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1  Introduction
With the development of remote controlling technique and the emergence of demand 
in wireless communications, UAV is considered to play an important role in next 
and beyond next-generation communication system, which brings the possibility of 
broadband seamless connectivity and flexibility of deployment equipped with mul-
tiple antennas and working in millimeter wave band [1]. Compared to conventional 
terrestrial platforms or high-altitude platforms, UAV-enabled platforms take the 
advantages of fast deployment, flexible reconfiguration and often more satisfying 
communication channels because UAV-enabled base station (BS) can dynamically 
coordinate its position to ensure the presence of short-range line-of-sight links [2]. 
References [2, 3] summarize three primary kinds of UAV-aided wireless communica-
tions, i.e., UAV-aided ubiquitous coverage, UAV-aided relaying, and UAV-aided infor-
mation dissemination and data collection. The first one is often used to deal with the 
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situation that the terrestrial BS is overloaded or just cannot serve normally due to 
natural damage where UAV-enabled BS can be flexibly deployed to support the ter-
restrial BS. The second one is typically used in areas where there are large blocks like 
mountains or something else to shadow wireless signal significantly, which degrades 
the performance of mmWave-based communication system [4]. In the last one, UAVs 
are used to exchange data with a large number of distributed UEs or sensors, in which 
time delay can be tolerated on a certain level.

MmWave is considered as an opportunity for the communication spectrum in 5G 
and beyond 5G. With being equipped with massive antennas in both transmitter and 
receiver, the strong path loss in mmWave can be overcome [5]. However, the mas-
sive antennas bring the need for precise channel state information (CSI) with high 
dimension and the pretty awesome cost in computation and hardware, especially in 
radio frequency chain (RF chain). Hybrid precoding, as a method to reduce the cost 
of RF chain and total transmitting power [6], is proposed, while it also needs an effi-
cient algorithm because it is a NP-hard problem due to the constrains in phase shift-
ers. Several efficient algorithms for hybrid precoding in mmWave massive MIMO or 
normal massive MIMO are proposed including OMP [7], RF iteration [8] and beam 
steering [9]. In addition, in recent years, more and more researchers pay attentions 
on the combination between hybrid precoding and deep learning, which often brings 
an inspiring design and excellent performance due to its powerful ability to mimic 
almost any relation and function, while we do not need to know what exactly the rela-
tion is, just like the hybrid precoding network proposed in [10].

By contrast to the exploring development in time-invariant mmWave massive 
MIMO, there are not proficient researches according to the time-varying system, 
such as the scenario of UAV-enabled communications and high-speed railway [11]. 
Although there are some researches about time-varying, we do a brief summary about 
existing researches and then introduce the necessity of our research. Reference [12] 
considers the scenario that the precoder acquired by singular value decomposition 
(SVD) is not corresponding to the current channel in a time-varying channel model, 
so the receiver needs to update it with some methods. A time-varying channel estima-
tion method based on the Taylor expansion is presented in [13]. There is also a recent 
research [14] about time-varying precoding in MIMO-OFDM system, which uses an 
inverse extrapolation method to settle time-varying precoding problem. However, 
early researches consider the normal MIMO system and recent researches consider 
the problem of time-varying channel estimation or full digital precoding rather than 
hybrid precoding. In the next-generation communication system, it is necessary to 
research the time-varying hybrid precoding in a mmWave or normal massive MIMO 
scenario, especially in a UAV-enabled communication system due to the mobility of 
UAVs, which is both the advantage and new challenge for wireless communication. 
This is the motivation of our work, and the main contributions of this paper are listed 
in the following:

•	 We propose a double-pilot-based time-varying hybrid precoding system based on 
the analysis that analog precoding and digital precoding vary in different speeds and 
the size of them is totally distinct, which determines the separate methods for them.
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•	 We leverage a beamforming index prediction net (BIP-Net) based on convolution 2D 
(Conv2D) LSTM, which is pretty efficient because we just predict the index of the 
beamforming from a codebook, which allows the fast training of net.

•	 To the best of our knowledge, besides the different rate designs of the double-pilot 
hybrid precoding system, this is the first paper corresponding to the combination of 
beamforming prediction and deep learning in a UAV-enabled or time-varying sys-
tem as well. In addition, the method proposed is flexible and feasible since it can be 
adopted in any beamforming methods based on a codebook.

Notation: We use the following notations throughout this paper: A is a matrix, a is a vec-
tor, a is a scalar and A is a set. AT and AH are, respectively, the transpose and conjugate 
transposes of A . |A| is the determinant of A , and |a| is the absolute value of a . CN

(
m, σ 2

)
 

means a complex Gaussian process with mean m and covariance σ 2 . �·�F is Frobenius 
norm. ◦ and ∗ are Hadamard production and convolutional production, respectively.

2 � System model and problem definition
We consider such kind of scenario in which base station (BS) is deployed on a UAV and 
both BS and user equipment (UE) adopt the lens model [15], as shown in Fig. 1. It also 
presents the line-of-sight (LOS) and non-line-of-sight (NLOS) paths of mmWave. The 
time-varying mmWave channel is based on the time-varying geometry channel model. 
However, our proposed method is suitable for any hybrid precoding based on the cer-
tain kind of codebook. The following subsections will present: (1) the mmWave massive 
MIMO with lens model and the time-varying channel model and (2) the problem defini-
tion of hybrid precoding accompanying with the discussion of time-varying influence, 
respectively.

2.1 � System model

2.1.1 � Physical model

As illustrated in Fig. 2, the mmWave massive MIMO with lens is similar to the common 
one. It just substitutes a selector and a lens for the analog precoder and common antenna 

Fig. 1  UAV-enabled BS and UE with LOS and NLOS paths
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array. The lens is used to transform the channel into the beamspace, where the mmWave 
channel is sparse. The selector is used to select the beams which contain the most power.
Ns is the number of data streams, FBB/WBB is the digital precoding matrix with dimen-

sion NRF × Ns , NRF is the number of RF chains, St/Sr is the selecting matrix in transmit-
ter and receiver with dimension Nt × NRF/Nr × NRF and Nt/Nr is the number of antennas 
corresponding to the transmitter/receiver.

The lenses in both sides are equal to a two-dimensional fast Fourier transformation (FFT) 
conducted on channel

where FNt/FNr is the 2D FFT matrix, H is the origin channel matrix and G is channel 
matrix in beamspace which is sparse and just mere points have nonnegligible value, as 
shown in Fig. 3.

The received signal in receiver can be expressed as

where x is the symbol to be transmitted, y is the received signal and n is the noise satisfy-
ing the complex Gaussian distribution CN (0, 1) . In a normal mmWave massive MIMO, 
FNtSt/FNrSr in the formula is FRF/WRF and called analog precoder/combiner.

(1)G = FNrHFNt ,

(2)y = WH
BBS

H
r GStFBBx +WH

BBS
H
r n,

Fig. 2  Lens antenna array mmWave massive MIMO system

Fig. 3  Amplitude of mmWave channel in beam space
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So, the 2D FFT matrix FNt/FNr can be considered as the codebook F / W for analog pre-
coding, and the selector St/Sr is obligated to select the suitable vectors for beamforming.

2.1.2 � Time‑varying geometry channel

We adopt the geometry channel model, which depicts the channel matrix in a uniform 
linear array (ULA) and time-varying scenario as [16, 17].

where P is the number of multipath, αℓ(t) is the path loss of the ℓ th path, ar
(
φr,ℓ(t)

)
 and 

at
(
φt,ℓ(t)

)
 are the antenna array response of receiver and transmitter, respectively. φr,ℓ(t)

/φt,ℓ(t) is angle of arrival (AoA) /angle of departure (AoD). fℓ is the Doppler shift and Ts 
is the sampling period. In addition, αℓ(t) follows the first-order complex Gauss–Markov 
model and φr,ℓ(t)/φt,ℓ(t) varies by a low-speed following Gaussian distribution with zero 
mean and σ 2 variance (according to the position and velocity).

The antenna array response can be expressed as

where d is the antenna space and at
(
φt,ℓ(t)

)
 can also be expressed by the similar formu-

lation just with substituting the AoD for AoA.

2.2 � Problem definition and time‑varying influence

2.2.1 � Hybrid precoding problem definition

The hybrid precoding problem in the lens model can be defined as the following optimi-
zation problem [18]

where Rn = 1
SNRW

HW , SNR is signal-to-noise ratio and BN is N-dimensional binary 
field.

(3)H(t) =
P∑

ℓ=1

αℓ(t)ar
(
φr,ℓ(t)

)
aHt

(
φt,ℓ(t)

)
ej2π fℓTst ,

(4)ar
(
φr,ℓ(t)

)
= 1√

Nr

(
1, e

j
(
2π
�

)
d sin (φr,ℓ(t))

, . . . , e
j(Nr−1)

(
2π
�

)
d sin (φr,ℓ(t))

)T

,

(5)

{
W∗

BB, S
∗
r ,

S∗t ,F
∗
BB

}
= argmax

WBB, Sr ,
St ,FBB

log2

∣∣∣I+ R−1
n WHGFFHW

∣∣∣,

(6)s.t. W = SrWBB,

(7)F = StFBB,

(8)�StFBB�2F ≤ Ns,

(9)Sr =
{
X|xi ∈ B

Nr , �xi�2F = 1, i = 1, . . . ,NRF

}
,

(10)St =
{
X|xi ∈ B

Nt , �xi�2F = 1, i = 1, . . . ,NRF

}
,
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We rewrite the optimization problem considering the suboptimal solution proposed in 
[19, 20], the coordinated optimization problem can be transformed to

The digital precoder and combiner can be solved by calculating the SVD of SHr GSt , con-
sidering the SHr GSt as an equivalent channel.

Considering the sparse nature of mmWave channel, we can conduct the beamform-
ing directly by selecting the largest several nonnegligible values in beamspace domain, 
just as shown in Fig. 3, and adopt the equivalent channel method to complete the hybrid 
precoding.

2.2.2 � Time‑varying influence

The following part of this subsection is dedicated to the discussion of the influence of 
time-varying in a mmWave massive MIMO.

Consider the following situation that the receiver calculates the precise CSI H(t1) at 
time t1 . However, when the transmitter and receiver prepare the perfect precoder and 
combiner for H(t1) , the channel just changes to H(t2) and the previous precoder and 
combiner do not match the new channel, which degrades the performance of the sys-
tem. Figure 4 depicts the aforementioned scenario.

To mitigate the influence, the transmitter and receiver need to frequently update CSI 
so that they can leverage the relatively recent channel to combat degradation of perfor-
mance, which brings the problem of high consumption of pilot and computation time. 
Figure 5 illustrates this by the comparison between communication process diagram of 
time-invariant (the one above) and time-varying channel (the one below).

2.3 � Analysis of analog precoding in time‑varying channel

2.3.1 � Solution space of analog precoding

Due to the quantification of phase and invariant norm of amplitude in analog precoding, 
the solution space of each element f ijBB/wij

BB (the element of analog precoder/combiner in 
row i and column j) is constrained into a discrete circuit, as Fig. 6 presents. In addition, 

(11)
{
S∗r , S

∗
t

}
= argmax

Sr ,St

log2
∣∣I+ SNRSHr GStS

H
t G

HSr
∣∣.

Fig. 4  Influence of time-varying mmWave massive MIMO channel
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in lens model, the analog precoding codebook is the columns of FFT matrix which in 
fact intends to quantify the AoA/AoD so that the precoder/combiner can only take the 
format of

where k = 0, 1, . . . ,N − 1 and N equals to Nt/Nr . Obviously, the elements of fk are abso-
lutely determined by k, so the solution space of fk can be expressed as the same format of 
element solution space, i.e., Fig. 6.

Only when the deviation of the channel is large enough, the beam selector St/Sr needs 
to change the selected beam, which is shown as Fig. 7.

2.3.2 � Robustness of analog precoding

As the final part of this section, we discuss the influence of time-varying on analog pre-
coding, and we can see the robustness of analog precoding against Doppler shifting and 

(12)fk = (1, ej2π
k
N , ej2π

2k
N , . . . , ej2π

(N−1)k
N )

T
,

Fig. 5  High cost brought by frequently updating precoder/combiner in time-varying channel. Legend: time 
for pilot transmitting, channel estimation, precoding calculation and feedback

Image

Real

Fig. 6  Solution space of analog precoder/combiner (take 8 as antenna number for example)
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the deviation of path gain loss in mmWave channel, which enhances the gap between the 
deviating speed of analog precoding and digital precoding. Consider the process of beam 
selection in lens model. The selector selects the closest analog codewords according to 
the first NRF largest antenna responses in both sides.

Rewrite the formula of channel model to

It is obvious that Doppler shifting and the deviation of path gain loss do not influence 
the selection of beamforming because they can be seen as the part of new path gain loss 
βℓ(t) = αℓ(t)e

j2π fℓTst.
Thus, we analyze the influence of time-varying mmWave massive MIMO in which 

digital precoding needs frequent updating so that it can trace the as recent channel as 
possible, contrary to analog precoding, which can combat Doppler shifting and small 
deviation of AoA/AoD. In the next section, we present the double-pilot-based hybrid 
system according to this fact.

3 � Methods
In this section, we present the double-pilot-based hybrid precoding system, which is 
composed of two steps—beam sampling step and prediction step, as Fig. 8, the time axis 
diagram (the one above), shows. Figure 8 also provides the comparison between the pro-
posed method (the one above) and the common method (the one below)—increasing 
the sampling rate directly. There are two kinds of pilots with different colors and densi-
ties used for, respectively, sampling the equivalent and original channels in the time axis 
of proposed method, meaning different sampling rates in the aforementioned two steps, 
which is based on the fact described in Sect. 2. We present the benefits of this double-
rate sampling in Sect. 5. Subsection 1 is dedicated to the explanation of beam sampling 
step and beam prediction step, and subsection  2 explains the digital precoding under 

(13)H(t) =
P∑

ℓ=1

[αℓ(t)ej2π fℓTst ]ar
(
φr,ℓ(t)

)
aHt

(
φt,ℓ(t)

)
.

Fig. 7  Diagram of analog code deviation (take 8 as antenna number for example)
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having acquired the appreciate beamforming. The ratio of sampling rate of the equiva-
lent channel (yellow pilots) to that of original channel (blue pilots) is notated as Rsmpl.

3.1 � Analog precoding sampling and prediction

3.1.1 � Beam sampling step

As shown in Fig. 8, the blue pilots are used to estimate the mmWave massive MIMO 
channel and only exist in the period of beam sampling step so that the system can 
acquire the selector by selecting the coordinate of first NRF largest elements of the chan-
nel in beamspace during each time slot ( [tiRsmpl

, t(i+1)Rsmpl
), i = 0, 1, . . . ) in beam sam-

pling step. 

According to the enlarged drawing of blue time slot in Fig.  8, the blue pilot using 
precoding takes a large cost of time (long red block) due to the reality that it needs to 
transfer Nt × Nt pilots and calculate the high-dimension channel matrix to acquire 
high-dimension analog precoding and low-dimension digital precoding, which is also 
the process of common precoding presented in the time axis below. After the whole 

Fig. 8  Time axis diagram comparison between double-pilot-based system and common system. Legend: 
pilot for high-dimension original channel. Pilot for low-dimension equivalent channel. Common pilot for 
high-dimension original channel. Time for precoding process. Beam sampling step. Prediction step
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process—including pilots transferring, channel estimation, precoding and feedback 
being done, data streams can be exchanged between BS and UE (green block).

3.1.2 � Beam prediction step

Considering the time correlation showed in Equ. 3, we can try to use the first L− 1 selec-
tors to predict the next one so that the transmitter and the receiver can use the precise 
selectors corresponding to time L rather than the previous ones. The relation of selectors 
in different times can be expressed as a state transfer equation

where f is the predictor, and we introduce our deep learning-based predictor in the next 
section.

With the utility of beam prediction, UAV-enabled BS and UE do not need to trans-
fer blue pilots to conduct hybrid precoding and the analog precoding can be acquired 
directly from the predictor according to the previous L− 1 selectors, which saves pretty 
much time for conventional precoding. Of course, yellow pilots are necessary to com-
plete digital precoding yet.

Obviously, in the beam prediction step, the system only needs a very low cost (short 
red block in Fig. 8) for digital beamforming, which is presented with details in the next 
subsection.

3.2 � Low complexity digital precoding

This subsection depicts the process of digital precoding after acquiring analog precod-
ing. We consider the parts including selectors and lens in both sides and mmWave mas-
sive MIMO channel itself as a whole, a new low-dimension channel Heq = SHr GSt and 
take the assumption that CSI does not change in an interval of Ts , i.e., block fading or at 
least does not change as large as it does between intervals. Thanks to analog precoding 
for reducing the channel dimension significantly, we can achieve the equivalent channel 
with negligible cost before transferring message officially.

As Fig. 8 illustrates, the yellow pilots are used to estimate equivalent channel Heq and 
the frequency of pilot transmitting should be pretty high due to that digital precoding 
shifts fast because it is influenced by small scale shading and Doppler shifting. How-
ever, thanks to the fact that the dimension of Heq is very low ( NRF × NRF ) so it is pos-
sible to update digital precoding frequently, which endows digital precoding the ability 
of following the time-varying channel smoothly. In each instance (the instance equals to 
Ts ), transmitter and receiver update their digital precoding via equivalent channel except 
at the time of tiRsmpl

 in beam sampling step when digital precoding can be calculated 
together with selector, which can be expressed as Algorithm 2: 

(14)St(tiRsmpl
) = f (St(t(i−1)Rsmpl

), St(t(i−2)Rsmpl
), . . . , St(t(i−L+1)Rsmpl

)),
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4 � Beamforming index prediction‑net in beam prediction step
This section presents the deep learning architecture used to predict the beamforming 
during the period of beam prediction step proposed in the previous section. Also, it is 
possible to utilize other methods to conduct the beam prediction. It is necessary to note 
that, for simplification, we use t to replace Rsmplt , and this notation method is just valid 
within this section because our deep neural network takes part in only the analog pre-
coding so that there is only one kind of sampling rate for it.

Firstly, setting the time relevance length L , the transmitter successively transfers pilot 
to the receiver in L− 1 slots (time slot equals to RsmplTs ) to estimate the channel and 
generate the beamforming selector by selecting the beams which accumulate most 
power. We get the first L− 1 beamforming selectors in beam sampling step according to 
the previous section, and we can consider a selector matrix as NRF one-hot labels, which 
is widely used in classification problems, and this makes the net easy to be trained [21]. 
One-hot labels are illustrated in Fig. 9.

Fig. 9  Selector in transmitter/receiver as NRF one-hot labels
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Here, we adopt the Conv2D LSTM structure to construct our deep learning net due 
to the assumption that the beamforming vectors for the specific channel are related and 
beamforming matrices at different times are related as well. Conv2D LSTM combines 
the characteristics of convolution net and LSTM net (Fig.  10).The previous one takes 
advantage of grasping the feature spatially, and the post one is good at analyzing time 
sequence. Conv2D LSTM uses tensor rather than sequence as input and can use for-
mer information at the same time. In Fig. 11, we present the structure of Conv2D LSTM 

Fig. 10  Structure of BIP-Net

Fig. 11  Structure of Conv2D LSTM block
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block according to [22], which is pretty similar to the common LSTM block, and Fig. 12 
explains the counterparts to the three gates in common LSTM block. The blue block 
in Fig.  11 means convolutional multiplication, which is the most difference between 
Conv2D LSTM and common LSTM. This structure is also adopted by [23] to predict the 
downlink CSI.

According to the second reviewer’s comment, we removed the original Fig.  12 and 
replaced it by the current Fig. 12.

The explicit relationship of the variables in Fig. 11. can be expressed as follows:

where the subscripts of W mean the operand according to the specific gate.
Figure 10 illustrates the proposed beamforming index prediction network (BIP-Net) 

with explicit explanations. X(t − 1) in Fig. 10 is the selector St or Sr in time t − 1 and 
Ŷ(t) is the prediction of the beamforming index in time t and can be expressed as

where fC2Li(·) notes the Conv2D LSTM block i and �i means the parameters in the pre-
vious one. In addition, the red box in the diagram represents 1 in the input matrix and 
the yellow one means predicted 1 in the output selector.

We use binary cross-entropy as loss function, which in this net can be expressed as

(15)it = σ(Wxi ∗ Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi),

(16)ft = σ
(
Wxf ∗ Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf

)
,

(17)Ct = ft ◦ Ct−1 + it ◦ tanh (Wxc ∗ Xt +Whc ∗ ht−1 + bc),

(18)ot = σ(Wxo ∗ Xt +Who ∗Ht−1 +Wco ◦ Ct−1 + bo),

(19)ht = ot ◦ tanh (Ct),

(20)Ŷ(t) = fC2Ln
(
. . . fC2L1(X(t − 1);�1) . . . ;�n

)
,

(21)loss(y, ŷ;P) = − ylog ŷ− (1− y) log(1− ŷ),

Fig. 12  Main components of Conv2D LSTM block
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where y/ŷ is the element of Y(t)/Ŷ(t) , P = {�i|i = 1, 2, . . . , n} is the set of parameters. 
Y(t) = X(t) is label, the precise selector in the next time.

5 � Results and discussion
In this section, the simulation results are demonstrated to confirm the feasibility and 
efficiency of our proposed BIP-Net from the term of achievable rate.

We present the achievable rate of BIP-Net with the research of the influence of time 
relevance length L in the network. The parameters of our simulated system are as fol-
lows. The number of antennas in both transmitter and receiver is 64, i.e., Nt = Nr = 64 , 
the RF chain is 3, equals to data streams, and P = 3 . Ts = 10 ms and fℓ ∈ [0, fmax] , where 
fmax can be calculated by Doppler shift formulation. Rsmpl is set to 500 and the velocity is 
set to 72 km/h, which is an easily achievable speed [24].

Firstly, as illustrated in Fig.  13, the influence of time-varying on normal beamform-
ing methods is significant, where there is a gap between the red line (time-invariant 
situation) and green line (time-varying situation without BIP-Net). By contrast, with 
the equipment of BIP-Net, the transmitter and the receiver can transfer messages with 
almost the same rate of time-invariant situation. Figure 14 takes an example that BIP-
Net predicts the correct beamforming, eliminating the influence of time-varying. All 
these three methods adopt the enumerate way to achieve beamforming due to the fact 
that we concentrate on the effect of erasing the influence of time-varying rather than 
beamforming itself. Again, our proposed BIP-Net actually can be leveraged in any beam-
forming methods to combat the degeneration of the performance as if the methods 
based on a certain codebook.

Secondly, we take research of the hyper-parameter, the time relevance length L of 
the Conv2D LSTM, and the result is shown in Fig. 15. Accompanying with the length 

Fig. 13  Achievable rate comparison among time-invariant situation, time-varying situation without 
BIP-Net and time-varying situation with BIP-Net. Legend: Time-invariant. Time-varying without prediction. 
Time-varying with BIP-Net. Taylor expansion prediction



Page 15 of 18Hong et al. J Wireless Com Network        (2020) 2020:229 	

increasing, the BIP-Net can grasp the precise feature of beamforming indices gradually. 
In addition, it is also widely known that the process of back-propagation algorithm is 
slow and hardware-consuming [25], which mobile stations cannot afford. The compli-
cated and large-scale network will extremely constrain the usage of them in different 
scenarios because developers need to consider any situation and train the network com-
pletely in advance. We also execute the experiment of researching the influence of Ts , as 
Fig. 16 shows.

Finally, it is worth noticing that we use the digital sampling rate during prediction step 
for the Taylor expansion method, which means that it needs much more pilots for Tay-
lor expansion to achieve this performance since we just need to estimate the equivalent 
channel rather than the whole channel matrix by our proposed method. What is more, it 
also brings the huge cost to estimate the channel matrix in the period of beam sampling 
step with such high frequency. Table 1 explicitly depicts the pilot cost of both of the pro-
posed method and Taylor expansion method.

Fig. 14  Example of the performance of BIP-Net

Fig. 15  Influence of time relevance length L. Legend: L = 5 . L = 4 . L = 3
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6 � Conclusion
In this paper, we propose an easy-implementable double-pilot-based using deep 
learning method in UAV-enabled mmWave massive MIMO, which is suitable in vari-
ous antenna structures and can be trained pretty fast because we transform the pre-
coding prediction problem into the prediction of the sequence with the end-to-end 
structure. By exploiting the time correlation of channel matrix, the BIP-Net fits the 
correlation between beamforming vectors.

In addition, the method is flexible because we do not constrain the specific source 
of the codebook and different kinds of channel estimation methods, codebook-based 
hybrid precoding methods and prediction methods can be combined to double-
pilot-based hybrid precoding method just with the guarantee of the existence of the 
temporal correlation between CSI in different times. We believe this ideology of dou-
ble-pilot-based time-varying hybrid precoding method can improve the performance 
of UAV-enabled communications or other time-varying communication systems 
significantly.

Fig. 16  Influence of Ts . Legend: Ts = 1e − 2s . Ts = 5e − 2s . Ts = 1e − 1s

Table 1  Pilot cost comparison

Pilots required

Method Period

A period of the beam sampling step A period of prediction period

Proposed Nt
2 + N

2
RF
(Rsmpl − 1) N

2
RF

Taylor expansion Nt
2
Rsmpl Nt

2
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UAV: Unmanned aerial vehicle; mmWave: Millimeter wave; MIMO: Multiple-input–multiple-output; LSTM: Long- and 
short-term memory; CSI: Channel state information; RF: Radio frequency; SVD: Singular value decomposition; BIP-Net: 
Beamforming index prediction net; Conv2D: Convolution 2D; BS: Base station; UE: User equipment; LOS: Line of sight; 
NLOS: Non-line-of-sight; ULA: Uniform linear array; AoA: Angle of arrival; AoD: Angle of departure.
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