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Abstract

We improve the off-line scheduling scheme of existing wireless sensor network.
Firstly, we introduce Bayesian statistical method in synchronous wireless sensor
network. Then, we let duration and interval, the reflection of characteristics of
stochastic events, obey exponential distribution. Next, we make Bayes posterior
estimation on parameter. Based on Bayesian estimate, we obtain the analytical
solution of the capture probability of stochastic events and sensor energy efficiency
of capture events. Finally, we propose an on-line scheduling scheme for synchronous
wireless sensor networks. This paper compares and analyzes the simulation
experiments in on-line scheduling scheme and off-line scheduling scheme, and the
results show that compared with off-line scheduling scheme with constant
distribution parameter values, on-line scheduling scheme can effectively reduce the
probability of missing stochastic events and increase the probability of capturing
events, further save energy consumption of wireless sensor network, and extend
network lifetime.

Keywords: Synchronous wireless sensor networks, Stochastic events, Bayesian
statistical method, On-line scheduling scheme

1 Introduction
The Internet of Things (IoT), the currently most popular research area, refers to real-

time monitoring and connecting objects through various sensor devices and technolo-

gies to collect event information, and then having the access to the network, it finally

realizes the ubiquitous connection between object and object as well as object and

people. Wireless sensor networks (WSN) is the key technology for the development of

IoT [1, 2]. WSN is composed of hundreds of small sensors, and each sensor is capable

of perceiving, collecting, calculating, and forwarding event information [3]. Events do

not always occur and appear randomly, but their randomness can be described by two

random variables, the event staying time at Point of Interest (PoI) and the interval be-

tween events. If the event duration is short but the interval is long, the sensor is always

in active state, which is bound to cause waste energy. Therefore, how to schedule the

active and inactive state of the sensor in WSN saves the energy of sensor network as
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much as possible, and extending sensor network lifetime is a hot issue in current

research.

At present, the sleeping scheduling issue in WSN can be divided into three categories:

(1) randomness without considering stochastic events [4–6], that is, to find non-

overlapping subsets covered by sensors and let them work alternately so as to save energy

and extend network lifetime. (2) Considering the randomness of stochastic events interval

but not considering the randomness of duration of stochastic events [7–10], the sensor

scheduling scheme is designed only based on the randomness of interval between events

arrival. (3) Considering the randomness of interval between stochastic events arrival as

well as the randomness of duration of stochastic events [11–14], the sensor inactive state

scheduling problem is transformed into an energy-oriented optimization problem, and

the algorithm is designed to solve the issue. In the latter two categories, it is usually

assumed that the interval and duration of stochastic events are subject to exponential

distribution, where the distribution parameter is a given constant, and the inactive period

of sensor is also constant. This mode is called an off-line scheduling scheme.

From a statistical point of view, the distribution parameter given by the off-line

scheduling scheme are estimated based on historical data, and once this parameter is

given at a fixed value, it remains unchanged regardless of posterior sample. However,

in practical applications, event fluctuations may occur due to various reasons. For

example, samples obtained in different time periods may be generated by exponential

distributions with different distribution parameters. This requires the scheduling

scheme of sensor to adjust distribution parameters based on the sample; otherwise,

huge errors would occur. Therefore, based on the research made by He et al. [15], we

study on-line scheduling issue of sensors in synchronous WSN and propose a real-time

adjustable sensor inactive period scheduling scheme to make it more in line with

randomness of stochastic event, more adaptable, and further save energy consumption

of network.

The main research contents of this paper are as follows: (1) Firstly, by introducing

Bayes statistics method to deal with previous off-line scheduling problem in synchronous

WSN. Bayesian statistics method is used to estimate interval parameters of stochastic

events and distribution parameters of duration and Bayes estimated value with real-time

adjustment is obtained. (2) Then, the relationship between capture probability of stochas-

tic events, the energy efficiency of sensor to capture stochastic event, and Bayesian

estimated value of distribution parameter is discussed, and the relation between periodic

schedule and Bayesian estimated value of distribution parameter is obtained. (3) Finally,

the sensor periodic schedule that can be adjusted in real time in synchronous WSN is

proposed, that is, an on-line scheduling scheme.

The contributions of this paper can be summarized as follows: (1) Since Bayesian

estimation can be iteratively repeated, the method in this paper can be used to study

the periodic sensor scheduling with real-time adjustment. (2) By increasing Bayesian

estimation of distribution parameters, the randomness of stochastic events can be more

accurately characterized. (3) By conducting simulation experiments, compared with

previous off-line scheduling scheme, it shows that on-line scheduling scheme of sensor

sleep cycle can effectively save energy and extend network lifetime.

The rest of the paper is as follows: the second section is related work; the third

section is model and hypothesis, introducing Bayesian estimation of exponential
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distribution parameters; the fourth section analyzes the event capture performance

under the Bayesian estimation of distribution parameters; the fifth section studies on-

line scheduling scheme; the sixth section is simulation experiment; and the final part is

summary.

2 Literature review
In the application of IoT, wireless sensor is widely used in a variety of monitoring

scenarios due to its low price, small size, and strong functions, such as precision

agriculture [16–18], environmental monitoring [19–21], and target detection [22–24].

Due to the complex geographical environment of the monitored target area, it is often

necessary to use drone to throw a large number of wireless sensors so that the area is

completely covered by the sensor. However, the location of wireless sensor placed is

random, and it is likely that the perception range of some sensors in the target area is

completely covered by its neighbor activation, that is, causing redundant nodes.

In the study of target coverage issue in most WSN [4, 6], the randomness of events at

coverage points is not taken into account. Only sensor subsets that can cover the target

without overlapping in the region where the sensor is densely populated are considered,

allowing subset to work alternately to maximize saving energy and extending WSN life-

time. But the problem is that once coverage subset of the sensor is selected, the sensor

is always working and certainly causes waste.

Ren et al. [7] considered the interval between events occurrence while ignoring events

duration at PoI. The authors assumed that the interval of event columns is independ-

ently and identically distributed random variables and these random variables obey

exponential distribution with determined parameters, and studied the inactive state

scheduling issue of sensor coverage subset. Cheng et al. [9] calculated the probability of

capturing event and solved the problem of sensor covering the duration of entire

inactive state interval when the event was captured with a certain probability. Dai et al.

(2015) [14] took the interval between events and the duration of events at PoI into con-

sideration. The authors assumed that the interval of event column and event duration

at PoI is independent and identically distributed sequences of random variables that

obey exponential distribution with determined parameters. In addition, Le and Liu [25]

studied the capacity of hybrid wireless networks with opportunistic routing. Pei et al.

[26] studied the trade-off between security and performance of several recent top per-

forming lightweight block ciphers for the demand of resource-constrained industrial

wireless sensor networks. Chu et al. [27] proposed a new scheme of identifying the

correctness data scheme for aggregating data in cluster heads in hierarchical WSN

based on naive Bayes classification.

Unlike previous literature, this paper discusses on-line adjustable sensor periodic

schedule problem in synchronous WSN where the distribution parameters of random

variables are not determined. Moreover, by conducting simulation experiments, it is

proved that the on-line scheduling scheme in sensor sleep cycle proposed in this paper

is more adaptable and energy-saving than off-line scheduling scheme.

3 Models and assumptions
This paper assumes that a sufficient amount of sensors are randomly placed into a

planar area to capture stochastic events occurred within the target area and events
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randomly occurring at a given PoI. We use Boolean network model [28] to analyze

whether a stochastic event is captured by the sensor: if the distance between the

location of the activated sensor and the location of PoI where the stochastic event

occurs is less than the perception radius r of sensor, the stochastic event is captured by

the sensor. Otherwise, it cannot be captured by the sensor. The energy consumed by

the sensor per unit time active and inactive state is k1 and k2, respectively. The energy

consumption of the sensor to change between active/inactive states is c. The average

arrival rate of stochastic events of PoI is ν. In a single scheduling period, a single sensor

has two state transitions, and the sensor can be independently scheduled to switch. The

duration X and the interval time Y of different stochastic events are independently and

identically distributed. Stochastic events at different PoI are also independent. The sym-

bols used in this article and their meanings are shown in Table 1.

3.1 Prior distribution of stochastic events

Unlike off-line scheduling scheme, this paper first gives Bayesian estimation of duration

and interval distribution parameter describing the randomness of event.

Lemma 1 Stochastic event duration variable X obeys exponential distribution with

parameter θ−1, and its probability density function is:

P Xjθð Þ ¼ θ − 1e − Xθ − 1

;X > 0; E xð Þ ¼ θ ð1Þ

where θ > 0 is average duration of stochastic events.

Lemma 2 Stochastic event interval variable Y obeys exponential distribution with

parameter β−1, and its probability density function is:

P Y jβð Þ ¼ β − 1e − Yβ − 1

;Y > 0; E Yð Þ ¼ β ð2Þ

where β > 0 is average interval between stochastic events.

In order to obtain the Bayesian estimation of average duration of stochastic events, it is

first necessary to determine the prior distribution of average duration of events θ. In

Bayesian statistical theory, the inverse Gamma distribution IG(α, λ) is usually regarded as

the prior distribution of unknown parameters θ [29]. The density function of IG(α, λ) is:

Table 1 Variable symbols and their meanings

Symbol Meaning

r Sensor perception radius

k1 Energy rate of sensor consumed in active state

k2 Energy rate of sensor consumed in inactive state

c Energy consumed by the sensor to change between active/inactive states

ν Average arrival rate of stochastic events at PoI

X The time of an event arrives PoI and lasts for a stochastic event, that is, the duration of stochastic
event

Y The interval between the of disappearance of previous event and the arrival of latter event at PoI,
that is, the interval between stochastic event

Pc Capture probability of stochastic events from arrival PoI until disappearance

QE Energy efficiency of sensor in capturing stochastic events
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π θð Þ ¼ λα

Γ αð Þ θ
− αþ1ð Þe − λθ − 1

; θ > 0 ð3Þ

where α > 0, λ > 0 are two undetermined parameters. The mathematical expectation

E(θ) and variance D(θ) are respectively:

E θð Þ ¼ λ
α − 1

ð4Þ

D θð Þ ¼ λ2

α − 1ð Þ2 α − 2ð Þ ð5Þ

From Eq.(4) and (5), we can get:

α ¼ E θð Þð Þ2=D θð Þ þ 2; λ ¼ E θð Þð Þ3=D θð Þ þ E θð Þ ð6Þ

We use the following method to estimate parameters α, λ. Based on exponential dis-

tribution of event duration θ−1 = 1 in He et al. [15], we perform 100 experiment simula-

tions, and each simulation produces observation values of 100 event duration variable

X, i.e., xi1, xi2, …, xi100,i = 1, 2, …, 100, where i represents the number of experiments.

So we can get 100 observation values of average event duration parameter are θ1, θ2,

…, θ100, where θi ¼ 1=Xi, Xi ¼ 1
100

P100
j¼1xij, i, j = 1, 2, …, 100.

Therefore, sample mean value θ and sample variance S2θ of average event duration of

are:

θ ¼ 1
100

X100

i¼1
θi; S2θ ¼

1
100 − 1

X100

i¼1
θi − θ
� �2 ð7Þ

Then, make Eq. (7) as the estimated value of expected E(θ) and variance D(θ) respect-

ively and substitute it into Eq. (6) to obtain the estimated value of parameter α and λ

which are:

α̂ ¼ θ
2
=S2θ þ 2; λ̂ ¼ θ

3
=S2θ þ θ ð8Þ

Substituting Eq. (8) into α,λ in Eq. (3), the prior distribution π(θ) of average stochastic

events duration can be obtained.

Similarly, the prior distribution of average interval of stochastic events is π(β).

3.2 Bayesian posteriori estimate of distribution parameters

First, an observation value θ is generated from Eq. (3) prior distribution π(θ), and then

an observation value x1, x2, …, xn of the duration of n events is generated from Eq. (1)

conditional distribution P(X|θ)., where xi(i = 1, 2,…, n) represents the duration of ith

stochastic event. The joint conditional density function of the sample is:

P Xjθð Þ ¼
Yn

i¼1
P xijθð Þ ¼

Yn

i¼1
θ − 1 � e − xiθ

− 1
� �

¼ θ − n � exp − Xnθ
− 1� � ð9Þ

where Xn ¼
Pn

i¼1xi。

Multiplying the prior distribution π(θ) by the sample distribution P(X|θ), we can get

the kernel of posterior distribution:
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π θjXð Þ ¼ P Xjθð Þπ θð ÞRþ∞
0 P Xjθð Þπ θð Þdθ ∝P Xjθð Þπ θð Þ∝θ − α̂þnþ1ð Þ � e − λ̂þXnð Þ=θ ð10Þ

Since the inverted Gamma distribution is a conjugate distribution, the posterior

distribution of inverted Gamma distribution is still inverse Gamma distribution, that is,

Eq. (10) is still the kernel of inverted Gamma distribution. Assuming that the loss function

is a squared loss function, then Bayes estimation value of θ is the mean value of posterior

distribution π(θ│X). From Eqs. (4) and (5), we can get:

θBayesn ¼ λ̂þ Xn

α̂þ n − 1
ð11Þ

Therefore, Bayes posterior estimated value of exponential distribution parameter θ−1

obeyed by stochastic event duration variable X is 1=θBayesn .

Similarly, Bayes posterior estimated value of exponential distribution parameter β−1

obeyed by stochastic event duration variable Y is 1=βBayesn .

3.3 Correction value of Bayesian posteriori estimation of distributed parameters

This paper first generates observation value of the duration of n stochastic events from

Eq. (9). Then, when a new observation value of stochastic event duration is obtained,

that is, the observation value of the duration of n + 1th event. At this time, it is neces-

sary to use the observation value x1, x2, …, xn, xn + 1 of the duration of n + 1 events to

obtain the estimated value θBayesnþ1 of the duration parameter θ. Here θBayesnþ1 is a correction

value for θBayesn . From Eq. (10), Bayesian estimate of posterior distribution π(θ|X) is:

π θjXð Þ∝θ − α̂þnþ2ð Þ � e − λ̂þXnþ1ð Þ=θ ð12Þ

Similarly, the correction value of Bayesian estimation of duration parameter of sto-

chastic event at this time is:

θBayesnþ1 ¼ λ̂þ Xnþ1

α̂þ n
¼ λ̂þ Xnþ1

λ̂þ Xn

θBayesn

þ 1

ð13Þ

where

Xnþ1 ¼ Xn þ xnþ1

Therefore, the correction value of Bayes posterior estimated value of exponential

distribution parameter θ−1obeyed by stochastic event duration variable X is: 1=θBayesn .

Similarly, the correction value of Bayes posterior estimated value of exponential

distribution parameter β−1obeyed by stochastic event duration variable Y is 1=βBayesn .

4 Event capture performance analysis
The following section analyzes the probability that each sensor captures stochastic

events occurring in PoI and the energy efficiency of the sensor in capturing stochastic

events in periodic schedule (q, p) of sensors in synchronous WSN. Synchronous WSN

mean that all sensors use the same periodic schedule (q, p) and the active and inactive

state of all sensors are synchronized, where p is the length of time the sensor is
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scheduled, q is the length of time the sensor is in active state, and p-q is the length of

time the sensor remains inactive.

4.1 Capture probability of events in Bayesian estimation of distribution parameters

The following theorem can be obtained according to the Bayesian estimate of distribu-

tion parameters in Chapter 3 and He et al .[15].

Theorem 1 From Eq. (1) and (11), the duration variable of stochastic event obeys the

exponential distribution with parameter of 1=θBayesn , then the probability density function

of X is:

f Xð Þ ¼ 1

θBayesn

exp − X=θBayesn

� �
;X > 0;mean ¼ θBayesn ð14Þ

Theorem 2 Under the periodic schedule of sensors (q, p), the probability of each sen-

sor capturing stochastic events occurring in PoI is:

Pc ¼ q
p
þ 1 − exp − p − qð Þ=θBayesn

� �
p=θBayesn

ð15Þ

Proof Stochastic events captured by sensors can be divided into the following two

cases:

First, stochastic events arrive within active state (0, q) of sensors, and the probability

of being captured at this time is q/p.

Second, stochastic events arrive within inactive state (q, p) of sensors and continue

until the next active state (p, p + q), where t is the arrival times of events. At this time,

the probability of stochastic events being captured at this time is:

1
p

Z p

q
Pr X ≥p − tð Þdt ð16Þ

Let T = p − t and substitute t = p − T into Eq. (16), we can get:

1
p

Z p − q

0
Pr X ≥ tð Þdt ð17Þ

Therefore, the sum of probability that stochastic events are captured in both cases is:

Pc ¼ q
p
þ 1
p

Z p − q

0
Pr X ≥ tð Þdt ð18Þ

From Theorem 1, we can get:

Pc ¼ q
p
þ 1
p

Z p − q

0
Pr X ≥ tð Þdt

¼ q
p
þ 1
p

Z p − q

0

Z þ∞

t
1=θBayesn

� �
exp − X=θBayesn

� �
dX

� �
dt

¼ q
p
þ 1
p

Z p − q

0
exp − t=θBayesn

� �
dt

¼ q
p þ 1 − expð − ðp − qÞ=θBayesn Þ

p=θBayesn
(19)
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4.2 Energy efficiency of capture events under Bayesian estimates of distribution

parameters

It can be seen from Theorem 1 and Theorem 2 that under periodic schedule (q, p), the

number of events that arrives each PoI and is captured by sensors is:

Q ¼ ν� Pc ð20Þ

where

ν ¼ 1

βBayesn þ θBayesn

ð21Þ

The energy consumption rate per sensor is:

E ¼ k1 � q þ k2 � p − qð Þ þ 2c
p

ð22Þ

Since one sensor may cover multiple PoIs and one PoI may be covered by multiple

sensors at the same time, suppose that there are m1 sensors covering m2 different PoIs

in synchronous sensor network, so the number of events that consumes different unit

energy captured in the entire synchronous sensor network is:

QE ¼ m2

m1
� Q

E
¼ m2

m1
� θBayesn

θBayesn þ βBayesn

� �� 1þ q=θBayesn − exp − p − qð Þ=θBayesn

� �
k1 � q þ k2 � p − qð Þ þ 2c

ð23Þ

5 On-line adjustable periodic schedule
Based on above analysis, we study on-line scheduling scheme in synchronous WSN.

First, the periodic schedule (q,p) of the entire synchronous WSN is regarded as a large-

scale on-line sleep cycle scheduling (q, p) of the sensor. Among them, the duration of

scheduling time p and the duration of active state q can be corrected in real time.

Solving Eq. (15) to obtain nonlinear equation on the probability of capturing stochastic

event as the parameter under Bayesian estimate of exponential distribution parameter:

F1 pð Þ ¼ Pc − k −
1 − e − p − p�kð Þ=θBayesn

p=θBayesn

¼ 0

s:t:

Pc > 0
p > 0

0 < k ¼ q
p
≤1

ð24Þ

Solving Eq. (23) to obtain nonlinear equation on the energy efficiency of sensors captur-

ing events as the parameter in Bayesian estimation of exponential distribution parameter:
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F2 pð Þ ¼ QE −
m2

m1
� θBaysn

θBayesn þ βBayesn

� �

� 1þ p� k=θBayesn − exp − p − p� kð Þ=θBayesn

� �
k1 � p� k þ k2 � p − p� kð Þ þ 2c

¼ 0

s:t:

QE > 0
p > 0

0 < k ¼ q
p
≤1

ð25Þ

Then use the dichotomy to find zero approximation value of Eqs. (24) and (25), that

is, the specific steps of on-line adjustable periodic schedule are as follows:

Step 1: For each set of 1/θBayes n, 1/βBayes n, set a Pc or QE value, determine the

interval [p1, p2] to make sure F(p1) × F(p2) < 0, set accuracy ε.

Step 2: Find the midpoint value p of [p1, p2].

Step 3: Calculate F(p). If F(p) = 0, then p is zero point; if F(p1) × F(p) < 0, then let p2

= p; if F(p) × F(p2) < 0, then let p1 = p.

Step 4: If |p1-p2| < ε, stop calculation, and zero approximation value is p1 or p2.

Otherwise, return to steps 2–4.

Therefore, based on dichotomy and Eqs. (24) and (25), on-line scheduling scheme of

synchronous WSN under different exponential distribution parameters of Bayesian

estimates, stochastic event captured probability, and captured event energy efficiency

can be obtained.

6 Simulation experiment
6.1 Parameter settings

A large number of sensors are randomly placed into 20 × 20m target area in the syn-

chronous WSN. Table 2 shows the relevant experimental parameters.

6.2 Experiment result

The simulation results of this paper are based on the average of 100 repetitive experi-

ments. It can be obtained from theoretical derivation and experimental simulation that

as the number of events n occurring in PoI increases, the correction values of Bayesian

posterior estimation of distribution parameters θ−1 and β−1 are shown in Table 3.

Table 2 Experimental parameter setting

Parameter Value

Sensor perception radius: r 1 m

Energy rate of sensor consumed in active state: k1 2.369 J/h

Energy rate of sensor consumed in inactive state: k2 0.17 J/h

Energy consumed by the sensor to change between active/inactive states: c 0.05 J

Unit time 1 h

Sensors covering m1 different PoI covered by m2 sensors:
m2
m1

1
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6.2.1 Experiment 1: the effect of sensor scheduling time on event capture probability in

different duty cycles.

When θ−1 = 1, as shown in Fig. 1, in different duty cycles q/p, the capturing probability

of stochastic events Pc decreases rapidly as the scheduling duration p of sensor in

inactive state increases, that is, the probability of missing stochastic events increase.

When the scheduling sensor duration remains the same, the probability of stochastic

events capture increases rapidly with the increase of duty cycle, thereby effectively

reducing the probability of missing stochastic events.

6.2.2 Experiment 2: the impact of event capture probability on the duration of scheduling

and active state in different scheduling schemes.

When the duty cycle q/p = 0.4, as shown in Figs. 2 and 3, as the event capture probabil-

ity Pc gradually increases, the scheduling duration p and the active state duration q of

the sensor in on-line and off-line scheduling schemes both decrease quickly. p and q in

on-line scheduling scheme change more rapidly compared to that in off-line scheduling

scheme. In addition, when the capture probability of stochastic events is the same, p

and q in on-line scheduling scheme change with real time compared to that remains

Table 3 Correction value of distribution parameters

The number of arrival events n 0 200 400 600 800 1000 1200

Exponential distribution parameter θ−1 1 0.972 0.964 0.975 0.996 0.984 0.991

Exponential distribution parameter β−1 2 0.972 1.191 1.340 1.455 1.550 1.578

Fig. 1 Effect of scheduling duration on event capture probability in different duty cycles
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Fig. 2 Effect of event capture probability on scheduling duration in different scheduling schemes

Fig. 3 Effect of event capture probability on active state duration in different scheduling schemes
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constant in off-line scheduling. The on-line scheduling scheme can be seen as a real-

time correction to the off-line scheduling scheme. That is to say, in the same stochastic

events capture probability, the on-line scheduling scheme has a longer scheduling

duration p and a longer active state duration q compared to that in off-line scheduling

scheme, indicating stochastic events that cannot be captured in off-line scheduling

scheme can still be captured in the on-line scheduling scheme proposed in this paper,

that is, the on-line scheduling scheme can capture more stochastic events.

6.2.3 Experiment 3: in different scheduling schemes, the effect of energy efficiency of sensor

captures event on the duration of scheduling and active state

When the duty ratio q/p = 0.4, as shown in Figs. 4 and 5, as the energy efficiency QE of

sensor capture event gradually increases, the scheduling duration p and active state

duration q of the sensor in both scheduling schemes increase rapidly, that is, the sensor

active state duration becomes longer p and q in on-line scheduling scheme change

more rapidly compared to that in off-line scheduling scheme. In addition, when the

energy efficiency is the same, the on-line scheduling scheme is corrected in real time

compared with the constant off-line scheduling scheme, that is, p and q are changed

with real time. Therefore, we can get the following conclusions: (1) In the same energy

efficiency, compared with off-line scheduling scheme, the inactive state p-q becomes

longer in on-line scheduling scheme, indicating that on-line scheduling scheme of

sensor in inactive state can save more energy. (2) In the same energy efficiency, com-

pared with off-line scheduling scheme, the scheduling active state duration q under the

Fig. 4 Effect of energy efficiency of sensor captures events on scheduling duration in different
scheduling schemes
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on-line scheduling scheme is longer, indicating that on-line scheduling scheme can

capture more stochastic events, thereby further reducing the probability of missing

stochastic events, that is, increase the probability of capturing stochastic events.

7 Conclusion
This paper studies the on-line scheduling scheme of synchronous WSN. Based on

randomness of stochastic events and off-line scheduling scheme of sensors, first we use

Bayesian statistical method to make the exponential distribution parameters obey the

duration and interval of stochastic events as random variables; then, we used the

sample of random variable to get Bayesian estimate of distribution parameter; next we

obtain the relationship between periodic schedule of the sensor and Bayesian estimate

of distribution parameter; finally, we propose on-line adjustable periodic schedule

scheme in synchronous WSN.

In this paper, the on-line scheduling and off-line scheduling schemes are simulated,

and experimental results are compared and analyzed. The results show that compared

with off-line scheduling scheme, on-line scheduling scheme of sensor in inactive state

can reduce the probability of missing stochastic events and increase the probability of

capturing events, further saving energy in WSNs and extending network lifetime.

This paper considers that the duration and interval variables of random events are

subject to exponential distribution, and future studies can consider that the time

variables of random events are subject to more general probability distribution.

Fig. 5 Effect of energy efficiency of sensor captures events on active state duration in different
scheduling schemes
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