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1  Introduction
Nowadays, Internet of things (IoT), which connects billions or even trillions of smart 
devices and objects embedded with sensors, is evolving rapidly. IoT devices, including 
wearable devices, laptops, sensors, smart cars and industrial components, etc., have a 
demand to support more and more intelligent services and applications. However, most 
of intelligent services, such as e-health, automatic driving and industrial automation, 
are computation-intensive, fast developing and outgrowing the computing and stor-
age capabilities of IoT devices [1]. To address the issue, mobile edge computing (MEC) 
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has risen as a promising technology that provides cloud computing capabilities in close 
proximity to the data sources. Through one-hop transmissions, resource-constrained 
IoT devices can offload their application-related data to edge clouds deployed at network 
edges, such as base stations or access points. Compared with mobile cloud computing 
that requires IoT devices to access remote cloud servers through the Internet, mobile 
edge computation offloading (MECO) can potentially reduce the transmission latency 
between IoT devices and the servers, which is especially important for supporting time-
constraint applications. Considering massive device access in current wireless networks, 
plenty of literatures have studied the offloading decision and resource allocation prob-
lem [2–6]. However, most of them take no consideration on the time-varying character-
istics of channel conditions in the process of computation offloading, which limits the 
scope of application for their conclusions.

On the other hand, peer-to-peer computing is also regarded as an efficient approach 
for computation offloading [7]. Through some proximate communication technologies, 
such as device to device (D2D) communication and bluetooth, the idle resources on 
nearby IoT devices, i.e., collaborators, can be exploited to enhance the offloading effi-
ciency. In this way, the cost on additional deployment of the edge servers at network 
edges can be cut down. Meanwhile, the traffic burden and computation load on the edge 
base station and servers are effectively alleviated. Most of the existing works [8–11] on 
peer-to-peer computing mainly consider that collaborators offer constant idle computa-
tion resources until completing the offloaded computation loads. However, due to its 
own tasks with high priority, the central processing unit (CPU) state of collaborators 
is opportunistically idle and available to the offloaded tasks [12, 13], which is different 
from the dedicated resource provisioning of edge servers for IoT subscribers. Moreo-
ver, with some incentive mechanism [14], collaborators not only share idle computa-
tion resources, and their network function can also be utilized to assist computation 
offloading.

Considering the stochastic channel condition and the dynamic computation resources 
share, in this paper, we propose the cooperative computing which integrates both the 
dedicated edge cloud and opportunistic collaborators to provide computation resources 
for IoT devices. In particular, collaborators provide two functions: computation assis-
tance at idle states and offloading assistance at busy states. With given computation load 
and completion time constraint, an IoT device should adapt the local computation load 
and offloading computation load to the dynamic process of the channel states and the 
collaborator states. Our contributions are summarized as follows: 

1	 A novel cooperative computing paradigm is proposed, which supports the parallel 
computing on local devices, edge cloud and collaborators with dynamic computation 
resources. A collaborator assists in computing or further offloading the computation 
to the edge cloud based on its stochastic CPU availability.

2	 A dynamic offloading decision problem on how much computation load is executed 
locally, offloaded to edge cloud and a collaborator, is modeled as a finite horizon 
Markov decision problem. We aim to minimize the expected sum energy consump-
tion of both the IoT device and the collaborator, subject to the computation comple-
tion time constraint.
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3	 Based on the stochastic optimization theory, the optimal offloading policy is derived 
by Karush–Kuhn–Tucker (KKT) conditions and backward induction, which facili-
tates the design of a low-complexity dynamic programming algorithm and alleviates 
the well-known curse of dimensionality.

4	 Optimal offloading policy shows that the energy consumption can be reduced by a 
proportional factor through cooperative computing. More energy saving is achieved 
with better wireless channel condition or higher computation energy efficiency of 
collaborators. Simulation results validate the optimality of the proposed policy and 
the efficiency of the cooperative computing between end devices and edge cloud.

The rest of the paper is organized as follows. Section 2 summarizes some related work. 
Section  3 describes the system model and problem formulation. Optimal offloading 
policy and the corresponding algorithm are presented in Sect. 4. In Sect. 5, the simula-
tion experiments and performance evaluation of the proposed algorithm are provided. 
Finally, conclusions and future work are given in Sect. 6.

2 � Related work
In this section, some related work on MECO and peer-to-peer computing is summa-
rized. Considering computation offloading to dedicated edge servers, [2] investigated the 
partial offloading for a mobile device with dynamic voltage scaling technology. The off-
loading ratio, computational speed and transmit power of the device are optimized for 
minimizing its energy consumption or application execution latency. For multiple users 
that require offloading services, time-division multiple access (TDMA) and frequency-
division multiple access (FDMA) are adopted in [3]. A convex optimization problem was 
formulated and solved optimally for joint offloading ratio and time allocations, such that 
the total energy consumption of multiple devices is minimized. A heuristic algorithm 
was then proposed for offloading ratio and frequency channel allocations. Decentralized 
algorithms for resource allocation and offloading decision were studied in [4, 5] by using 
game theory and decomposition techniques, respectively. These works focused on the 
quasi-static scenario where channel or link quality remains unchanged in the offload-
ing process. Targeting at time-varying channel conditions when computation offloading, 
[15] investigated binary decision, i.e., offloading or local computing, in Gilbert-Elliott 
channel model. Then the authors considered linear task topology and random channel 
in [16], and the problem of optimal offloading control was formulated as a shortest path 
problem. “One-climb” policy structure was proved that the tasks should only migrate at 
most once between an end device and the cloud. Considering the intermittent connec-
tivity between an end device and edge cloud due to network congestions, an analytical 
framework was built in [17] and a closed-form expression of the task processing time 
under different network conditions was derived.

For peer-to-peer computing, D2D-enabled collaborative computation was studied in 
[8], where a local user offloads multiple independent tasks to its nearby devices through 
TDMA. Computation latency was minimized by optimizing task assignment jointly with 
the time for task offloading and results downloading, subject to the individual energy 
constraints at the local user and the collaborators. In [9], we investigated the application 
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partitioning and collaborator selection problem for multiple users when multiple idle 
collaborative devices are available. Both the centralized and decentralized algorithms 
were proposed to minimize the energy consumption of all the users. Considering a 
collaborator may opportunistically provide idle computation resources due to its local 
computation; [12] studied a user exploits non-causal information on the CPU state of 
collaborator to control offloaded data sizes. The CPU information was assumed to be 
predicted accurately in offline. Instead, the offloading policy was then studied in [13] 
based on the statistic distribution on the dynamic collaborator’s CPU state and the ran-
dom channel state.

Integrating nearby collaborators with dedicated servers, recent studies show the effi-
ciency of this cooperative computing. In [10], the peer-to-peer offloading was integrated 
with edge severs to maximize the number of devices that the system can support, where 
parts of the task that cannot be completed in time by each local device are offloaded 
to an edge node and a nearby device. The optimal transmit power allocation and the 
task offloading strategy are obtained. The selection on application execution approaches, 
including local computing, offloading to a collaborator or an edge cloud for multi-
ple users, was considered in [11]. The problem was formulated as a sequential game to 
minimize the weighted sum of the task executive delay and energy consumption. Apart 
from utilizing the computing resources of the collaborators, network function was also 
considered in [18]. Through time allocation, portions of data are transmitted from a 
mobile device to a collaborator for computation at the first time block; then, the col-
laborator assists another portions of data transmission from the mobile device to an AP 
as a relay at the subsequent two time blocks. These existing works on cooperative com-
puting considered static scenarios with no channel varying and assumed collaborator 
offers constantly dedicated idle computation resources similar as edge/cloud servers. 
However, due to signal interference and user mobility, as well as stochastic tasks arrival, 
the channel dynamics and the randomness of collaborator states should be considered in 
offloading policy design, which motivates our study in this work. We model the dynamic 
offloading control as a finite horizon MDP problem. Different with some existing work 
[19–21] that solved MDP problems numerically and sub-optimally using deep reinforce-
ment learning, we aim to derive the optimal solution that yields useful insight into the 
policy structure.

3 � System model
We consider an edge computing system with an IoT device, a collaborator and an edge 
cloud server that is co-located at an access point (AP). The IoT device has computation-
ally intensive applications to be completed within the hard deadline constraint, and the 
application-related computing data are stored in its buffer. In this paper, we focus on data-
partitioned applications, such as virus scan, file/figure compression and text conversion 
[2, 22, 23], for which the application data can be partitioned continuously and processed 
in parallel. The edge cloud provides the dedicated computation services for the resources-
limited IoT device, and the resources are sufficient for completing the workload from the 
device. The collaborator can also share its computation capability to assist the computation 
of the IoT device. However, due to its own randomly arriving computation tasks, the avail-
able idle computation resources of the collaborator for assistance are dynamic. To model 
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the dynamic property of wireless channel and collaborator state, the system time is divided 
to slots with equal duration τ . The channel and collaborator conditions remain constant 
within a time slot but may vary between different time slots. Consider an application with 
data size W should be completed before deadline D, i.e., T = D/τ time slots. In each time 
slot t, aLt  bits of data are processed locally by the IoT device. In parallel, through some exist-
ing cellular connectivity and proximate communication technology, such as LTE and D2D 
communication, the IoT device offloads aEt  and aCt  bits to the edge server and the collabora-
tor, respectively. At the next time slot t + 1 , the remaining data size in the buffer of the IoT 
device can be expressed as Bt+1 = Bt − aLt − aEt − aCt .

3.1 � Local computing

According to [24], utilizing dynamic voltage and frequency scaling (DVFS) techniques, the 
local CPU frequency can be dynamically adjusted in each time slot in order to minimize the 
computation energy consumption. Let γ denote the number of CPU cycles for computing 
per data bit, then the local CPU-cycle frequency of the IoT device at time slot t is cLt = γ aLt

τ
 . 

The local computation power consumption PL
t  can be modeled as PL

t = κL(cLt )
3 [25], where 

κL is the energy conversion coefficient of the device depending on the chip architecture. 
The larger κL is, the lower its computation energy efficiency is. Then the local computation 
energy consumed by the IoT device at time slot t is expressed as

where βL = κLγ 3

τ 2
.

3.2 � Direct offloading to edge cloud

Due to the effect of shadowing, multipath interference and mobility of the IoT device, the 
correlated fading channels are considered in this paper. Such correlated fading wireless 
communication channels can be modeled by the finite state Markov chain (FSMC) model 
with K states, indexed as k = {0, 1, 2, . . . ,K } . The channel state between the IoT device 
and the edge cloud Hle

t  keeps constant during one time slot t, but may change in different 
time slots. The transition probability from two neighboring states k − 1 and k is denoted as 
Pk−1,k , 1 ≤ k ≤ K  . These probabilities can be calculated based on practical fading models 
[26]. The transition probability between two states that are not neighbors is 0. According to 
the empirical model in the literature, the transmission power of the IoT device to the edge 
cloud at t can be modeled as the following monomial function:

where � is the energy coefficient incorporating the effects of bandwidth and noise power, 
st = aEt /τ is the transmission rate at time slot t, and m is the monomial order deter-
mined by the modulation-and-coding scheme. It is shown by [27, 28] that the power-
rate relation can be well approximated by the monomial function. Following [13], the 
monomial order of ( m = 3 ) is adopted to approximate transmission power, such that the 
coding scheme for the targeted error probability is less than 10−6 . Then the offloading 
energy consumption from the IoT device to the edge cloud at time slot t is written as

(1)E
L
t (a

L
t ) = PL

t τ = βL(aLt )
3

(2)PT
t = �

smt

Hle
t
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where η = �

τ 2
 . We omit the computation energy consumption of the edge cloud since it 

is often powered by stable on-grid power.

3.3 � Collaborator‑assisted computing or offloading

Since the computation resource availability of collaborator in the future is often variable 
and unknown, statistic information based on historical data can be utilized. As shown in 
[29], the idle/busy intervals in the quantized CPU utilization traces roughly follow the geo-
metric distribution, while the idle/busy intervals in Markov chains are exactly geometrically 
distributed. Hence, the CPU availability processes can be modeled as two-state Markov 
chains [13, 29]. Based on the idle/busy state distribution, the state transition probability 
can be also obtained by theoretic derivation [17] or real-world experiments [29]. In each 
time slot t, the CPU state of the collaborator is Ct ∈ {0, 1} , where Ct = 0 and Ct = 1 denote 
the idle and busy states, respectively. The current CPU state Ct only depends on the previ-
ous random state Ct−1 and is independent of the past states {C1, . . . ,Ct−2} . Let Pbb and 
Pii denote the busy-to-busy and idle-to-idle transition probabilities. Then the busy-to-idle 
and idle-to-busy transition probabilities are Pbi = 1− Pbb and Pib = 1− Pii , respectively. 
When Ct = 0 , the CPU is idle and the offloaded computation from the IoT device can be 
processed by the collaborator; otherwise, the collaborator will further forward the compu-
tation to the edge cloud. The system model is shown as Fig. 1.

We now consider the assisted computing when Ct = 0 . Recall that aCt  data bits are 
offloaded to the collaborator in time slot t. Similar with the transmission energy consump-
tion model described in Sect. 3.2 and computation energy consumption model described 
in Sect. 3.1, the total energy consumption of the IoT device and the collaborator at time slot 
t is expressed as

where βC = κCγ 3

τ 2
 and κC is the energy conversion coefficient of the collaborator. Hlc

t  is 
the channel state between the IoT device and the collaborator. The first term in R.H.S of 

(3)E
E
t (a

E
t ) = PT

t τ = η
(aEt )

3

Hle
t

(4)E
CC
t (aCt ) = η

(aCt )
3

Hlc
t

+ βC(aCt )
3
, Ct = 0

IoT device

Collaborator 
with idle CPU

AP & Edge server
D2D Link

Cellular Link

IoT device

Collaborator 
with busy CPU

AP & Edge server

Fig. 1  System model
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(4) denotes offloading energy consumption of the IoT device, and the second one repre-
sents the computation energy consumption of the collaborator.

When Ct = 1 , the offloaded computation in this time slot cannot be processed by the 
collaborator. In this case, the collaborator further forwards the offloaded computation 
aCt  to the edge cloud for processing. Therefore, the total transmission energy consump-
tion of the IoT device and the collaborator at time slot t is expressed as

where Hlc
t  is the channel state between the collaborator and the edge cloud server.

3.4 � Problem formulation

Markov decision process (MDP) is a mathematical framework for modeling the deci-
sion-making problems in a stochastic system with multiple states and statistic system 
information, which suits our problem well. Furthermore, considering the hard comple-
tion time constraint of the application, we then formulate this opportunistic cooperative 
computation offloading as a finite-horizon MDP problem. The expected energy con-
sumption of both the IoT device and the collaborator is minimized, subject to the hard 
deadline constraint of the application. 

(1)	State and action sets

The system state space of our MDP formulation is represented as 
S = �1 ×�2 ×�3 × B × C , where channel states Hle

t ∈ �1 , Hlc
t ∈ �2 , Hce

t ∈ �3 and 
collaborator CPU state Ct ∈ C evolve as Markov chains, and buffer state Bt ∈ B . The 
action state space is denoted as A , where at = (aLt , a

E
t , a

C
t ) ∈ A denotes the action in 

time slot t. Due to the completion time constraint, the feasible actions depend on the 
current state. Given a specific system state st ∈ S , the feasible actions in time slot t 
should satisfy the following conditions:

 

2	 State transition probability

Given the current state st = {hlet , hlct , hcet , bt , ct} , the state transition probability is the 
probability that the system will be in the next state st+1 = {hlet+1

, hlct+1
, hcet+1

, bt+1, ct+1} 
after an action at is taken, denoted as

(5)E
CO
t (aCt ) = η

(aCt )
3

Hlc
t

+ η
(aCt )

3

Hce
t

, Ct = 1

(6)

{

a
L
t ≥ 0, aEt ≥ 0, aCt ≥ 0, aLt + a

E
t + a

C
t ≤ bt , t < T ,

a
L
t ≥ 0, aEt ≥ 0, aCt ≥ 0, aLt + a

E
t + a

C
t = bt , t = T .

(7)

P(st+1|st ,at)

= P(hlet+1|h
le
t )× P(hlct+1|h

lc
t )× P(hcet+1|h

ce
t )

× P(ct+1|ct)× I(bt+1 = bt − aLt − aEt − aCt )



Page 8 of 21Mu and Zhong ﻿J Wireless Com Network        (2020) 2020:247 

where I(l) is an indicator function, which is equal to 1 if the condition (l) holds and 0 
otherwise.

The total energy consumption of the IoT device and the collaborator in each time slot 
t, including the transmission energy consumption and the computation energy con-
sumption, can be given by

An offloading policy consists of T decision rules for the T decision epochs: 
t = {1, 2, . . . ,T } , is defined below. A decision rule at time slot t maps states to actions 
and is denoted by at : S → A.

Definition 1  An admissible offloading policy is a function mapping the buffer state, 
the CPU state of the collaborator, the channel states and the time slot information into 
an action in each decision period:

The space of all admissible policies is denoted by �.
Our objective is to minimize the expected total energy consumption of the IoT device 

and the collaborator given an initial state s1 ∈ S:

where the expectation is taken with regard to the stochastic system state St for all t. In 
this paper, we consider deterministic Markov policies which is shown to be optimal 
under the expected total reward criteria [30]. The solving of the optimal policy is non-
trivial since the decision on each time slot cannot be taken independently. The action 
in each time slot affects the system transition probability, the future states and energy 
consumption in subsequent time slots. The resultant computation offloading policy can 
be computed numerically by brute-force method or some reinforcement learning tech-
niques, but on the one hand, brute-force method leads to an exponential increase on the 
complexity of policy solving with the number of state variables; on the other hand, rein-
forcement learning requires amount of time to training and learning a better strategy 
from trial and error. In the following section, we exploit the known model information 
to derive the closed-form policy, which provides some insight for the strategy design and 
efficiently alleviate the curse of dimensionality in stochastic optimization.

4 � Optimal computation offloading policy
In this section, we derive the optimal computation offloading policy in each time slot 
based on the principle of optimality and dynamic programming (DP) [31]. The optimal 
closed-form solution greatly reduces the complexity of the problem solving.

Define Vt(st) as the cost-to-go function that represents the minimum expected sum 
energy consumption from time slot t to T. Based on the principle of optimality, we have 
the following Bellman optimal equation:

(8)
J (st ,at) = E

L
t (a

L
t )+ E

E
t (a

E
t )

+ (1− ct)E
CC
t (aCt )+ ctE

CO
t (aCt )

(9)π = (a1, . . . ,aT ) : {1, . . . ,T } × S → A

(10)min
π∈�

E

{

T
∑

t=1

J (St ,at)|s1

}
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It can be seen the optimal cost-to-go function in each time slot depends on the functions 
in subsequent time slots. We first consider the policy in the last time slot T given the sys-
tem state sT . Then the problem for VT (sT ) can be written as follows.

Problem P1:

The action aT should satisfy the following constraints.

Through solving the constrained optimization problem, the optimal offloading decision 
can be given as follows.

Lemma 1  At the last time slot T, the optimal amount of data for local processing, off-
loading to the edge cloud and offloading to the collaborator is, respectively, derived as

The minimum energy consumption VT (sT ) is

Proof  It is obvious that Problem P1 is a convex optimization problem. When cT = 0 , 
define the Lagrangian function

(11)Vt(st) =







min
at∈π(st )

J (st ,at)+ E[Vt+1(St+1)|st ,at ], t < T ,

min
at∈π(st )

J (st ,at), t = T .

(12)

VT (sT ) =






















































min
aT∈π(sT )

βL
�

aLT
�3 + η

�

aET

�3

hleT

+η

�

aCT

�3

hlcT
+ βC

�

aCT
�3
, cT = 0,

min
aT∈π(sT )

βL
�

aLT
�3 + η

�

aET

�3

hleT

+η

�

aCT

�3

hlcT
+ η

�

aCT

�3

hceT
, cT = 1.

(13)
{

aT |aLT ≥ 0, aET ≥ 0, aCT ≥ 0, aLT + aET + aCT = bT

}

(14)











































aL⋆T = bT



1+
�

βLhleT
η

+
�

βL

η

hlcT

+(1−cT )βC+cT
η

hceT





−1

aC⋆T =
�

βL

η

hlcT

+(1−cT )βC+cT
η

hceT

aL⋆T

aE⋆T =
�

βLhleT
η

aL⋆T

(15)

VT (sT ) = βL(bT )
3



1+

�

βLhleT
η

+

�

�

�

�

βL

η

hlcT
+ (1− cT )βC + cT

η
hceT





−2
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where δ is nonnegative Lagrangian multiplier. Applying the KKT condition, we have

The optimal solution can be obtained as

Similarly, the optimal offloading solution can be also derived when cT = 1 . Combining 
the results of cT = 0 and cT = 1 , the optimal policy at time slot T is thus obtained. �

Some important observations from Lemma 1 can be highlighted. Firstly, the off-
loading data size to edge cloud is closely related to two parameters, i.e., the local com-
putation energy consumption per bit βL , and the transmission energy consumption 
per bit η/hleT  . The IoT device offloads more data to the edge cloud when the local com-
putation per bit is energy consuming or the channel between the device and the edge 
cloud is in a good state. Similarly, apart from βL , the offloading data size to the col-
laborator is also related to the sum energy consumption of transmission (from the IoT 
device to the collaborator) and computation (of the collaborator) η/hlcT + βC when 
cT = 0 , the two-hop transmission energy consumption from the IoT device to the 
edge cloud η/hlcT + η/hceT  when cT = 1 . The data portions of offloading and local pro-
cessing are determined by these parameters. Besides, the energy consumption can be 

reduced by the proportional factor 



1+
�

βLhleT
η

+
�

βL

η

hlcT

+(1−cT )βC+cT
η

hceT





−2

through parallel computing. More energy saving is achieved with better wireless 
channel condition or higher collaborator’s computation energy conversion efficiency.

Lemma 1 provides the optimal solution for different system states and the mini-
mum network energy consumption at the last time slot. Based on this closed-form 
policy, the optimal computation offloading policy in each time slot can be derived 
through backward induction approach, shown as below.

(16)
L(aT , δ) = βL

(
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Theorem 1  At time slot t = 1, 2, . . . ,T  , the optimal policy determines data aL⋆t  for local 
processing, aE⋆t  for offloading to the edge cloud and aC⋆t  for offloading to the collaborator, 
which satisfies:

where �t(st) is defined as

Correspondingly, the minimum expected energy consumption of the network V1(s1) is

Proof  Firstly, we derive the optimal action and expected energy consumption from 
time slot T − 1 to T for both cT−1 = 0 and cT−1 = 1 . When cT−1 = 0 , the optimization 
problem for VT−1(sT−1) can be given as

Based on VT (sT ) in Lemma 1 and define
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VT−1(sT−1) can be further written as

where aT−1 satisfies the constraint

Applying the KKT condition, the optimal policy when cT−1 = 0 can be obtained as

Similarly, the optimal policy when cT−1 = 1 can be derived. Combining the results of 
both cases, the optimal offloading policy and minimum energy consumption at time slot 
T − 1 are, respectively
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Comparing the optimal solution (14) for t = T  with (27) for t = T − 1 , similar structure 
can be found. Therefore, utilizing the backward induction and similar derivation pro-
cess, the optimal computation offloading policy can be given as Theorem 1. �

Theorem 1 demonstrates that in each time slot, the computation offloading policy 
depends not only on the current system state, but also on the future states through 
the term �t(st) . In detail, a larger �t(st) means more expected energy consumption 
for completing per bit data in future time slots. Therefore, more data should be pro-
cessed in the current time slot no matter for local computing or offloading. Moreover, 
the same conclusion as Lemma 1 can be obtained. That is, the fraction of the optimal 
data size for locally computing, offloading to the edge cloud and offloading to the col-
laborator in each time slot is determined by the local computation energy consump-
tion per bit βL , and the offloading energy consumption per bit η/hleT  , η/hlcT + βC or 
η/hlcT + η/hceT  . Given the sum-processed data in one time slot, the preferred destina-
tion (local device, edge cloud or collaborator) at which more data are processed relies 
on the energy consumption for per-bit data.

Based on the Theorem 1, Algorithm 1 shows the optimal closed-form computation 
offloading policy. We then analyze the computational complexity of the algorithm. 
Based on Theorem  1, the optimal policy is determined by the known original sys-
tem state s1 and unknown �1(s1) , where the complexity for calculating �1(s1) depends 
on the three channel state spaces, the dimensions of collaborator CPU state and the 
number of time slots. Denote the number of the channel state as N, the computa-
tional complexity of the algorithm is thus O(2N 3T ) . For the direct DP approach that 
searches all actions in policy space and in each time slot, the dimensions of state 
space, action space are O(2N 3) and O(W 3) in time slot t, respectively, leading to the 
total computational complexity |S|2AT = O(4N 6W 3T ) , which is impractical for large 
data size W and time slots T. Compare our closed-form policy to the brute-force pol-
icy search, the computational complexity is reduced dramatically.
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Note that the entire process including the offloading decision and application 
execution is controlled by the AP. Once an application is generated, the IoT device 
reports its data size S, application deadline T and related parameters of local comput-
ing via feedback channel. Based on the historical statistical information on the chan-
nel state and the CPU state of the collaborator, the AP executes Algorithm 1 to get the 
amounts of data for local computing ( aLt  ) and offloading ( aEt  and aCt  ) in each time slot. 
The policy is informed of the IoT device by the bidirectional feedback channel and the 
corresponding computation offloading process starts.

In this work, we consider the hard deadline requirement of an IoT application, which 
is usually an explicit parameter upon it is generated. This is common in most of the 
existing literature, see [10–13]. However, if the deadline parameter is hard to obtain in a 
fine-grained way, the statistical value of the deadline for a kind of IoT application should 
be got from the historical information. In this case, there are two options: 

(1)	 A guard time can be set to cope with this uncertainty. That is, the deadline is set as 
the minimum historical value less a guard time. Our scheme can be still adopted in 
this case.

(2)	 The application should be completed before a probabilistic deadline. This make the 
original problem more complicated since the constraint is a probabilistic form. The 
problem will be considered in our future work.

5 � Results and discussion
In this section we simulate the performance of proposed Algorithm 1. Default param-
eters are set as follows unless stated otherwise. The time slot duration is 20 ms [32]. We 
consider an IoT device has an application with 400 kilobits under the deadline constraint 
of 140 ms, i.e., T = 7 time slots. The delay budget T is the actual delay budget of the 
application less the time needed to run Algorithm  1. Energy conversion coefficients 
κL = 10−27 , κC = 0.3 ∗ 10−27 [18] and the required CPU cycles for computing 1-bit 
data are γ = 1000 cycle/bit [33]. For large-scale fading, the distances for IoT device-edge 
cloud, IoT device-collaborator and collaborator-edge cloud are 300 m, 50 m and 260 m. 
Path-loss exponent is 2.4. Small-scale fading for the channel is modeled as a two-state 
Markov chain, i.e., if the measured channel gain is below a threshold, the channel is con-
sidered as “bad”; otherwise, the “good” condition. The average channel power gains are 1 
and 0.01 for the “good” and “bad” states, respectively [15]. The good-to-bad and bad-to-
good transition probabilities are, respectively, set as Pgb = 3/7 and Pbg = 3/10 [28]. The 
CPU state of the collaborator follows another Markov chain with Pbb = 0.7 and Pii = 0.8 
[13] and the energy coefficient � = 10−21 . To validate the optimality of the derived pol-
icy, optimal numerical results solved by brute-force policy search are presented. Then 
three algorithms are considered for performance comparison. 

(1)	 Local or edge server execution (LESE) [15]: The computation load is entirely pro-
cessed locally by IoT device or offloaded to the edge cloud through stochastic chan-
nel. The energy consumption of IoT device is minimized.
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(2)	 Local and dynamic collaborator execution (LDCE) [13]: Part of the computation 
load is processed locally by IoT device, and the other is offloaded to a collaborator 
with dynamic computation resources through stochastic channel concurrently. The 
energy consumption of IoT device is minimized.

(3)	 Equal allocation in each slot (EA): The computation load is processed locally by IoT 
device, offloaded to the edge cloud and offloaded to a collaborator with dynamic 
computation resources in parallel. The input data W are allocated into T time slots 
equally, regardless of channel conditions and the collaborator CPU state. Then the 
offloading policy in each slot aT = (aLT , aET , a

C
T ) is obtained with similar derivation 

procedure as the proposed algorithm. The energy consumption of both the IoT 
device and the collaborator is minimized.

Figure 2 shows the results of the total expected minimum energy consumption versus 
data size for the derived closed-form policy and brute-force policy search under differ-
ent deadline constraints. It is noticed that the results of the two approaches are very 
close, which demonstrates the optimality of our computation offloading policy. Mean-
while, as the data size of application increases, the expected energy consumption grows 
at an increasing rate. The reason is that more energy, both computation energy and 
transmission energy, is consumed for completing more computation within the given 
deadline constraint. More stringent deadline constraint also leads to more expected 
energy consumption.

The total expected energy consumption versus the application data size for our 
approach and the three benchmark schemes are depicted in Fig. 3. With the increase 
of the application data size, the total expected energy consumption grows and the 
increasing rate gets larger in all four schemes, which is consistent with Fig. 2. It also 
can be observed that the total expected energy consumption of the proposed scheme 
is less than the EA scheme. This is because the proposed scheme considers the 
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channel and CPU states when offloading. More (less) data are transmitted when chan-
nel state is good (bad), which saves the transmission energy consumption. The pro-
posed scheme also outperforms LDCE in [13]. The reason is that the presence of edge 
server increases the offloading opportunity for the IoT device to reduce its energy 
consumption. More wireless channels and computation resources promote the IoT 
device to transmit more application-related data on better channels, which achieves 
diversity gain. Moreover, the collaborator and edge server can process the data in par-
allel, which reduces the application completion time substantially. Similarly, the per-
formance of the proposed scheme is better than LESE in [15] due to the diversity gain. 
Overall, this demonstrates the efficiency of the proposed cooperative computing.

Figure  4 depicts the total expected energy consumption versus the application 
deadlines. As the deadline extends, the total expected energy consumption reduces at 
an decreasing rate in the four schemes. On the one hand, local processing rate can be 
lowered with extended time and thus the local computation energy consumption fur-
ther reduces. On the other hand, the computation can be opportunistically offloaded 
at good channel condition or favorable collaborator CPU state in more time slots, 
leading to the reduction of the transmission energy consumption. This also demon-
strates that extending deadline contributes more to the energy saving when deadline 
constraint is stringent. When the deadline is relaxed, the constraint is inactive and 
has less impacts on the expected energy consumption.

We then evaluate the effect of the collaborator energy conversion coefficient κC on 
the total expected energy consumption in Fig.  5. As κC increases, the energy con-
sumption correspondingly increases for the three collaborator-related schemes, 
since the per-bit computation energy consumption for the collaborator grows. Only 
with available computation resources of the local device and the collaborator, the 
energy consumption of the LDCE scheme grows rapidly. The increase of the energy 
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consumption of the other two schemes, i.e., the proposed and EA scheme, is allevi-
ated because more computation can be offloaded to the edge cloud.

The total expected energy consumption versus the CPU cycles per bit γ is shown in 
Fig. 6. The energy consumption grows as γ increases in all the schemes, but at different 
increasing rates. For the LDCE scheme, the changes of the slope are the largest. This is 
because the computation is processed only at the local IoT device and the collabora-
tor, and both of the computation energies are related to γ . For the LESE scheme, local 
computation energy grows with the increases of γ , and more computation is offloaded 
to the edge cloud. As a result, the expected energy consumption grows with a decreasing 
rate. The increasing rate for the proposed scheme is similar to the LESE scheme rather 

Deadline (ms)
40 50 60 70 80 90 100 110 120 130 140

T
ot

al
 E

xp
ec

te
d 

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

)

0

1

2

3

4

5

6

7

8

9
Algorithm 1
LDCE
LESE
EA

Fig. 4  Total expected energy consumption versus application deadline

c 10-27
0 0.2 0.4 0.6 0.8 1 1.2

T
ot

al
 E

xp
ec

te
d 

E
ne

rg
y 

C
on

su
m

pt
io

n 
(J

)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Algorithm 1
LDCE
LESE
EA

Fig. 5  Total expected energy consumption versus κC



Page 18 of 21Mu and Zhong ﻿J Wireless Com Network        (2020) 2020:247 

than the LDCE scheme, which shows offloading to the edge cloud is more preferred as 
γ increases. But the performance of our scheme is still better than the LDCE and LESE 
schemes since more computing resources can be utilized. Moreover, the advantage of the 
proposed approach is more obvious with larger γ . Thus, the performance gap between 
the proposed approach and the equal allocation gets larger.

Figure  7 shows the total expected energy consumption versus the distance between 
the IoT device and the collaborator. It can be noticed that the energy consumption 
grows as the collaborator gets more far away from the device, since more transmission 
energy consumption incurred. Besides, the energy consumption of the proposed scheme 
is close to the LDCE scheme when the distance is short, but the performance gap gets 
larger as the distance extends. This also demonstrates the effectiveness of the proximate 
computing.

Table  1 shows the execution time of Algorithm  1, brute-force policy and the other 
three comparison algorithms. These algorithms are deployed at the computer with a 
dual-core Intel CPU at 2.9 GHz frequency. The time is collected by 1000 average with 
the data sizes uniformly distributed in [200, 500] kilobits. It can be noticed that the exe-
cution time of Algorithm 1 is much lower than brute-force policy, thanks to the derived 
closed-form optimal policy. The execution time of Algorithm 1 is larger than the other 
three comparison algorithms, due to the trade-off between the performance gain and 
the computational complexity. It should be highlighted that the absolute time is just a 
reference because it is highly dependent on the machine running the algorithms.

6 � Conclusions
In this work, we study the cooperative computing between IoT devices, collabora-
tors with dynamic idle computation resources and dedicated edge cloud. Specifi-
cally, an IoT device can compute locally, offload computation load to a collaborator 
and edge cloud in parallel. The collaborator assists in computing at idle states and in 
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further offloading to the edge cloud at busy states. The problem on how much com-
putation load is executed locally, offloaded to edge cloud and a collaborator, is mod-
eled as a finite horizon Markov decision problem with the objective of minimizing the 
expected total energy consumption of the IoT device and the collaborator, subject to 
satisfying the hard completion time constraint. Optimal offloading policy is derived 
based on the stochastic optimization theory, which alleviates the well-known curse of 
dimensionality and facilitates the design of a low-complexity dynamic programming 
algorithm. Simulation results validate the optimality of the proposed policy and show 
that more energy saving is achieved with better wireless channel condition or higher 
computation energy efficiency of collaborators.

In the future, we focus on extending this work to more general scenarios, where 
a large number of IoT devices exist. Resources competition (on communication and 
computation resources) or collaborator selection problem need to be addressed effi-
ciently. Moreover, based on the useful insights in this work, devising online learning 
algorithm is also an interesting direction, which may require less model information 
but more time (for training) to get a satisfactory policy. Lastly, although we consider 
the energy consumption of the peer collaborators in this work, incentive mechanisms 
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Table 1  Execution time of different algorithms

Algorithm Execution time (s)

Brute-force policy search 20.235

Algorithm 1 2.137

LESE 0.114

LDCE 0.406

EA 1.837
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can still be designed for effectively encouraging nearby peer devices to share their idle 
communication and computation resources and achieve win–win situation.
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