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1  Introduction
Vibration fault monitoring technology is to understand the state of the overall mechani-
cal equipment or local mechanical parts during operation by analyzing the mechani-
cal vibration signals collected by the sensors. This technology is a technology used to 
discover the early failure of mechanical equipment or predict the development trend 
of mechanical equipment failure [1]. Modern large-scale electromechanical equipment 
usually contains many rotating mechanical structures. Rolling bearings are the most 
commonly used components and play a very critical role in rotating machinery [2]. The 
health of rolling bearings greatly affects the operating state of the entire mechanical 
equipment [3]. When the rolling bearing fails, it will directly reduce the stability of the 
entire mechanical equipment and affect the working efficiency, and even a serious pro-
duction accident occurs [4]. Therefore, it is very important to monitor the running status 
of bearings in real time through the mechanical equipment status monitoring system 
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[5]. The mechanical equipment condition monitoring system performs feature extrac-
tion and pattern recognition by collecting physical quantity data during the operation of 
the equipment.

Common physical quantities include vibration signals, acoustic emission signals, tem-
perature, and lubricant wear [6]. Vibration signals are easier to collect than other physi-
cal quantities and can better characterize the normal or faulty state of bearings during 
operation. Therefore, mechanical state detection systems based on vibration signal 
analysis are the most widely used [7]. The mechanical equipment condition monitoring 
system using wired connection is widely used in many large-scale equipment detection 
and process control [8]. However, the traditional wired connection method has some 
shortcomings. The wired connection system requires additional connection cables, so 
the signal is susceptible to interference during transmission. If the transmission distance 
is long, the lengthy cable will cause problems such as increased installation cost and 
maintenance cost [9]. In recent years, the development of wireless sensor networks has 
broken this wired connection model.

Faced with various problems of wired rotating machinery vibration monitoring sys-
tem under some special environmental conditions, a new type of mechanical vibration 
monitoring method based on wireless sensor network has entered people’s research field 
[10]. The emergence of this new monitoring solution is due to the rapid development of 
embedded systems, wireless networks, and integrated hardware circuits in recent dec-
ades, which has reduced the cost and power consumption of wireless sensor networks 
and has broken through the barriers to the development of wireless sensor networks [11]. 
The wireless sensor network monitoring mode is a novel technical method for acquir-
ing vibration signals. It uses a large number of distributed sensor nodes to self-network 
to construct a wireless data transmission method, thereby making up for the traditional 
wired monitoring system in some special insufficient circumstances [12]. Therefore, this 
paper proposes optimization techniques for mechanical vibration monitoring and signal 
processing based on wireless sensor networks. By combining the hardware design of the 
wireless sensor monitoring system and the signal processing optimization technology, 
the mechanical vibration monitoring technical solution is studied.

The rest of this paper is organized as follows. Section 2 discusses methods, followed by 
the experiment discussed in Sect. 3. The results are discussed in Sect. 4. Section 5 con-
cludes the paper with summary and future research directions.

2 � Methods
The hardware of the vibration monitoring system for rotating machinery based on wire-
less sensor network mainly includes two parts: wireless sensor network monitoring node 
and wireless sensor network base station node. The wireless sensor network monitor-
ing node is generally composed of five parts: control center, data collection, data stor-
age, radio frequency transmission, and power supply [13]. The node is responsible for 
collecting and digitizing the vibration and other information of the rotating machinery 
and then transmitting the information to the base station node by wireless transmission. 
The base station node of the wireless sensor network is mainly composed of five parts: 
control center, data storage, radio frequency transmission, Ethernet communication, and 
power supply. The main function of the base station is to gather, classify, and package the 
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information collected by the nodes joining the wireless sensor network and then trans-
mit the data of each node to the host computer via Ethernet for data processing, display, 
and storage.

2.1 � Overall design

The wireless monitoring system platform designed in this subject can be applied to the 
vibration monitoring of rotating machinery equipment and can even be widely applied 
to the vibration monitoring of other types of equipment through simple upgrades. The 
monitoring nodes in the system platform are used to obtain device status information. 
To intuitively understand the operating status of the device, the acquired device status 
information must also be read and displayed [14].

This requires the use of wireless networks to achieve data transmission and host com-
puter software to display monitoring information. Through the design and analysis of 
the platform, the overall structure of the system is mainly composed of three parts: wire-
less sensor network monitoring node, wireless sensor network monitoring base station, 
and wireless sensor network host computer monitoring software. The structure diagram 
of a single wireless star network monitoring hardware platform is shown in Fig. 1.

The monitoring node installed on the rotating machine obtains the operating infor-
mation of the rotating machine and transmits it to the base station node using radio 
frequency communication. The base station node uses Ethernet to transmit the received 
operating information to the monitoring host for visual monitoring [15]. The upper 
computer in the upper computer monitoring software is the data center of the entire 
hardware system. The base station node can receive the control commands of the upper 
computer software and then send it to the target monitoring node through radio fre-
quency communication. The user can also observe the entire monitoring area intuitively 
through the monitoring host monitoring data and analyze the data through the com-
puter to understand the running status of rotating machinery [16].

The wireless vibration monitoring network uses a star network structure, which 
includes a network center and multiple network nodes. The wireless sensor net-
work monitoring base station is the network center, and the wireless sensor network 
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Fig. 1  Structure diagram of a single wireless star network monitoring hardware platform
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monitoring node is the network node to form the first-level wireless star network 
structure [17]. The second-level star network structure is networked by wire. It uses 
the monitoring host as the network center and the wireless sensor network monitor-
ing base station as the node. The system transmits the monitoring data to the host 
computer through a two-level star network structure combining wireless and wired. 
The structure diagram of the improved wireless sensor network monitoring hardware 
is shown in Fig. 2.

2.2 � Design of wireless vibration monitoring node

2.2.1 � Overall scheme design of monitoring node

The wireless rotating machinery vibration monitoring node uses ST’s Cortex-M4 core 
32-bit processor STM32F405RG as the core processor of the monitoring node. The 
wireless radio frequency takes Silicon Labs’ Si4463 as the core and is equipped with 
Analog Devices’ high-precision 16-bit A/D converter and MEMS acceleration sensor 
as the signal acquisition front end [17]. In addition, there are large-capacity flash stor-
age modules and high-efficiency power supply modules as auxiliary.

Due to the higher accuracy and sampling rate required for vibration monitoring of 
rotating machinery, a large amount of data will be generated during the monitoring 
process. In response to the large power consumption problems of data storage, com-
puting, and RF data transmission caused by large amounts of data, the monitoring 
nodes designed must have higher computing power, lower energy consumption, and 
superior storage capacity [18]. The overall design of the wireless rotating machinery 
vibration monitoring node is shown in Fig. 3. The wireless monitoring node consists 
of five parts: control center, data collection, data storage, radio frequency transmis-
sion, and power supply [19, 20]. The design adopts the concept of modularization, 
which is conducive to the addition and deletion of different functional modules, 
increases the flexibility of the equipment, and facilitates the upgrading and transfor-
mation of the equipment.

Monitoring Node

Base Station Node

M

M

M

Work Switch

Monitoring Host
Fig. 2  Improved wireless sensor network monitoring hardware structure diagram
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2.2.2 � Data acquisition module

The data acquisition module circuit designed in this paper includes two parts: the sensor 
part and the signal conditioning conversion part. The sensor is the source of monitoring 
data for the monitoring system and must meet the characteristics of large range, wide 
bandwidth, and low power consumption required by mechanical vibration monitoring 
[21]. Because only digital signals can be processed and analyzed in the microprocessor 
system, and the ADXL2203 5 acceleration sensor output is an analog voltage signal, the 
voltage signal output by the general sensor will not meet the requirements of the AD 
input signal and must go through the signal conditioning module. And input to the A/D 
converter for digitlization [22]. The internal structure of the acceleration sensor is shown 
in Fig. 4.

The sensing part needs to measure the vibration parameters of the device, and the sen-
sor module is required to have the characteristics of small size, low power consumption, 
and simple circuit [23]. The frequency component of mechanical vibration is related to 
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Fig. 3  Wireless sensor network detection node design
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the specific mechanical structure. The vibration signal of a typical mechanical struc-
ture often contains rich frequency components ranging from tens of hertz to several 
thousand hertz. Therefore, the vibration sensor needs to have a large bandwidth. The 
node in this paper adopts the high-performance 1VIEMS vibration acceleration sensor 
ADXL2203 5 from Analog Devices [17].

3 � Experiment
The sampling process is a very important part of digital signal processing. In order to 
ensure that important information in the original signal is not lost, the sampling pro-
cess must follow the Nyquist sampling theorem, that is, the sampling frequency must be 
twice the bandwidth of the original analog signal. If further compression of the original 
sampled data is required, the common method is to perform sparse transformation on 
the original signal, discard the smaller coefficients in the transform domain signal, only 
retain the larger coefficients with the most information, and then decode the signal at 
the decoding end to perform reconstruction [1].

This chapter studies the vibration characteristics of rotating machinery, improves the 
traditional reconstruction algorithm, and proposes a compressed sensing reconstruction 
method based on block sparse Bayesian learning [24]. This chapter first studies the block 
sparse structure model, and several typical reconstruction algorithms using the block 
sparse structure model, analyzes the characteristics of the mechanical vibration signal in 
the transform domain, and verifies the feasibility of the block sparse structure model by 
analyzing the actual signal waveform. Secondly, the theoretical framework and hyperpa-
rameter estimation method of block sparse Bayesian learning and reconstruction algo-
rithm are studied, and the use of block sparse Bayesian learning for compressed sensing 
reconstruction of rotating machinery vibration signals is proposed [25]. The compres-
sion sensing method is used to process the bearing vibration signal, and the perfor-
mance of different reconstruction algorithms is compared, which proves that the block 
sparse Bayesian learning method has better reconstruction accuracy than the traditional 
compression sensing reconstruction algorithm [26, 27].

3.1 � Structural characteristics of the signal

The signal type studied in this paper is the vibration signal of rotating machinery, which 
is a typical one-dimensional signal. Generally, the actual one-dimensional engineer-
ing signals have obvious aggregation characteristics in the sparse signals in the trans-
form domain, so it is reasonable to use the block sparse structure model to describe the 
vibration signals of rotating machinery [28, 29]. The block structure of the signal can be 
expressed as a series of non-overlapping coefficient blocks. Different vibration signals 
were analyzed to verify the block sparse characteristics of the vibration signals, and a 
preliminary exploration was made for the combination of vibration signals and compres-
sion sensing of rotating machinery. In this section, the vibration signal with a load of 
2hp, normal type, and three faults is selected at 800 points each [30]. The original signal 
has a very complex waveform in the time domain, but it has an obvious block sparse 
structure in the frequency domain, and when a fault exists, the larger coefficients are 
concentrated in the middle-frequency band. The signal has block sparse characteristics 
in the frequency domain and is related to the bearing vibration principle. 0 to 2000 Hz 
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can be regarded as a low-frequency band. The low-frequency band mainly includes the 
ripple error of the bearing processing surface, the frequency of vibration caused by the 
assembly position error, and the characteristic frequency of the fault [31, 32].

In the low-frequency band, the original vibration signal is particularly susceptible to 
noise interference, and the energy is very low. 2000 Hz to 4000 Hz can be regarded as an 
intermediate-frequency band. When the bearing fails, the signal energy in the mid-band 
is very high. This is mainly due to the existence of a bearing surface failure. When the 
bearing rotates past a failure point, it will cause an impact. The impulse signal is very 
short in time, and the spectrum range is particularly wide [33, 34]. The inherent vibra-
tion frequency of the bearing is generally within the frequency range of the fault impact 
signal. Therefore, the impact signal will cause the resonance of the bearing, which is very 
strong. When the bearing is fault-free, the resonance will not be excited because there 
is no impact signal, so the normal signal has almost no energy in the middle-frequency 
band. High-frequency band above 4000 kHz usually contains the high-frequency band 
spectrum caused by fault impact and may also contain some high-frequency noise, usu-
ally the energy is the lowest [35].

3.2 � Sparse Bayesian algorithm

Bayesian algorithm is one of the commonly used algorithms in machine learning, mainly 
used for classification problems [36]. It mainly refers to that under the given conditions 
of the training data set, first, based on the assumption of the conditional independence 
of the feature variables, the joint probability distribution of input and output is obtained 
[37]. Then, based on this model, the input instance features are used to find the maxi-
mum posterior probability output using Bayes’ theorem.

Let x be the input n-dimensional feature variable, and set y ∈ {c1, c2, . . . , cn} as input, X 
is a random variable on the input space, and Y is a random variable on the output space. 
The joint probability distribution of X and Y is P (X, Y), and P (X, Y) independently and 
identically generates the training data set.

Then, from the Bayesian formula:

Naive Bayes has constructed conditional independence for conditional probability, 
namely:

The probability p(y = 1|x, θ) represents the probability that y belongs to 1 given the 
characteristic variable x, and hθ (x) = p(y = 1|x, θ) , then there are models:

in which θ = {θ0, θ1, . . . θp} represents the coefficient value corresponding to each fea-
ture, θ value. It can be obtained by solving the maximum likelihood estimation function. 

(1)T = {(x1, y1), (x2, y2), . . . (xN , yN )

(2)P(Y = ck/X = x) =
P(X = x/Y = ck)P(Y = ck)

∑K
k=1 P(X = x/Y = ck)P(Y = ck)

(3)P(X = x/Y = ck) = P
(

X (1) = x(1),X (2) = x(2), . . .X (n) = x(n)
)

/Y = ck)

(4)hθ (x) = [1+ exp(−θTx)]−1
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Assuming that each sample in the data set is independent of each other, the likelihood 
function is:

The basic formula of the Naive Bayes algorithm is shown in Eq. (6), and its meaning is 
the probability of the output category A given the instance Y.

In practical applications, when classifying feature instances, we select the final cate-
gory with the largest probability value, which can be formalized as Eq. (7).

4 � Results
In order to verify the high-precision reconstruction performance of the sparse Bayesian 
algorithm, experiments were carried out on the vibration signal processing method of 
rotating machinery based on compression sensing. The experimental data are a fault sig-
nal with a running load of 2hp, and the length of all experimental data is unified to 800. 
This section mainly conducts comparative experiments on reconstruction algorithms. 
Therefore, in order to avoid the influence of different forms of the sparse representa-
tion dictionary on the reconstruction accuracy, firstly perform sparse transformation 
on the time domain signal to obtain transform domain coefficients and then use Gauss-
ian random matrix to transform domain coefficients for projection observation. Finally, 
a reconstruction algorithm is used to reconstruct transform domain coefficients from 
low-dimensional observation vectors, and finally an inverse transform method is used 
to reconstruct the original time domain signal. Projection observation using the obser-
vation matrix can reduce the length of the original data and use the signal frequency to 
evaluate the degree of data compression and optimization.

4.1 � Technical performance test

In order to verify the reliability of the parameters of the mechanical vibration monitor-
ing technology in actual use, we have organized various types of system tests. In the case 
that the function meets the business, the system also needs to meet the requirements of 
performance indicators such as response speed and server concurrent affordability. This 
system uses the Siege framework to perform performance tests and uses Noah to moni-
tor various performance indicators. Figure  5 shows the response speed performance 
results of mechanical vibration monitoring technology. Figure  6 shows the results of 
server concurrency tolerance in mechanical vibration monitoring technology.

In the process of system performance testing, the two indicators of system response 
time and packet loss rate are used to test the concurrent performance of the system and 

(5)l(θ) =

n
∏

i=1

[hθ (x)]
yi · [1− hθ (x)]

1−yi

(6)P(Y = ck/X = x) =

∏n
j=1 P(X

(j) = x(j)/Y = ck)P(Y = ck)
∑K

k=1(Y = ck)
∏n

j=1 P(X
(j) = x(j)/Y = ck)

(7)y = f (x) = arg max

∏n
j=1 P(X

(j) = x(j)/Y = ck)P(Y = ck)
∑K

k=1(Y = ck)
∏n

j=1 P(X
(j) = x(j)/Y = ck)
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the performance of responding to customers. Limited to the network environment and 
server performance have a greater impact on performance indicators, the network envi-
ronment during the test is selected as the internal network, and the server is a stand-
alone server with a brand-new system and a cluster with two stand-alone servers.

4.2 � Comparison of sparse Bayesian learning and other algorithms

In the previous chapter, in addition to introducing the concept of block sparse struc-
ture, several reconstruction algorithms using signal block structure were mentioned, 
including group LASSO, block OMP, group BP, etc. This group of experiments com-
pares the reconstruction performance of sparse Bayes and other block-based sparse 
structure algorithms. The experimental signal is the bearing outer ring fault signal. 
During the experiment, except for the sparse Bayesian algorithm, other reconstruc-
tion algorithms need to set very complicated prior conditions, which will not be dis-
cussed in detail. Figure  7 shows a comparison of original signal and reconstructed 
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signal quality with a compression rate of 30%, and Fig. 8 shows a comparison of origi-
nal signal and reconstructed signal quality with a compression rate of 50%.

It can be seen from Figs. 7 and 8 that the size of the original signal and the com-
pression ratio has a very small impact on the reconstruction performance and can be 
ignored, and it can be considered that the sparse Bayesian algorithm is insensitive to 
the signal block structure. This is the advantage of this algorithm compared to other 
reconstruction algorithms based on block sparse structure. Before performing calcu-
lations, other types of algorithms must first set the block size that matches the signal 
type, otherwise the reconstruction error will be very large. However, the block struc-
ture information of the signal may be unknown in the actual signal processing, and 
only the sparse Bayesian algorithm can still reconstruct the signal with high accuracy 
without knowing the block structure of the signal.
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Through the above experimental results, it can be observed that the four reconstruc-
tion algorithms based on fast sparse structure have no advantage, and even the recon-
struction effect is even worse. This problem can be analyzed from two perspectives. First 
of all, although the energy of the signal has obvious concentration characteristics, it is 
not an ideal block structure, and there are still many small coefficients at other locations, 
and four reconstruction algorithms based on block sparse structure use simulation in a 
noise-free environment. Signal experiments are not good for actual complex signal pro-
cessing. Secondly, these four kinds of block structure reconstruction algorithms require 
many prior conditions. Each reconstruction parameter setting needs to conform to the 
signal characteristics; obviously, the structure of the signal is different. This leads to a 
very large difference between the two transform domain reconstructed signals. In short, 
relying too much on the prior conditions will make the algorithm based on the sparse 
structure of the signal block inferior to the traditional algorithm in practical applica-
tions. Through a large number of experiments, the reconstruction performance of the 
block sparse Bayesian learning method and the existing reconstruction algorithm is 
compared. In addition, the denoising effect of block sparse Bayesian learning framework 
is studied. When studying the influence of the signal block structure on the reconstruc-
tion algorithm, an important conclusion is drawn through experiments, that is, the influ-
ence of the signal block structure on the block sparse Bayesian learning algorithm is 
negligible, which brings us new enlightenment.

5 � Discussion
The wireless vibration fault monitoring technology is to analyze the mechanical vibration 
signal collected by the sensor to understand the status of the rotating mechanical equip-
ment during operation, and then transmit the monitoring information through the wire-
less sensor network. This paper analyzes the problems that the wireless sensor network 
needs to solve in the application of mechanical vibration monitoring, and designs a set 
of wireless sensor network vibration monitoring system suitable for rotating machinery 
to initially realize the status monitoring of mechanical equipment. This paper designs a 
vibration monitoring platform for wireless sensor networks suitable for rotating machin-
ery. According to the design requirements, the hardware circuit design of module units 
such as data collection, data storage, wireless communication, and power supply unit of 
the monitoring node is realized.

In addition, the sparse Bayesian algorithm is proposed as a compressed sensing recon-
struction algorithm for vibration signal processing. The experiment compares the differ-
ence in reconstruction accuracy between this method and the traditional reconstruction 
algorithm, and the effect of this method on the reconstruction performance is analyzed 
when selecting different parameters. Although some research results of mechanical 
vibration monitoring optimization methods have been achieved in this paper, with the 
continuous expansion of the wireless sensing field and the expansion of new technolo-
gies, mechanical vibration monitoring methods still have many problems worth study-
ing. We will further explore mechanical vibration principles and new technologies to 
provide a scientific reference for the development of modern industry.
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Abbreviation
ADC: Airborne digital computer.
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