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1  Introduction
With the rapid development of internet of things (IoT), numerous novel applications 
and services, such as augmented/virtual reality (AR/VR), face recognition and e-health, 
have emerged and interacted with each other [1], which start demanding more on com-
puting capability, network throughput and latency for better quality of service (QoS) [2, 
3]. However, the heavy computation workload and storage demand lay a burden on the 
resource-limited IoT devices. To find a way out of this dilemma, mobile edge comput-
ing (MEC) has been envisioned as the paradigm by placing servers with rich services in 
proximity to IoT devices, which can remarkably improve the quality of experience (QoE) 
of IoT devices and help to reduce the energy dissipation [4–8].

In general, the MEC server deployment is fixed, restraining it from moving closer 
to IoT devices in areas without communication coverage or in special cases when it is 
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difficult to deploy MEC servers. Hence, UAV is extensively employed as an aerial MEC 
node for service coverage in surveillance, data collection, disaster relief, and public safety 
due to its excellent flexibility and mobility [9]. Although UAV-assisted MEC provides IoT 
devices with remote resources, it still faces the challenge of communication and compu-
tation design due to the limited embedded battery of UAV and IoT devices, and sev-
eral prior related works have been done to minimize the energy consumption of ground 
or sensor nodes (GNs/SNs) [10–12]. To be specific, the total UAV energy consumption 
while satisfying the communication throughput requirement of GN was investigated in 
[10], and the authors in [11] employed UAV for minimizing the maximum energy con-
sumption of SNs. In addition, the energy consumption tradeoff between UAV and GNs 
had been investigated in [12], where authors attempted to reduce the overall weighted 
energy consumption between SNs and UAV, while ensuring the required amount of data 
collection from each SN just as [11] investigated.

However, offloading energy-consuming workloads to UAV also invokes extra latency 
which significantly affects the QoE of IoT devices, and thus cannot be ignored in the 
system design. Recently, some inspiring related works have considered the QoE require-
ment of time-sensitive tasks of IoT devices [13–17]. Specifically, the energy consump-
tion of GNs, or UAV, or the weighted sum of energy consumption of IoT devices and 
UAV were investigated in [15–17] with the consideration of time-sensitivity for task 
offloading, respectively. Meanwhile, to minimize the maximum task latency, authors in 
[18] designed a novel penalty dual decomposition-based algorithm by jointly optimizing 
UAV trajectory and task offloading. Due to the limited battery capacity and computa-
tion resources of IoT devices, the tradeoff between the energy consumption and time 
sensitively has also attracted significant attention [19–22]. More specifically, authors in 
[19] utilized the modified genetic algorithm NSGA-II to solve a multi-objective problem 
of GNs’ average energy consumption and latency time, while the authors in [21] aimed 
at minimizing the weighted sum of the service delay of all IoT devices and UAV energy 
consumption. Besides, an alternative optimization algorithm based on successive con-
vex approximation (SCA) was derived to minimize UAV energy and completion time by 
jointly optimizing computing offloading, resource allocation and trajectory in [22].

Ordinarily, an application consists of several divisible and logically independent tasks. 
For example, an AR application consists of five critical tasks: video source, tracker, map-
per, object recognizer, and renderer. Among these tasks, the tracker, mapper, and objec-
tive recognizer are computation-intensive components which can be offloaded to MEC 
servers to compute or store for follow-up processing [23]. To our knowledge, larger 
amounts of data and tasks are generating and waiting for proceeding with the explosive 
growth of smart terminals in the era of big data. To meet the challenge, data caching 
can be regarded as an effective way to deal with these tasks, and efficiently tackle the 
following two dilemmas: (1) strong channel gain but insufficient computation capabil-
ity at UAV, the GN could have offloaded more data to ease its burden of computing; 
(2) weak channel gain with sufficient computation capability at UAV, the UAV could 
have computed more for GNs to improve the performance of networks. With the help 
of data caching, we can foster efficiency in the use of channel and computation capa-
bility at UAV concurrently. To be specific, although UAV is engaged in calculation for 
other GNs at the moment, GN can transmit more data in virtue of better channel gain. 
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Furthermore, these abundant data or tasks can be buffered first, and wait for processing 
till UAV has sufficient computation resources. Meanwhile, the computation capability 
will not be wasted at the situation that GN has low-rate transmission due to poor chan-
nel gain, UAV can process the cached data instead.

Nevertheless, these pioneering works above just investigated the single task of IoT 
devices, and focused on either data collection [11, 12] or computing offloading [14–19, 
21, 22], but ignored the effectiveness of data caching. In the meantime, time-sensitiv-
ity has been one of most important metric for network performance, and triggered a 
great deal of research interests in applications related with UAV. Therefore, in this 
paper, collaborative multi-task computation and caching offloading for UAV-enabled 
MEC networks is investigated to minimize the total energy consumption of GNs,1 
where the trajectory along with communication and computing resource allocation at 
UAV is optimized, and task offloading decision at GNs is determined, to satisfy the QoE 
requirement of time-sensitive tasks of GNs. The main contributions of this paper are 
summarized as follows:

•	 Collaborative multi-task computation and caching offloading are considered to take 
full advantage of communication and computation resources.

•	 To our knowledge, it is the first attempt to investigate the energy consumption asso-
ciated with data caching operations, and consider the collaborative offloading.

•	 Since the applications generated by GNs can be divided into several tasks, the QoE 
requirement of latency is considered for both the single task and the whole applica-
tion of GNs.

2 � System model and problem formulation
A UAV-assisted MEC system with multiple IoT devices denoted by K = {1, 2, . . . ,K } is 
considered based on frequency division multiple access (FDMA), as shown in Fig.  1, 
where the UAV is equipped with an embedded MEC server providing computing 
resource and data storage service to IoT devices during its navigation. The origin and des-
tination points are denoted by Q0 and QF

2 respectively, and the period of the whole navi-
gation between Q0 and QF is given by T, which is further divided into N time slots belongs 
to the set N  , and the length of each is τ , τ = T/N  . In this system, the three-dimensional 
Cartesian coordinate system is employed, where the UAV is launched from the Q0 at a 
fixed altitude H and flies to the final point QF in the end according to the coordinate series 
q[n] = (qx[n], qy[n]) ∈ R

2×1,∀n ∈ N  , meanwhile, each IoT device maintains stationary 
coordinate wk = (xk , yk), ∀k . Denote dk [n] =

√

(qx[n] − xk)2 + (qy[n] − yk)2 +H2 as 

the distance between the UAV and the kth IoT device, which varies with respect to (w.r.t.) 
each slot. Since τ is small, the average velocity between q[n+ 1] and q[n] can be approxi-
mated by the instant speed �v[n]� , given by

1  For simplicity, we use GNs instead of IoT devices in the following part.
2  The origin and destination points can be the same or different point(s).
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where � · � denotes the Euclidean distance, and v[n] cannot exceed its maximum speed 
vmax , �q[n+ 1] − q[n]� ≤ τvmax.

Assume that each IoT device has an energy-consuming and delay-sensitive appli-
cation to be executed within Tk , which defines the kth GN whole mission delay and 
must not exceed the mission period T, given as Tk ≤ T , ∀k . Herein, partition-oriented 
applications are investigated, such as virus scan application and figure compression 
application [24], and the application can be divided into N logically independent tasks 
w.r.t. the time slots. Furthermore, each logically independent task can be arbitrarily 
divided into several partitions to support parallelism, and thus handled locally and at 
the UAV concurrently since the amount of data to be processed is known in advance 
for this kind of applications [23]. To be specific, the kth IoT device generates a task 
described by a tuple of five parameters 

{

sk [n], ak [n], θk , lk [n], τk [n]
}

 at the nth time 
slot, where sk [n] indicates the amount of input data to be processed, ak [n] is the indi-
cator of task type, i.e., ak [n] = 1 for computing, ak [n] = 0 for caching, θk represents 
the number of CPU cycles for computing 1-bit of input data, lk [n] ∈ [0, 1] is the pro-
portion of sk [n] offloading to UAV, while the rest (1− lk [n])sk [n] bits are processed at 
local, and τk [n] is the maximum tolerable latency shorter than τ . Denote Ck and C as 
the storage capacity of the kth IoT device and the UAV in bits, respectively. Due to 
hardware limitations, the total storage resource assigned to IoT devices must satisfy 
∑N

n=1

∑K
k=1(1− ak [n])lk [n]sk [n] ≤ C , and the data cached in the kth IoT device must 

not exceed its storage limitation, 
∑N

n=1(1− ak [n])(1− lk [n])sk [n] ≤ Ck . Meanwhile, 

(1)v[n] � �v[n]� =
�q[n+ 1] − q[n]�

τ
,

Fig. 1  A UAV-enabled MEC network providing computing and caching offloading services through FDMA 
mode
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the local CPU frequency of the kth IoT device is characterized by fk , and fk ,u[n] is 
the computing resource allocated to the kth IoT device by the UAV at the nth time 
slot, where both of them are measured by the number of CPU cycles per second. 
Moreover, a practical constraint that the total computing resources allocated to all 
the associated IoT devices cannot excess the UAV’s computation capability F, is given 
by 

∑

k∈K ak [n]fk ,u[n] ≤ F .

2.1 � Task latency

Suppose that the application generated by the kth GN can be divided into several tasks, 
which are scheduled into N slots and further partially offloaded to the UAV. With the con-
sideration of time-sensitivity, we assume there are QoE requirements for the single task and 
the application, respectively. Denote tk [n] as the latency for the kth GN at nth slot, and the 
one for the application of kth GN must not exceed Tk , given as, 

∑N
n=1 tk [n] ≤ Tk ,∀k , the 

details of which are given in the following.

2.1.1 � Local computing mode

By assuming there is no further operation required for caching the residual part locally, we 
consider the local computing for executing the residual part (1− lk [n])sk [n] with computa-
tion capability fk at the kth IoT device, the time consumption of which is given by

2.1.2 � Offloading mode

It is assumed that the wireless channel between the UAV and the kth IoT device is domi-
nated by line-of-sight link [25], and the channel between the UAV and IoT devices is 
modeled by the free space path loss model. Therefore, the channel gain hk [n] from the 
kth IoT device to the UAV at the nth time slot is given

where ρ0 represents the channel gain at the reference distance d0 = 1 meter. Since 
the change of UAV position is negligible when the LoS link path is applied, the chan-
nel gain remains constant within each slot. Assume that the total available bandwidth 
B is shared among IoT devices with a proportion Bbk [n] for each during a time slot, and 
the sum of the bandwidth allocated to IoT devices cannot exceed the total bandwidth, 
∑K

k=1 bk [n] ≤ 1, ∀n . Thus, the achievable offloading rate at the kth IoT device is given as

where Pk denotes the transmit power of the kth IoT device, and N0 is the noise power 
dense at the UAV.

(2)t lock [n] =
ak [n](1− lk [n])sk [n]θk

fk
.

(3)hk [n] =
ρ0

dk [n]2
=

ρ0

�q[n] − wk�
2 +H2

,

(4)rk [n] = Bbk [n] log2

(

1+
Pkhk [n]

Bbk [n]N0

)

,
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The offloading time toffk [n] of the kth IoT device mainly consists of two parts3: the 
uplink transmission time tupk [n] from the IoT device to the MEC-integrated BS, and the 
corresponding execution time at MEC server texk [n] for the computing and the caching 
task, respectively. It’s assumed that there is no further processing for cached data at UAV 
and the operation will always succeed. The caching time is negligible and the result of 
caching operation need not be returned. Thus for the offloading caching task, we only 
take the task transmission time into account. Therefore, the offloading time for both the 
computing and the caching task can be written as

Due to the parallel computing at IoT devices and the UAV, the total latency for the kth 
IoT device depends on the larger one between t lock [n] and toffk [n] , which can be recast as 
tk [n] � max {t lock [n], toffk [n]}, ∀k , n.

2.2 � Energy consumption

Since GN tasks can be computed or cached locally or in UAV, both the computing and 
caching operation are charged for energy consumption. Similar to [26], the in-memory 
caching energy consumption model is adopted for both UAV and GN, in which the 
energy consumption is proportional to the cached task bits. Additionally, the signal 
transmission consumption of GNs and UAV propulsion energy are also included.

2.2.1 � Energy consumption at the IoT device

The energy consumed by the kth IoT device includes the cost of uploading and the part 
of local operation, which varies according to corresponding task type. For a local com-
puting task, the power consumption of the processor at the kth IoT device is modeled as 
ηk f

3
k  (joule per second), given as,

where ηk represents the computation energy efficiency coefficient related to the proces-
sor’s chip. On the other hand, based on the energy-proportional model the local caching 
energy consumed for processing (1− lk [n])sk [n] bits data at kth GN can be written as

where ωca
k  is the coefficient of caching power efficiency related to the GN caching hard-

ware drives [27–29]. With the help of (5), the transmission energy consumption at the 
kth IoT device is given as

(5)
toffk [n] = t

up
k [n] + texk [n]

=
lk [n]sk [n]

rk [n]
+

ak [n]lk [n]sk [n]θk

fk ,u[n]
.

(6)Eexe
k [n] = ak [n]ηk(1− lk [n])sk [n]θk f

2
k ,

(7)Eca
k [n] = (1− ak [n])(1− lk [n])ω

ca
k sk [n],

(8)Etran
k [n] =

Pklk [n]sk [n]

rk [n]
.

3  In practice, the amount of output data from MEC server to the kth GN is usually much less than that of the input data, 
and thus the time consumed and the transmission energy for delivering the computed results are negligible [10].
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In the end, the total energy consumption of kth GN during flight navigation can be writ-
ten as follows,

2.2.2 � UAV energy consumption

During the entire flight, the energy consumption for propulsion and task processing are 
involved at UAV. The part for offloaded computing task at UAV is similarly given as

where η denotes the computation energy efficiency coefficient related to the processor’s 
chip of UAV. However, if the offloaded task is claimed as a caching task, the caching 
energy can be similarly written as

where ωca is the caching energy coefficient related to UAV storage hardware. Addition-
ally, similar to [10, 12], the rotary-wing energy model is adopted for UAV propulsion 
energy consumption.

where P0 and Pi denote the constant blade profile power and induced power in hovering 
status. For other parameters, Qtip is the tip speed of the rotor blade, v0 is the mean rotor 
induced velocity in hover, d0 and s are the fuselage drag ratio and rotor solidity, and ρ 
and A define the air density and rotor disc area.

2.3 � Problem formulation

In this paper, we jointly optimize trajectory q , bandwidth b , computation capability f  , task 
type a and offloading ratio l , to minimize the total energy consumption of IoT devices in 
the following problem, 

(9)Ek =

N
∑

n=1

(

Eca
k [n] + Eexe

k [n] + Etran
k [n]

)

, ∀k .

(10)Eexe =

N
∑

n=1

K
∑

k=1

ak [n]ηlk [n]sk [n]θ f
2
k ,u[n],

(11)Eca = ωca

N
∑

n=1

K
∑

k=1

(1− ak [n])lk [n]sk [n],

(12)

Efly =

N
∑

n=1

τ

[

P0

(

1+
3v2[n]

Q2
tip

)

+
1

2
d0sρAv

3[n] + Pi

(
√

1+
v4[n]

4v40
−

v2[n]

2v20

)

1
2 ]

,

(13a)

min
q, b, f
a, l

K
∑

k=1

Ek

s.t.

K
∑

k=1

bk [n] ≤ 1, ∀n,
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 where q � {q[n]} , b � {b[n]} , a � {ak [n]} , l � {lk [n]} and f � {fk ,u[n]},∀k , n . Con-
straints (13a)–(13d) are the resource limitations introduced above. Constraint (13e) 
indicates that the total energy consumption must not exceed UAV battery capacity. The 
QoE requirements for the single task and the application are denoted by (13f ) and (13g), 
respectively, ensuring the instantaneous and long-time performance for GNs.

3 � Proposed solution and algorithm
Obviously, P is a challenging mixed integer nonlinear programming (MINLP) problem 
due to the coupled variants in both the constraints and the objective function. Instead 
of dealing with the original problem directly, we divide P into three manageable sub-
problems to decouple these variants: (1) Trajectory optimization for q ; (2) Resource 
allocation at UAV including bandwidth b and computation capability f  ; (3) Offloading 
decisions including task type a and ratio l . The iterative approach based on the block 
coordinate descent (BCD) method [30, 31] is thus employed to alternately solve the 
three subproblems.

(13b)P :

K
∑

k=1

ak [n]fk ,u[n] ≤ F , ∀n,

(13c)
N
∑

n=1

K
∑

k=1

(1− ak [n])lk [n]sk [n] ≤ C ,

(13d)
N
∑

n=1

(1− ak [n])(1− lk [n])sk [n] ≤ Ck , ∀k ,

(13e)Efly + Eexe + Eca ≤ E,

(13f )tk [n] ≤ τk [n], ∀k , n,

(13g)
N
∑

n=1

tk [n] ≤ Tk , ∀k ,

(13h)q[0] = Q0, q[N ] = QF,

(13i)�q[n+ 1] − q[n]� ≤ τvmax, ∀n,

(13j)0 ≤ bk [n] ≤ 1, ∀k , n,

(13k)0 ≤ lk [n] ≤ 1, ∀k , n,

(13l)ak [n] ∈ {0, 1}, ∀k , n,
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3.1 � Trajectory optimization

Given {b, f ,a, l} , the trajectory of UAV can be derived according to the following 
problem,

which is still intractable due to the non-convexity of constraints (13e)–(13g), as well as 
the objective function.

Motivated by [12, 17], the SCA technique is utilized to cope with the non-convexity 

with introduced auxiliary variables o � {o[n] ≥ 0} , where o[n] =
(
√

1+ v4[n]

4v40
− v2[n]

2v20

)
1
2

 . 

Thus, constraint (13e) can be recast as 

 where constraint (15b) is still non-convex. To cope with the non-convexity, we derive 
the following inequalities by employing the first-order Taylor expansion with given 
points (oi[n], vi[n]) at the ith iteration,

where the right-hand side of (16) is a linear function w.r.t. v[n] and o[n]. Similarly, auxil-
iary variables r̃qk [n] ≥

1
rk [n]

> 0, ∀n are introduced to deal with non-convex parts related 
to rk [n] in the objective function and constraints (13f ) and (13g). To be specific, for any 
given local point r̃qk ,i[n] , a lower bound function named as L(r̃qk ,i[n]) is defined to trans-
form rk [n] as follows

where ωi
k � 2(Bbk [n]r̃

q
k ,i[n])

−1

 , ωk � 2(Bbk [n]r̃
q
k [n])

−1

 and φ0 = pk [n]ρ0
Bbk [n]N0

 . Hence, constraints 
(13f ) and (13g) can be equivalently rewritten as 

(14)
PT : min

q

N
∑

n=1

K
∑

k=1

Pklk [n]sk [n]

rk [n]

s.t. (13e)− (13i),

(15a)
N
∑

n=1

τ

[

P0

(

1+
3v2[n]

q2

)

+ Pio[n] +
1

2
d0sρAv

3[n]

]

+ Eexe + Eca ≤ E,

(15b)
1

o2[n]
≤ o2[n] +

v2[n]

v20
,

(16)
1

o2[n]
≤

(

2oi[n]o[n] − oi[n]
2
)

+

(

2vi[n]v[n] − v2i [n]
)

(17)L(r̃
q
k [n]) � φ0

[

1

ωi
k − 1

−
ωk − ωi

k
(

ωi
k − 1

)2

]

,

(18a)
ak [n]lk [n]sk [n]θ

fk ,u[n]
+ lk [n]sk [n]r̃

q
k [n] ≤ τk [n],

(18b)�q[n] − wk�
2 +H2 ≤ L(r̃

q
k [n]),
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 The lower bound function L(r̃
q
k [n]) is concave w.r.t. r̃

q
k [n] satisfying 

φ0

2
(Bbk [n]r̃

q
k
[n])−1

−1
≥ L(r̃

q
k [n]) with the given local point at the ith iteration, the proof of 

which can be found in [17]. Therefore, PT can be transformed into a convex optimization 
problem as

where r̃q � {r̃
q
k [n]} , and the details of solving PT1 is presented in Algorithm 1.

3.2 � Resource allocation at UAV

With the newly obtained q⋆ and the given {a, l} , the resource allocation strategy at UAV can 
be designed via the following problem, 

 which is non-convex due to the nonlinear part in the objective function and constraints 
(13g) and (20a), i.e., rk [n] . Similarly, the auxiliary variables r̃b � {0 < r̃bk [n] ≤ rk [n], ∀k , n} 
are introduced to deal with rk [n] , which further transforms PR into the following equiva-
lent problem, 

(18c)
N
∑

n=1

max

{

tlock [n],
ak [n]lk [n]sk [n]θ

fk ,u[n]
+ lk [n]sk [n]r̃

q
k [n]

}

≤ Tk .

(19)
min

{q,v,o,r̃q}

N
∑

n=1

K
∑

k=1

pklk [n]sk [n]r̃
q
k [n]

PT1 : s.t. (13h)(13i)(15a)(16)(18a)(18b)(18c),

(20a)

min
{b,f }

N
∑

n=1

K
∑

k=1

Pklk [n]sk [n]

rk [n]

PR : s.t
1

rk [n]
+

ak [n]θ

fk ,u[n]
≤

τk [n]

lk [n]sk [n]
, ∀k , n,

(13a)(13b)(13e)(13g)(13j)

(21a)

min
{b,f ,r̃b}

N
∑

n=1

K
∑

k=1

Pklk [n]sk [n]

r̃bk [n]

s.t. (13a)(13b)(13j)

PR1 : 0 < r̃bk [n], ∀k , n,
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 where E′ is a constant value related to energy consumption. Define φ1 as 
φ1 �

Pkρ0
(�q[n]−wk�

2+H2)N0
 and the second-order derivative of the right side in constraint 

(21b) is given as ▽2rk [n](bk [n]) = −
φ2
1

Bbk [n](Bbk [n]+φ1)
2 ln 2

 , which proves the concavity of 

constraint (21b). It is also observed that (21e) is convex because the second item in max 
method is convex and the first item is a constant value. Therefore, PR1 is a convex prob-
lem w.r.t. {b, f , r̃b} , which can be efficiently solved by solvers, e.g., CVX [32].

3.3 � Offloading decisions at GNs

In this subsection, the task type and offloading ratio are optimized to further minimize the 
total energy consumption of MDs with the achieved {q⋆, b⋆, f ⋆} as follows

which is also difficult to deal with since a consists of binary variables and further couples 
with l . It’s observed that with fixed a , Po is the linear programming problem w.r.t l and 
given with fixed l the subproblem becomes an integer programming problem w.r.t a . 
Thus, an inner BCD algorithm is derived to alternatively solve the offloading problem.

(21b)r̃bk [n] ≤ Bbk [n] log2 (1+
φ1

Bbk [n]
),∀k , n,

(21c)
N
∑

n=1

K
∑

k=1

ak [n]ηlk [n]sk [n]θ f
2
k ,u[n] ≤ E′,

(21d)
ak [n]θ

fk ,u[n]
+

1

r̃bk [n]
≤

τk [n]

lk [n]sk [n]
, ∀k , n,

(21e)
N
∑

n=1

max

{

tlock [n],
ak [n]lk [n]sk [n]θ

fk ,u[n]
+

lk [n]sk [n]

r̃bk [n]

}

≤ Tk ,

(22)
PO : min

{a,l}

N
∑

n=1

K
∑

k=1

Ek [n]

s.t. (13b)− (13g), (13k)− (13l),
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4 � Simulation results and discussions
In this section, several experiments are conducted for verifying the performance 
of proposed algorithm. Assume that GNs are distributed in a square area of size 
100m× 100m and generate multiple tasks during the navigation of UAV, the sizes of 
which range from 100 to 500 Kbits within each time slot. The UAV starts flight at ori-
gin point Q0 = (0, 0) and follows the optimized trajectory to the final point QF , which 
can be the origin or a different point. The details of the experimental parameters are 
summarized in Table 1, unless otherwise mentioned. Numerical results are presented 
for the UAV trajectory and the energy consumption of GNs w.r.t different offloading 
schemes: (1) Computing offloading mode: all of GNs’ tasks are for computing; (2) 

Table 1  Simulation parameters

System parameters Values

Maximal CPU frequency of UAV 5 GHz

CPU frequency of GN 50 MHz

Total bandwidth B 10 MHz

Max storage capacity C at UAV 200 M

GN remaining storage capacity Ck 0.5–5 MBits

Transmit power of GN 1 W

Task size at GN 100–500 Kbits

Computation intensity θ , θk 900–1000 cycles/bit

Background noise N0 − 130 dBm

Channel gain at d0 = 1 m 50 dB

UAV related parameters Values

UAV blade power P0 158.76 W

Induced power Pi 88.63 W

Blade speed Qtip 120 m/s

Air density ρ 1.225 kg/m3

Rotor disc area A 1 m2

Hover induced velocity V0 4.03

Fuselage drag ratio d0 0.3

Fuselage rotor solidity s 0.05

UAV maximum velocity Vmax 15 m/s

UAV flight height H 100 m
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Collaborative offloading mode: the tasks of GNs are for either computing or cach-
ing; (3) Caching offloading mode: all the tasks are only for caching at UAV or at 
GNs.

In Fig.  2, the trajectory of UAV w.r.t. different offloading modes is investigated, 
where 10 GNs are stochastically distributed and generate tasks with size ranging from 
100 to 200 Kbits. The total slot numbers is N = 20, the length of which is 0.5 s. Com-
pared with computing and collaborative offloading mode, caching offloading mode 
authorizes UAV to get closer to GNs, since it does not need to process the offloaded 
data, gives UAV enough time to approach GNs and further gets better communi-
cation quality in return, which is beneficial to energy saving as illustrated in Fig.  5. 
Since collaborative offloading mode is the combination of the other two modes, it is 
observed that UAV can get relatively closer to GNs at that mode, hover at some points 
to render services, and further save energy just like that of caching offloading mode.

In Fig. 3, the trajectory of UAV with different final points are investigated, and the 
optimized UAV trajectories can vary according to its final points under the same envi-
ronment settings. Notice that the first half trajectories for four different final points 
appear to overlap, and the flight path is a straight line when the UAV ends at the ori-
gin and point (100, 100), while the UAV made a slow arcs to GNs at the second half 
trajectory for the other two final points, i.e., (0, 100) and (100, 0). It’s mainly because 
UAV wants to fly closer to GNs for stronger channel gain, thus provides them with 
better services.

In Fig.  4, with the same environment settings, the trajectory of UAV w.r.t. differ-
ent QoE requirement of time-sensitive tasks are presented. Along with the decreasing 
QoE requirement of latency, the trajectory will gradually fly towards the GNs, since it 
has more time to approach GNs, and further offer better services as explained above. 
Notice that, when the QoE requirement of latency exceeds a certain limitation, i.e., 
τ = 0.5 s, GNs can easily accomplish its task with the constraint of QoE requirement 

Fig. 2  The UAV trajectories w.r.t. different offloading schemes when τ = 0.5 s
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for latency, and thus the UAV will not fly closer to UE due to its purpose of energy 
saving. Besides, the trajectory (the red and pink lines) indicates that the UAV will 
hover at some points during the navigation to save its energy, rather than moving 
forward.

In Fig. 5, we investigate the performance of the total energy consumption of GNs for 
different schemes. Due to the different energy consumption and operation for comput-
ing and caching task, GNs at computing offloading mode consume more energy com-
pared with collaborative offloading and caching offloading schemes, since all the tasks 
are designed for computing that consumes much energy than caching. Meanwhile, the 

Fig. 3  The UAV trajectories w.r.t. different final points with τ = 0.5 s

Fig. 4  The UAV trajectories w.r.t. different QoE requirement of time-sensitive tasks at collaborative offloading 
mode
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caching offloading mode is the most energy-saving since all the tasks are for caching, 
and thus consume less energy compared with the others. Furthermore, collaborative 
offloading scheme not only meets the demands for different type of tasks, but also 
gets relatively satisfactory result on energy saving, since it can switch parts of tasks into 
caching.

In Fig.  6, we study the influence of the QoE requirements of time-sensitive tasks at 
IoT devices on the total energy consumption for different numbers of GNs. With the 
growing number of GNs, the total energy consumption of GNs is increasing for all the 
schemes. On the observation of Fig. 6, the total energy consumption is reducing along 

Fig. 5  The total energy consumption of GNs w.r.t. different offloading schemes when K = 6

Fig. 6  The total energy consumption of different numbers of GNs w.r.t. different QoE requirement of 
time-sensitive tasks



Page 16 of 17Li et al. J Wireless Com Network          (2021) 2021:1 

with the decreasing QoE requirement of time-sensitive tasks. This is because UAV has 
sufficient time to get closer to GNs with the decreasing requirement of latency, provid-
ing better communication access (i.e., better channel gain), and thus help to reduce the 
total energy consumption of GNs.

5 � Conclusions
With the consideration of QoE requirement of time-sensitive tasks, a UAV-assisted 
multi-task MEC networks is investigated, where UAV provides collaborative offloading 
services to GNs. We jointly optimize the trajectory, resource allocation of UAV, and off-
loading decisions of GNs to minimize the total energy consumption of GNs according to 
BCD method. Simulation results demonstrate that collaborative computing and caching 
offloading can effectively reduce the total energy consumption of GNs, while satisfying 
the QoE demands for different type of tasks.
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