mllgzp + (Y1, X — M) + - |1X — Ml

equivalent to:

X - M+ﬂ

P1

minc« | M
il all ||ETP+ 2

It can be further transformed into:

Y1
n}vl[n E Z rwio;(M) + — HM <X + . )

where,
_ §K
T 1- exp(—k)
M = USVT,0;(M) = Diag(S;).

exp [—koi(M)],

(16)

(17)

(18)

(19)

(20)

(21)

(22)

As we all know, a globally optimal solution to the above problem is given by the weighted

singular value thresholding:

M+ = Us (Z) vT

where,

Y = (X + ) uy vt
S3°) = Diag |:max (Z ~ 2w, 0)]

i Pl
Eq. (24) is the SVD of Y.

(23)

(24)

(25)

Page 7 of 17
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4.3 Sub-problem 3: update U

. 02
min A 1L + (Y2, 96X — U) + - 19X — ulz (26)
equivalent to:
2
min o (U] + 22 |ax -+ V2 27)
u 2 P2 Il

which can be solved efficiently via a soft shrinkage operator:

A
U = shrink (E)ZX Iz 2) (28)
P2’ P2
where,
shrink(Z, 0) = £ * max(¢ — u,0) (29)

Iq

5 Experimental results and analysis
We take CT images of the HNSCC-3DCT-RT dataset as original images to perform
the experiment. And the low-resolution images are all obtained by MATLAB simula-
tion. There are four comparison algorithms used in the experiment: L1TV, L2TV, NLM
[12], and LRTYV [10]. In addition, we employed two important characters to estimate the
recovery quality: peak signal-to-noise ratio (PSNR) and structure similarity index (SSIM).
PSNR is widely used to evaluate quality of SR recovery and its unit is decibels (dB). The
mathematical formula of PSNR is defined as:
2" -1
MSE )

where MSE is the mean square error between original HR image and recovered HR image.

PSNR = 10 * log,, l (30)

Aside from PSNR, SSIM is another important character we used to evaluate the similar-
ity between images. SSIM is usually considered to accord with the visual perception of
human naked eyes. Its mathematical formula can be written as:

(2ﬂxﬂy + Cl) (ngy + 62)
(u,% +u3+ c1> (ze +o7 + 02>

where , is the average value of the original HR image x and u, is the average value of

SSIM(x,y) = (31)

the recovered y, o, is the variance of x and oy is the variance of y. oy, is the covariance
of original HR image and recovered image. ¢; and c; are the balance parameters. SSIM
is ranged from 0 to 1. When the recovered image is exactly same to original HR image,
SSIM equals 1.

5.1 Performance under noise environment
In this part, we add Gaussian noise to the images (4-HEADNECK 2.0 B30s-50686) in
order to test the robustness of super-resolution reconstruction. Gaussian noise is a special
kind of noise whose probability density function obeys normal distribution. We set mean
of Gaussian noise to be 0 and its variance to be 0.001, 0.003, 0.005, 0.006, 0.007. Each
algorithm is tested in the same experimental environment, and the experimental results
are shown in curves charts.

Figure 1 and Fig. 2 show the PSNR and SSIM trends for all algorithm results as the vari-
ance of Gaussian noise increases from 0.001 to 0.007, where sigma represents the variance
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—HLRTV2++
=LA
ey +LRTV

Fig. 1 PSNR of different methods with increasing noise variance from 0.001 to 0.007

sigma %1073

of the Gaussian noise. In Fig. 1 and Fig. 2, we can see that the proposed method has over-

whelmingly advantage compared with other algorithms. When sigma increased gradually,

the advantage tends to emerge. We can find that the index data curve of the proposed

algorithm is much better than the others, which means that the proposed algorithm has

better image super-resolution recovery ability.

Figure 3 shows recovered images of different methods and enlarged regions. Compared

to original HR image, recovered images of L1TV, L2TV, and NLM appear to be blurred

Fig. 2 SSIM of different methods with increasing noise variance from 0.001 to 0.007

sigma %1073

Page90of 17
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LRTV2++

Fig.3 The performance of recovered images of different methods and enlarged regions (4-HEADNECK 2.0
B30s-50686)

while the recovered image of the proposed method is clearer and the details are better
restored. This is because we enhance the efficiency of low rank regular terms by replacing
the tracking norm with ETP non-convex penalty function constraints. In addition, the
TV2++ regular term utilizes the temporal dimensional similarity of the image to further
enhance the detail recovery capability of the image.

5.2 Recovery performance comparison

In this part, we will use more medical images from our dataset and show results by using
different methods. We mainly show two other CT images in different part of bodies to
evaluate the recovery performance of our proposed methods. We first chose one 3D CT
of 12-08-2009-RTHEADNECK Adult-25471 series. By using the above methods, we will
put results and recovered image and close-up view of selected regions in each image in
the following part for comparison. From the Table 1, we can see that the proposed method
gets best PSNR and SSIM index values. The recovered images and details in selected loca-
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Table 1 PSNR and SSIM index values of each method for image (12-08-2009-RTHEADNECK

Adult-25471)

Methods PSNR SSIM
LRTV2++ 3246 0.9846
NLM 28.28 0.9184
L1TV 2790 0.9211
L21v 27.35 0.8639
LRTV 2947 0.9556

tion are shown in Fig. 4. We can find that the result of the proposed method is clearer
than other methods.

When we compare these results to original image, we also find the proposed method is
more similar to original image, resulting in high SSIM.

We further chose HEADNECK CT images to test and verify experimental results in the
subsequent part. Processed images are shown in Fig. 5. We also show specific data of their
PSNR and SSIM in the Table 2.

~ ~
& >

'
"

Origin LITV

™\
=

LRTV2++

Fig. 4 The performance of recovered images of different methods and enlarged regions
(12-08-2009-RTHEADNECK Adult-25471)
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LRTV

LRTV2++

Fig. 5 The performance of recovered images of different methods and enlarged regions(HEADNECK)

We also tested other images in our database and got similar results to what we show

by testing two examples. In general, the proposed method gets highest SSIM and PSNR

than all other comparison methods. In addition, under blur interference, our proposed

method is clearer than other methods.By selecting a close-up view of the location, this

method displays the details better than other methods.

5.3 Ablation analysis

We use adult images 4-HEADNECK 2.0 B30s-50686 as the test image for parameter opti-
mization experiments. For the parameter of low-rank term, we set «; = ap = %, which

Table 2 PSNR and SSIM index values of each method for image (HEADNECK)

Methods PSNR SSIM

LRTV2++ 28.94 0.9846
NLM 26.34 0.9184
L1TV 25.84 0.9211
L21v 25.87 0.8639
LRTV 25.04 0.9556

Page 12 of 17
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means weigh controlling each matrix unfolded in each dimensions plays the same role.
We estimate the error for each iteration by calculating ||Xk —xk-1 H When the above
error is less than le — 5, we stop the optimization of the parameters.

First, we set X to 0.0001. We experiment with A, being set between 0.0001 and 0.1,
respectively. Through running our observed Fig. 6, it can be seen that the value of 11
is near 0.001 when the PSNR reaches a peak. Continuing to increase the value of i,
the PSNR shows a monotonous decreasing trend. As can be seen from Fig. 7, when A;
increases between intervals 0 and 0.1, the value of SSIM shows a tendency to decrease
slightly. Taking into account the performance of the above indicators, we believe that the
experimental result obtained is the best when the value of 1, is set to 0.009.

Then, we fixed the parameter A; and performed a parameter optimization experiment
on the parameter A,. We experiment with Ay being set between 0.0001 and 0.1, respec-
tively. Through running our program, we acquire the value of PSNR and SSIM when 1, is
0.0001, 0.0002, 0.0005, 0.0007, 0.01, 0.1, and 0.5. And the line charts are shown in Fig. 8
and Fig. 9.

As can be seen from Fig. 8, the line chart has both a rising interval and a falling interval,
and when Ay is around 0.1, the PSNR value reaches a peak. For the SSIM in Fig. 9, it can
be seen that as X, increases, the value of SSIM continues to decrease. Taking into account
the performance of the above indicators, we believe that the experimental result obtained
is the best when the value of A5 is set to 0.1.

6 Discussion

In this paper, we propose a super-resolution reconstruction algorithm based on TV2++
regularization and ETP norm low-rank regularization and optimize it by ADMM method.
TV2++ regularization is based on spatio-temporal and utilizes image time dimension
similarity. Considering the differing behaviors of the spatial and temporal components,
we decouple the spatial dimensions from the temporal one which also allows for more

32.8 . | . x .

32.6

31.8

31.6

31 .4 Il Il 1 1 1 1 Il Il 1
0 0.01 002 003 004 005 006 007 008 009 0.1
lambda1

Fig.6 PSNR of A1 in LRTV2++ in parameter optimization
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0.11 ]

0 1 1 1 1 1 1 1 1 1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
lambda1i

Fig. 7 SSIM of Aq in LRTV2++ in parameter optimization

flexibility in penalizing. On the other hand, ETP norm are extended on singular values of
a matrix as surrogate functions of Lo-norm to enhance low-rank matrix recovery more
effectively. Then, the experimental results reveals that the proposed method has better
capacity of resisting noise and blur. In addition, our model is more complex than NLM,
L1TV, and L2TV, although we use the ADMM algorithm for optimization. But it still takes
more time than NLM, L1TV, and L2TV. The reason may be that the program takes a lot
of time to solve the TV problem.

34 T T T T T T

32 .

1 1 1 1

03 035 04 045 05

22 | | 1 1
0 0.05 0.1 0.15 0.2 0.25
lambda2

Fig. 8 PSNR of A, in LRTV2++ in parameter optimization
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MSSIM
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lambda2

Fig. 9 SSIM of A; in LRTV2++ in parameter optimization

Abbreviations

TV: Total variation; ETP: Exponential-type penalty; ADMM: Alternating direction method of multipliers; CT: Computed
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