
Computation offloading to edge cloud
and dynamically resource‑sharing collaborators
in Internet of Things
Siqi Mu1,2* and Zhangdui Zhong1

1 Introduction
Nowadays, Internet of things (IoT), which connects billions or even trillions of smart
devices and objects embedded with sensors, is evolving rapidly. IoT devices, including
wearable devices, laptops, sensors, smart cars and industrial components, etc., have a
demand to support more and more intelligent services and applications. However, most
of intelligent services, such as e-health, automatic driving and industrial automation,
are computation-intensive, fast developing and outgrowing the computing and stor-
age capabilities of IoT devices [1]. To address the issue, mobile edge computing (MEC)

Abstract

With the diversity of the communication technology and the heterogeneity of the
computation resources at network edge, both the edge cloud and peer devices
(collaborators) can be scavenged to provide computation resources for the resource-
limited Internet-of-Things (IoT) devices. In this paper, a novel cooperative computing
paradigm is proposed, in which the computation resources of IoT device, opportunisti-
cally idle collaborators and dedicated edge cloud are fully exploited. Computation/
offloading assistance is provided by collaborators at idle/busy states, respectively.
Considering the channel randomness and opportunistic computation resource share
of collaborators, we study the stochastic offloading control for an IoT device, regarding
how much computation load is processed locally, offloaded to the edge cloud and a
collaborator. The problem is formulated into a finite horizon Markov decision prob-
lem with the objective of minimizing the expected total energy consumption of the
IoT device and the collaborator, subject to satisfying the hard computation deadline
constraint. Optimal offloading policy is derived based on the stochastic optimization
theory, which demonstrates that the energy consumption can be reduced by a pro-
portional factor through the cooperative computing. More energy saving is achieved
with better wireless channel condition or higher computation energy efficiency of
collaborators. Simulation results validate the optimality of the proposed policy and
the efficiency of the cooperative computing between end devices and edge cloud,
compared to several other offloading schemes.

Keywords: Mobile edge computing, Cooperative computing, Internet of Things,
Stochastic offloading control

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons .org/licen ses/by/4.0/.

RESEARCH

Mu and Zhong J Wireless Com Network (2020) 2020:247
https://doi.org/10.1186/s13638‑020‑01865‑4

*Correspondence:
musiqi@bjtu.edu.cn
1 State Key Laboratory
of Rail Traffic Control
and Safety, Beijing Jiaotong
University, Haidian District,
100044 Beijing, People’s
Republic of China
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-7172-280X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-01865-4&domain=pdf

Page 2 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

has risen as a promising technology that provides cloud computing capabilities in close
proximity to the data sources. Through one-hop transmissions, resource-constrained
IoT devices can offload their application-related data to edge clouds deployed at network
edges, such as base stations or access points. Compared with mobile cloud computing
that requires IoT devices to access remote cloud servers through the Internet, mobile
edge computation offloading (MECO) can potentially reduce the transmission latency
between IoT devices and the servers, which is especially important for supporting time-
constraint applications. Considering massive device access in current wireless networks,
plenty of literatures have studied the offloading decision and resource allocation prob-
lem [2–6]. However, most of them take no consideration on the time-varying character-
istics of channel conditions in the process of computation offloading, which limits the
scope of application for their conclusions.

On the other hand, peer-to-peer computing is also regarded as an efficient approach
for computation offloading [7]. Through some proximate communication technologies,
such as device to device (D2D) communication and bluetooth, the idle resources on
nearby IoT devices, i.e., collaborators, can be exploited to enhance the offloading effi-
ciency. In this way, the cost on additional deployment of the edge servers at network
edges can be cut down. Meanwhile, the traffic burden and computation load on the edge
base station and servers are effectively alleviated. Most of the existing works [8–11] on
peer-to-peer computing mainly consider that collaborators offer constant idle computa-
tion resources until completing the offloaded computation loads. However, due to its
own tasks with high priority, the central processing unit (CPU) state of collaborators
is opportunistically idle and available to the offloaded tasks [12, 13], which is different
from the dedicated resource provisioning of edge servers for IoT subscribers. Moreo-
ver, with some incentive mechanism [14], collaborators not only share idle computa-
tion resources, and their network function can also be utilized to assist computation
offloading.

Considering the stochastic channel condition and the dynamic computation resources
share, in this paper, we propose the cooperative computing which integrates both the
dedicated edge cloud and opportunistic collaborators to provide computation resources
for IoT devices. In particular, collaborators provide two functions: computation assis-
tance at idle states and offloading assistance at busy states. With given computation load
and completion time constraint, an IoT device should adapt the local computation load
and offloading computation load to the dynamic process of the channel states and the
collaborator states. Our contributions are summarized as follows:

1 A novel cooperative computing paradigm is proposed, which supports the parallel
computing on local devices, edge cloud and collaborators with dynamic computation
resources. A collaborator assists in computing or further offloading the computation
to the edge cloud based on its stochastic CPU availability.

2 A dynamic offloading decision problem on how much computation load is executed
locally, offloaded to edge cloud and a collaborator, is modeled as a finite horizon
Markov decision problem. We aim to minimize the expected sum energy consump-
tion of both the IoT device and the collaborator, subject to the computation comple-
tion time constraint.

Page 3 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

3 Based on the stochastic optimization theory, the optimal offloading policy is derived
by Karush–Kuhn–Tucker (KKT) conditions and backward induction, which facili-
tates the design of a low-complexity dynamic programming algorithm and alleviates
the well-known curse of dimensionality.

4 Optimal offloading policy shows that the energy consumption can be reduced by a
proportional factor through cooperative computing. More energy saving is achieved
with better wireless channel condition or higher computation energy efficiency of
collaborators. Simulation results validate the optimality of the proposed policy and
the efficiency of the cooperative computing between end devices and edge cloud.

The rest of the paper is organized as follows. Section 2 summarizes some related work.
Section 3 describes the system model and problem formulation. Optimal offloading
policy and the corresponding algorithm are presented in Sect. 4. In Sect. 5, the simula-
tion experiments and performance evaluation of the proposed algorithm are provided.
Finally, conclusions and future work are given in Sect. 6.

2 Related work
In this section, some related work on MECO and peer-to-peer computing is summa-
rized. Considering computation offloading to dedicated edge servers, [2] investigated the
partial offloading for a mobile device with dynamic voltage scaling technology. The off-
loading ratio, computational speed and transmit power of the device are optimized for
minimizing its energy consumption or application execution latency. For multiple users
that require offloading services, time-division multiple access (TDMA) and frequency-
division multiple access (FDMA) are adopted in [3]. A convex optimization problem was
formulated and solved optimally for joint offloading ratio and time allocations, such that
the total energy consumption of multiple devices is minimized. A heuristic algorithm
was then proposed for offloading ratio and frequency channel allocations. Decentralized
algorithms for resource allocation and offloading decision were studied in [4, 5] by using
game theory and decomposition techniques, respectively. These works focused on the
quasi-static scenario where channel or link quality remains unchanged in the offload-
ing process. Targeting at time-varying channel conditions when computation offloading,
[15] investigated binary decision, i.e., offloading or local computing, in Gilbert-Elliott
channel model. Then the authors considered linear task topology and random channel
in [16], and the problem of optimal offloading control was formulated as a shortest path
problem. “One-climb” policy structure was proved that the tasks should only migrate at
most once between an end device and the cloud. Considering the intermittent connec-
tivity between an end device and edge cloud due to network congestions, an analytical
framework was built in [17] and a closed-form expression of the task processing time
under different network conditions was derived.

For peer-to-peer computing, D2D-enabled collaborative computation was studied in
[8], where a local user offloads multiple independent tasks to its nearby devices through
TDMA. Computation latency was minimized by optimizing task assignment jointly with
the time for task offloading and results downloading, subject to the individual energy
constraints at the local user and the collaborators. In [9], we investigated the application

Page 4 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

partitioning and collaborator selection problem for multiple users when multiple idle
collaborative devices are available. Both the centralized and decentralized algorithms
were proposed to minimize the energy consumption of all the users. Considering a
collaborator may opportunistically provide idle computation resources due to its local
computation; [12] studied a user exploits non-causal information on the CPU state of
collaborator to control offloaded data sizes. The CPU information was assumed to be
predicted accurately in offline. Instead, the offloading policy was then studied in [13]
based on the statistic distribution on the dynamic collaborator’s CPU state and the ran-
dom channel state.

Integrating nearby collaborators with dedicated servers, recent studies show the effi-
ciency of this cooperative computing. In [10], the peer-to-peer offloading was integrated
with edge severs to maximize the number of devices that the system can support, where
parts of the task that cannot be completed in time by each local device are offloaded
to an edge node and a nearby device. The optimal transmit power allocation and the
task offloading strategy are obtained. The selection on application execution approaches,
including local computing, offloading to a collaborator or an edge cloud for multi-
ple users, was considered in [11]. The problem was formulated as a sequential game to
minimize the weighted sum of the task executive delay and energy consumption. Apart
from utilizing the computing resources of the collaborators, network function was also
considered in [18]. Through time allocation, portions of data are transmitted from a
mobile device to a collaborator for computation at the first time block; then, the col-
laborator assists another portions of data transmission from the mobile device to an AP
as a relay at the subsequent two time blocks. These existing works on cooperative com-
puting considered static scenarios with no channel varying and assumed collaborator
offers constantly dedicated idle computation resources similar as edge/cloud servers.
However, due to signal interference and user mobility, as well as stochastic tasks arrival,
the channel dynamics and the randomness of collaborator states should be considered in
offloading policy design, which motivates our study in this work. We model the dynamic
offloading control as a finite horizon MDP problem. Different with some existing work
[19–21] that solved MDP problems numerically and sub-optimally using deep reinforce-
ment learning, we aim to derive the optimal solution that yields useful insight into the
policy structure.

3 System model
We consider an edge computing system with an IoT device, a collaborator and an edge
cloud server that is co-located at an access point (AP). The IoT device has computation-
ally intensive applications to be completed within the hard deadline constraint, and the
application-related computing data are stored in its buffer. In this paper, we focus on data-
partitioned applications, such as virus scan, file/figure compression and text conversion
[2, 22, 23], for which the application data can be partitioned continuously and processed
in parallel. The edge cloud provides the dedicated computation services for the resources-
limited IoT device, and the resources are sufficient for completing the workload from the
device. The collaborator can also share its computation capability to assist the computation
of the IoT device. However, due to its own randomly arriving computation tasks, the avail-
able idle computation resources of the collaborator for assistance are dynamic. To model

Page 5 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

the dynamic property of wireless channel and collaborator state, the system time is divided
to slots with equal duration τ . The channel and collaborator conditions remain constant
within a time slot but may vary between different time slots. Consider an application with
data size W should be completed before deadline D, i.e., T = D/τ time slots. In each time
slot t, aLt bits of data are processed locally by the IoT device. In parallel, through some exist-
ing cellular connectivity and proximate communication technology, such as LTE and D2D
communication, the IoT device offloads aEt and aCt bits to the edge server and the collabora-
tor, respectively. At the next time slot t + 1 , the remaining data size in the buffer of the IoT
device can be expressed as Bt+1 = Bt − aLt − aEt − aCt .

3.1 Local computing

According to [24], utilizing dynamic voltage and frequency scaling (DVFS) techniques, the
local CPU frequency can be dynamically adjusted in each time slot in order to minimize the
computation energy consumption. Let γ denote the number of CPU cycles for computing
per data bit, then the local CPU-cycle frequency of the IoT device at time slot t is cLt = γ aLt

τ
 .

The local computation power consumption PL
t can be modeled as PL

t = κL(cLt)
3 [25], where

κL is the energy conversion coefficient of the device depending on the chip architecture.
The larger κL is, the lower its computation energy efficiency is. Then the local computation
energy consumed by the IoT device at time slot t is expressed as

where βL = κLγ 3

τ 2
.

3.2 Direct offloading to edge cloud

Due to the effect of shadowing, multipath interference and mobility of the IoT device, the
correlated fading channels are considered in this paper. Such correlated fading wireless
communication channels can be modeled by the finite state Markov chain (FSMC) model
with K states, indexed as k = {0, 1, 2, . . . ,K } . The channel state between the IoT device
and the edge cloud Hle

t keeps constant during one time slot t, but may change in different
time slots. The transition probability from two neighboring states k − 1 and k is denoted as
Pk−1,k , 1 ≤ k ≤ K . These probabilities can be calculated based on practical fading models
[26]. The transition probability between two states that are not neighbors is 0. According to
the empirical model in the literature, the transmission power of the IoT device to the edge
cloud at t can be modeled as the following monomial function:

where � is the energy coefficient incorporating the effects of bandwidth and noise power,
st = aEt /τ is the transmission rate at time slot t, and m is the monomial order deter-
mined by the modulation-and-coding scheme. It is shown by [27, 28] that the power-
rate relation can be well approximated by the monomial function. Following [13], the
monomial order of (m = 3) is adopted to approximate transmission power, such that the
coding scheme for the targeted error probability is less than 10−6 . Then the offloading
energy consumption from the IoT device to the edge cloud at time slot t is written as

(1)E
L
t (a

L
t) = PL

t τ = βL(aLt)
3

(2)PT
t = �

smt

Hle
t

Page 6 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

where η = �

τ 2
 . We omit the computation energy consumption of the edge cloud since it

is often powered by stable on-grid power.

3.3 Collaborator‑assisted computing or offloading

Since the computation resource availability of collaborator in the future is often variable
and unknown, statistic information based on historical data can be utilized. As shown in
[29], the idle/busy intervals in the quantized CPU utilization traces roughly follow the geo-
metric distribution, while the idle/busy intervals in Markov chains are exactly geometrically
distributed. Hence, the CPU availability processes can be modeled as two-state Markov
chains [13, 29]. Based on the idle/busy state distribution, the state transition probability
can be also obtained by theoretic derivation [17] or real-world experiments [29]. In each
time slot t, the CPU state of the collaborator is Ct ∈ {0, 1} , where Ct = 0 and Ct = 1 denote
the idle and busy states, respectively. The current CPU state Ct only depends on the previ-
ous random state Ct−1 and is independent of the past states {C1, . . . ,Ct−2} . Let Pbb and
Pii denote the busy-to-busy and idle-to-idle transition probabilities. Then the busy-to-idle
and idle-to-busy transition probabilities are Pbi = 1− Pbb and Pib = 1− Pii , respectively.
When Ct = 0 , the CPU is idle and the offloaded computation from the IoT device can be
processed by the collaborator; otherwise, the collaborator will further forward the compu-
tation to the edge cloud. The system model is shown as Fig. 1.

We now consider the assisted computing when Ct = 0 . Recall that aCt data bits are
offloaded to the collaborator in time slot t. Similar with the transmission energy consump-
tion model described in Sect. 3.2 and computation energy consumption model described
in Sect. 3.1, the total energy consumption of the IoT device and the collaborator at time slot
t is expressed as

where βC = κCγ 3

τ 2
 and κC is the energy conversion coefficient of the collaborator. Hlc

t is
the channel state between the IoT device and the collaborator. The first term in R.H.S of

(3)E
E
t (a

E
t) = PT

t τ = η
(aEt)

3

Hle
t

(4)E
CC
t (aCt) = η

(aCt)
3

Hlc
t

+ βC(aCt)
3
, Ct = 0

IoT device

Collaborator
with idle CPU

AP & Edge server
D2D Link

Cellular Link

IoT device

Collaborator
with busy CPU

AP & Edge server

Fig. 1 System model

Page 7 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

(4) denotes offloading energy consumption of the IoT device, and the second one repre-
sents the computation energy consumption of the collaborator.

When Ct = 1 , the offloaded computation in this time slot cannot be processed by the
collaborator. In this case, the collaborator further forwards the offloaded computation
aCt to the edge cloud for processing. Therefore, the total transmission energy consump-
tion of the IoT device and the collaborator at time slot t is expressed as

where Hlc
t is the channel state between the collaborator and the edge cloud server.

3.4 Problem formulation

Markov decision process (MDP) is a mathematical framework for modeling the deci-
sion-making problems in a stochastic system with multiple states and statistic system
information, which suits our problem well. Furthermore, considering the hard comple-
tion time constraint of the application, we then formulate this opportunistic cooperative
computation offloading as a finite-horizon MDP problem. The expected energy con-
sumption of both the IoT device and the collaborator is minimized, subject to the hard
deadline constraint of the application.

(1) State and action sets

The system state space of our MDP formulation is represented as
S = �1 ×�2 ×�3 × B × C , where channel states Hle

t ∈ �1 , Hlc
t ∈ �2 , Hce

t ∈ �3 and
collaborator CPU state Ct ∈ C evolve as Markov chains, and buffer state Bt ∈ B . The
action state space is denoted as A , where at = (aLt , a

E
t , a

C
t) ∈ A denotes the action in

time slot t. Due to the completion time constraint, the feasible actions depend on the
current state. Given a specific system state st ∈ S , the feasible actions in time slot t
should satisfy the following conditions:

2 State transition probability

Given the current state st = {hlet , hlct , hcet , bt , ct} , the state transition probability is the
probability that the system will be in the next state st+1 = {hlet+1

, hlct+1
, hcet+1

, bt+1, ct+1}
after an action at is taken, denoted as

(5)E
CO
t (aCt) = η

(aCt)
3

Hlc
t

+ η
(aCt)

3

Hce
t

, Ct = 1

(6)

{

a
L
t ≥ 0, aEt ≥ 0, aCt ≥ 0, aLt + a

E
t + a

C
t ≤ bt , t < T ,

a
L
t ≥ 0, aEt ≥ 0, aCt ≥ 0, aLt + a

E
t + a

C
t = bt , t = T .

(7)

P(st+1|st ,at)

= P(hlet+1|h
le
t)× P(hlct+1|h

lc
t)× P(hcet+1|h

ce
t)

× P(ct+1|ct)× I(bt+1 = bt − aLt − aEt − aCt)

Page 8 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

where I(l) is an indicator function, which is equal to 1 if the condition (l) holds and 0
otherwise.

The total energy consumption of the IoT device and the collaborator in each time slot
t, including the transmission energy consumption and the computation energy con-
sumption, can be given by

An offloading policy consists of T decision rules for the T decision epochs:
t = {1, 2, . . . ,T } , is defined below. A decision rule at time slot t maps states to actions
and is denoted by at : S → A.

Definition 1 An admissible offloading policy is a function mapping the buffer state,
the CPU state of the collaborator, the channel states and the time slot information into
an action in each decision period:

The space of all admissible policies is denoted by �.
Our objective is to minimize the expected total energy consumption of the IoT device

and the collaborator given an initial state s1 ∈ S:

where the expectation is taken with regard to the stochastic system state St for all t. In
this paper, we consider deterministic Markov policies which is shown to be optimal
under the expected total reward criteria [30]. The solving of the optimal policy is non-
trivial since the decision on each time slot cannot be taken independently. The action
in each time slot affects the system transition probability, the future states and energy
consumption in subsequent time slots. The resultant computation offloading policy can
be computed numerically by brute-force method or some reinforcement learning tech-
niques, but on the one hand, brute-force method leads to an exponential increase on the
complexity of policy solving with the number of state variables; on the other hand, rein-
forcement learning requires amount of time to training and learning a better strategy
from trial and error. In the following section, we exploit the known model information
to derive the closed-form policy, which provides some insight for the strategy design and
efficiently alleviate the curse of dimensionality in stochastic optimization.

4 Optimal computation offloading policy
In this section, we derive the optimal computation offloading policy in each time slot
based on the principle of optimality and dynamic programming (DP) [31]. The optimal
closed-form solution greatly reduces the complexity of the problem solving.

Define Vt(st) as the cost-to-go function that represents the minimum expected sum
energy consumption from time slot t to T. Based on the principle of optimality, we have
the following Bellman optimal equation:

(8)
J (st ,at) = E

L
t (a

L
t)+ E

E
t (a

E
t)

+ (1− ct)E
CC
t (aCt)+ ctE

CO
t (aCt)

(9)π = (a1, . . . ,aT) : {1, . . . ,T } × S → A

(10)min
π∈�

E

{

T
∑

t=1

J (St ,at)|s1

}

Page 9 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

It can be seen the optimal cost-to-go function in each time slot depends on the functions
in subsequent time slots. We first consider the policy in the last time slot T given the sys-
tem state sT . Then the problem for VT (sT) can be written as follows.

Problem P1:

The action aT should satisfy the following constraints.

Through solving the constrained optimization problem, the optimal offloading decision
can be given as follows.

Lemma 1 At the last time slot T, the optimal amount of data for local processing, off-
loading to the edge cloud and offloading to the collaborator is, respectively, derived as

The minimum energy consumption VT (sT) is

Proof It is obvious that Problem P1 is a convex optimization problem. When cT = 0 ,
define the Lagrangian function

(11)Vt(st) =

min
at∈π(st)

J (st ,at)+ E[Vt+1(St+1)|st ,at], t < T ,

min
at∈π(st)

J (st ,at), t = T .

(12)

VT (sT) =

min
aT∈π(sT)

βL
�

aLT
�3 + η

�

aET

�3

hleT

+η

�

aCT

�3

hlcT
+ βC

�

aCT
�3
, cT = 0,

min
aT∈π(sT)

βL
�

aLT
�3 + η

�

aET

�3

hleT

+η

�

aCT

�3

hlcT
+ η

�

aCT

�3

hceT
, cT = 1.

(13)
{

aT |aLT ≥ 0, aET ≥ 0, aCT ≥ 0, aLT + aET + aCT = bT

}

(14)

aL⋆T = bT

1+
�

βLhleT
η

+
�

βL

η

hlcT

+(1−cT)βC+cT
η

hceT

−1

aC⋆T =
�

βL

η

hlcT

+(1−cT)βC+cT
η

hceT

aL⋆T

aE⋆T =
�

βLhleT
η

aL⋆T

(15)

VT (sT) = βL(bT)
3

1+

�

βLhleT
η

+

�

�

�

�

βL

η

hlcT
+ (1− cT)βC + cT

η
hceT

−2

Page 10 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

where δ is nonnegative Lagrangian multiplier. Applying the KKT condition, we have

The optimal solution can be obtained as

Similarly, the optimal offloading solution can be also derived when cT = 1 . Combining
the results of cT = 0 and cT = 1 , the optimal policy at time slot T is thus obtained. �

Some important observations from Lemma 1 can be highlighted. Firstly, the off-
loading data size to edge cloud is closely related to two parameters, i.e., the local com-
putation energy consumption per bit βL , and the transmission energy consumption
per bit η/hleT . The IoT device offloads more data to the edge cloud when the local com-
putation per bit is energy consuming or the channel between the device and the edge
cloud is in a good state. Similarly, apart from βL , the offloading data size to the col-
laborator is also related to the sum energy consumption of transmission (from the IoT
device to the collaborator) and computation (of the collaborator) η/hlcT + βC when
cT = 0 , the two-hop transmission energy consumption from the IoT device to the
edge cloud η/hlcT + η/hceT when cT = 1 . The data portions of offloading and local pro-
cessing are determined by these parameters. Besides, the energy consumption can be

reduced by the proportional factor

1+
�

βLhleT
η

+
�

βL

η

hlcT

+(1−cT)βC+cT
η

hceT

−2

through parallel computing. More energy saving is achieved with better wireless
channel condition or higher collaborator’s computation energy conversion efficiency.

Lemma 1 provides the optimal solution for different system states and the mini-
mum network energy consumption at the last time slot. Based on this closed-form
policy, the optimal computation offloading policy in each time slot can be derived
through backward induction approach, shown as below.

(16)
L(aT , δ) = βL

(

aLT

)3

+ η

(

aET
)3

hleT
+

(

aCT
)3

hlcT

+ βC
(

aCT

)3

+ δ

(

aLT + aET + aCT − bT

)

(17)

∂L

∂aLT
= 3βL

�

aLT
�2 + δ = 0

∂L

∂aET
= 3η

�

aET

�2

hleT
+ δ = 0

∂L

∂aCT
= 3

�

aCT

�2

hlcT
+ 3βC

�

aCT
�2 + δ = 0

∂L
∂δ

= aLT + aET + aCT − bT = 0

(18)

aL⋆T (cT = 0) =

1+
�

βLhleT
η

+
�

βL

η

hlcT

+βC

−1

bT

aC⋆T (cT = 0) =
�

βL

η

hlcT

+βC
aLT

aE⋆T (cT = 0) =
�

βLhleT
η

aLT

Page 11 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

Theorem 1 At time slot t = 1, 2, . . . ,T , the optimal policy determines data aL⋆t for local
processing, aE⋆t for offloading to the edge cloud and aC⋆t for offloading to the collaborator,
which satisfies:

where �t(st) is defined as

Correspondingly, the minimum expected energy consumption of the network V1(s1) is

Proof Firstly, we derive the optimal action and expected energy consumption from
time slot T − 1 to T for both cT−1 = 0 and cT−1 = 1 . When cT−1 = 0 , the optimization
problem for VT−1(sT−1) can be given as

Based on VT (sT) in Lemma 1 and define

(19)

aL⋆t = bt

1+ 1√
�t (st)

+
�

βLhlet
η

+
�

βL

η

hlct

+(1−ct)βC+ct
η

hcet

−1

aC⋆t =
�

βL

η

hlct

+(1−ct)βC+ct
η

hcet

aL⋆t

aE⋆t =
�

βLhlet
η

aL⋆t

(20)

�t(st)

=

�

hlet+1

�

hlct+1

�

hcet+1

�

ct+1

P(hlet+1
|hlet)P(hlct+1

|hlct)P(hcet+1
|hcet)

×P(ct+1|ct)×

�

1+ 1√
�t+1(st+1)

+
�

βLhlet+1

η

+
�

βL

η

hlct+1

+(1−ct+1)β
C+ct+1

η

hcet+1

−2

, t < T

∞, t = T

(21)

V1(s1) = βLW 3

1+
1

√
�1(s1)

+

�

βLhle
1

η

+

�

�

�

�

βL

η

hlc
1

+ (1− c1)βC + c1
η
hce
1

−2

(22)

VT−1(sT−1)

= min
aT−1

{J (sT−1,aT−1)+ E[VT (ST)|sT−1,aT−1]}

= min
aT−1

J (sT−1,aT−1)+
�

hleT

�

hlcT

�

hceT

�

cT

P(hleT |h
le
T−1)

P(hlcT |h
lc
T−1)P(h

ce
T |h

ce
T−1)P(cT |cT−1)VT (sT) }

Page 12 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

VT−1(sT−1) can be further written as

where aT−1 satisfies the constraint

Applying the KKT condition, the optimal policy when cT−1 = 0 can be obtained as

Similarly, the optimal policy when cT−1 = 1 can be derived. Combining the results of
both cases, the optimal offloading policy and minimum energy consumption at time slot
T − 1 are, respectively

(23)

�T−1(sT−1)

=
�

hleT

�

hlcT

�

hceT

�

cT

P(hleT |h
le
T−1)P(h

lc
T |h

lc
T−1)P(h

ce
T |h

ce
T−1)

× P(cT |cT−1)

1+

�

βLhleT
η

+

�

�

�

�

βL

η

hlcT
+ βC

−2

(24)

VT−1(sT−1) = min
aT−1

{

βL(aLT−1)
3

+η
(aET−1

)3

hleT−1

+ η
(aCT−1

)3

hlcT−1

+ βC(aCT−1)
3

+ βL(bT−1 − aLT−1 − aCT−1 − aET−1)
3�T−1(sT−1)

}

(25)

{

aT−1|aLT−1 ≥ 0, aET−1 ≥ 0, aCT−1 ≥ 0,

aLT−1 + aET−1 + aCT−1 ≤ bT−1

}

(26)

aL⋆T−1
(cT−1 = 0) = bT−1

1+ 1√
�T−1(sT−1)

+
�

βLhleT−1

η
+

�

βL

η

hlcT−1

+βC

−1

aC⋆T−1
(cT−1 = 0) =

�

βL

η

hlcT−1

+βC
aL⋆T−1

aE⋆T−1
(cT−1 = 0) =

�

βLhleT−1

η
aL⋆T−1

(27)

aL⋆T−1
= bT−1

�

1+ 1√
�T−1(sT−1)

+
�

βLhleT−1

η
+

�

βL

η

hlcT−1

+(1−cT−1)β
C+cT−1

η

hceT−1

−1

aC⋆T−1
=

�

βL

η

hlcT−1

+(1−cT−1)β
C+cT−1

η

hceT−1

aL⋆T−1

aE⋆T−1
=

�

βLhleT−1

η
aL⋆T−1

Page 13 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

Comparing the optimal solution (14) for t = T with (27) for t = T − 1 , similar structure
can be found. Therefore, utilizing the backward induction and similar derivation pro-
cess, the optimal computation offloading policy can be given as Theorem 1. �

Theorem 1 demonstrates that in each time slot, the computation offloading policy
depends not only on the current system state, but also on the future states through
the term �t(st) . In detail, a larger �t(st) means more expected energy consumption
for completing per bit data in future time slots. Therefore, more data should be pro-
cessed in the current time slot no matter for local computing or offloading. Moreover,
the same conclusion as Lemma 1 can be obtained. That is, the fraction of the optimal
data size for locally computing, offloading to the edge cloud and offloading to the col-
laborator in each time slot is determined by the local computation energy consump-
tion per bit βL , and the offloading energy consumption per bit η/hleT , η/hlcT + βC or
η/hlcT + η/hceT . Given the sum-processed data in one time slot, the preferred destina-
tion (local device, edge cloud or collaborator) at which more data are processed relies
on the energy consumption for per-bit data.

Based on the Theorem 1, Algorithm 1 shows the optimal closed-form computation
offloading policy. We then analyze the computational complexity of the algorithm.
Based on Theorem 1, the optimal policy is determined by the known original sys-
tem state s1 and unknown �1(s1) , where the complexity for calculating �1(s1) depends
on the three channel state spaces, the dimensions of collaborator CPU state and the
number of time slots. Denote the number of the channel state as N, the computa-
tional complexity of the algorithm is thus O(2N 3T) . For the direct DP approach that
searches all actions in policy space and in each time slot, the dimensions of state
space, action space are O(2N 3) and O(W 3) in time slot t, respectively, leading to the
total computational complexity |S|2AT = O(4N 6W 3T) , which is impractical for large
data size W and time slots T. Compare our closed-form policy to the brute-force pol-
icy search, the computational complexity is reduced dramatically.

(28)

VT−1(sT−1)

= βL(bT−1)
3

1+
1

√
�T−1(sT−1)

+

�

βLhleT−1

η

+

�

�

�

�

βL

η

hlcT−1

+ (1− cT−1)βC + cT−1
η

hceT−1

−2

Page 14 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

Note that the entire process including the offloading decision and application
execution is controlled by the AP. Once an application is generated, the IoT device
reports its data size S, application deadline T and related parameters of local comput-
ing via feedback channel. Based on the historical statistical information on the chan-
nel state and the CPU state of the collaborator, the AP executes Algorithm 1 to get the
amounts of data for local computing (aLt) and offloading (aEt and aCt) in each time slot.
The policy is informed of the IoT device by the bidirectional feedback channel and the
corresponding computation offloading process starts.

In this work, we consider the hard deadline requirement of an IoT application, which
is usually an explicit parameter upon it is generated. This is common in most of the
existing literature, see [10–13]. However, if the deadline parameter is hard to obtain in a
fine-grained way, the statistical value of the deadline for a kind of IoT application should
be got from the historical information. In this case, there are two options:

(1) A guard time can be set to cope with this uncertainty. That is, the deadline is set as
the minimum historical value less a guard time. Our scheme can be still adopted in
this case.

(2) The application should be completed before a probabilistic deadline. This make the
original problem more complicated since the constraint is a probabilistic form. The
problem will be considered in our future work.

5 Results and discussion
In this section we simulate the performance of proposed Algorithm 1. Default param-
eters are set as follows unless stated otherwise. The time slot duration is 20 ms [32]. We
consider an IoT device has an application with 400 kilobits under the deadline constraint
of 140 ms, i.e., T = 7 time slots. The delay budget T is the actual delay budget of the
application less the time needed to run Algorithm 1. Energy conversion coefficients
κL = 10−27 , κC = 0.3 ∗ 10−27 [18] and the required CPU cycles for computing 1-bit
data are γ = 1000 cycle/bit [33]. For large-scale fading, the distances for IoT device-edge
cloud, IoT device-collaborator and collaborator-edge cloud are 300 m, 50 m and 260 m.
Path-loss exponent is 2.4. Small-scale fading for the channel is modeled as a two-state
Markov chain, i.e., if the measured channel gain is below a threshold, the channel is con-
sidered as “bad”; otherwise, the “good” condition. The average channel power gains are 1
and 0.01 for the “good” and “bad” states, respectively [15]. The good-to-bad and bad-to-
good transition probabilities are, respectively, set as Pgb = 3/7 and Pbg = 3/10 [28]. The
CPU state of the collaborator follows another Markov chain with Pbb = 0.7 and Pii = 0.8
[13] and the energy coefficient � = 10−21 . To validate the optimality of the derived pol-
icy, optimal numerical results solved by brute-force policy search are presented. Then
three algorithms are considered for performance comparison.

(1) Local or edge server execution (LESE) [15]: The computation load is entirely pro-
cessed locally by IoT device or offloaded to the edge cloud through stochastic chan-
nel. The energy consumption of IoT device is minimized.

Page 15 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

(2) Local and dynamic collaborator execution (LDCE) [13]: Part of the computation
load is processed locally by IoT device, and the other is offloaded to a collaborator
with dynamic computation resources through stochastic channel concurrently. The
energy consumption of IoT device is minimized.

(3) Equal allocation in each slot (EA): The computation load is processed locally by IoT
device, offloaded to the edge cloud and offloaded to a collaborator with dynamic
computation resources in parallel. The input data W are allocated into T time slots
equally, regardless of channel conditions and the collaborator CPU state. Then the
offloading policy in each slot aT = (aLT , aET , a

C
T) is obtained with similar derivation

procedure as the proposed algorithm. The energy consumption of both the IoT
device and the collaborator is minimized.

Figure 2 shows the results of the total expected minimum energy consumption versus
data size for the derived closed-form policy and brute-force policy search under differ-
ent deadline constraints. It is noticed that the results of the two approaches are very
close, which demonstrates the optimality of our computation offloading policy. Mean-
while, as the data size of application increases, the expected energy consumption grows
at an increasing rate. The reason is that more energy, both computation energy and
transmission energy, is consumed for completing more computation within the given
deadline constraint. More stringent deadline constraint also leads to more expected
energy consumption.

The total expected energy consumption versus the application data size for our
approach and the three benchmark schemes are depicted in Fig. 3. With the increase
of the application data size, the total expected energy consumption grows and the
increasing rate gets larger in all four schemes, which is consistent with Fig. 2. It also
can be observed that the total expected energy consumption of the proposed scheme
is less than the EA scheme. This is because the proposed scheme considers the

Data Size (bits) 105

2 2.5 3 3.5 4 4.5 5

T
ot

al
 E

xp
ec

te
d

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Deadline=100ms, Algorithm 1
Deadline=100ms, brute-force policy search
Deadline=120ms, Algorithm 1
Deadline=120ms, brute-force policy search
Deadline=140ms, Algorithm 1
Deadline=140ms, brute-force policy search

Fig. 2 Total expected energy consumption versus data size

Page 16 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

channel and CPU states when offloading. More (less) data are transmitted when chan-
nel state is good (bad), which saves the transmission energy consumption. The pro-
posed scheme also outperforms LDCE in [13]. The reason is that the presence of edge
server increases the offloading opportunity for the IoT device to reduce its energy
consumption. More wireless channels and computation resources promote the IoT
device to transmit more application-related data on better channels, which achieves
diversity gain. Moreover, the collaborator and edge server can process the data in par-
allel, which reduces the application completion time substantially. Similarly, the per-
formance of the proposed scheme is better than LESE in [15] due to the diversity gain.
Overall, this demonstrates the efficiency of the proposed cooperative computing.

Figure 4 depicts the total expected energy consumption versus the application
deadlines. As the deadline extends, the total expected energy consumption reduces at
an decreasing rate in the four schemes. On the one hand, local processing rate can be
lowered with extended time and thus the local computation energy consumption fur-
ther reduces. On the other hand, the computation can be opportunistically offloaded
at good channel condition or favorable collaborator CPU state in more time slots,
leading to the reduction of the transmission energy consumption. This also demon-
strates that extending deadline contributes more to the energy saving when deadline
constraint is stringent. When the deadline is relaxed, the constraint is inactive and
has less impacts on the expected energy consumption.

We then evaluate the effect of the collaborator energy conversion coefficient κC on
the total expected energy consumption in Fig. 5. As κC increases, the energy con-
sumption correspondingly increases for the three collaborator-related schemes,
since the per-bit computation energy consumption for the collaborator grows. Only
with available computation resources of the local device and the collaborator, the
energy consumption of the LDCE scheme grows rapidly. The increase of the energy

Data Size (bits) 105

2 2.5 3 3.5 4 4.5 5

T
ot

al
 E

xp
ec

te
d

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0

0.5

1

1.5

2

2.5

3
Algorithm 1
LDCE
LESE
EA

Fig. 3 Total expected energy consumption versus data size

Page 17 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

consumption of the other two schemes, i.e., the proposed and EA scheme, is allevi-
ated because more computation can be offloaded to the edge cloud.

The total expected energy consumption versus the CPU cycles per bit γ is shown in
Fig. 6. The energy consumption grows as γ increases in all the schemes, but at different
increasing rates. For the LDCE scheme, the changes of the slope are the largest. This is
because the computation is processed only at the local IoT device and the collabora-
tor, and both of the computation energies are related to γ . For the LESE scheme, local
computation energy grows with the increases of γ , and more computation is offloaded
to the edge cloud. As a result, the expected energy consumption grows with a decreasing
rate. The increasing rate for the proposed scheme is similar to the LESE scheme rather

Deadline (ms)
40 50 60 70 80 90 100 110 120 130 140

T
ot

al
 E

xp
ec

te
d

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0

1

2

3

4

5

6

7

8

9
Algorithm 1
LDCE
LESE
EA

Fig. 4 Total expected energy consumption versus application deadline

c 10-27
0 0.2 0.4 0.6 0.8 1 1.2

T
ot

al
 E

xp
ec

te
d

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Algorithm 1
LDCE
LESE
EA

Fig. 5 Total expected energy consumption versus κC

Page 18 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

than the LDCE scheme, which shows offloading to the edge cloud is more preferred as
γ increases. But the performance of our scheme is still better than the LDCE and LESE
schemes since more computing resources can be utilized. Moreover, the advantage of the
proposed approach is more obvious with larger γ . Thus, the performance gap between
the proposed approach and the equal allocation gets larger.

Figure 7 shows the total expected energy consumption versus the distance between
the IoT device and the collaborator. It can be noticed that the energy consumption
grows as the collaborator gets more far away from the device, since more transmission
energy consumption incurred. Besides, the energy consumption of the proposed scheme
is close to the LDCE scheme when the distance is short, but the performance gap gets
larger as the distance extends. This also demonstrates the effectiveness of the proximate
computing.

Table 1 shows the execution time of Algorithm 1, brute-force policy and the other
three comparison algorithms. These algorithms are deployed at the computer with a
dual-core Intel CPU at 2.9 GHz frequency. The time is collected by 1000 average with
the data sizes uniformly distributed in [200, 500] kilobits. It can be noticed that the exe-
cution time of Algorithm 1 is much lower than brute-force policy, thanks to the derived
closed-form optimal policy. The execution time of Algorithm 1 is larger than the other
three comparison algorithms, due to the trade-off between the performance gain and
the computational complexity. It should be highlighted that the absolute time is just a
reference because it is highly dependent on the machine running the algorithms.

6 Conclusions
In this work, we study the cooperative computing between IoT devices, collabora-
tors with dynamic idle computation resources and dedicated edge cloud. Specifi-
cally, an IoT device can compute locally, offload computation load to a collaborator
and edge cloud in parallel. The collaborator assists in computing at idle states and in

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
ot

al
 E

xp
ec

te
d

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0

2

4

6

8

10

12

14

16

18
Algorithm 1
LDCE
LESE
EA

Fig. 6 Total expected energy consumption versus γ

Page 19 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

further offloading to the edge cloud at busy states. The problem on how much com-
putation load is executed locally, offloaded to edge cloud and a collaborator, is mod-
eled as a finite horizon Markov decision problem with the objective of minimizing the
expected total energy consumption of the IoT device and the collaborator, subject to
satisfying the hard completion time constraint. Optimal offloading policy is derived
based on the stochastic optimization theory, which alleviates the well-known curse of
dimensionality and facilitates the design of a low-complexity dynamic programming
algorithm. Simulation results validate the optimality of the proposed policy and show
that more energy saving is achieved with better wireless channel condition or higher
computation energy efficiency of collaborators.

In the future, we focus on extending this work to more general scenarios, where
a large number of IoT devices exist. Resources competition (on communication and
computation resources) or collaborator selection problem need to be addressed effi-
ciently. Moreover, based on the useful insights in this work, devising online learning
algorithm is also an interesting direction, which may require less model information
but more time (for training) to get a satisfactory policy. Lastly, although we consider
the energy consumption of the peer collaborators in this work, incentive mechanisms

Distance between IoT device and Collaborator (m)
0 100 200 300 400 500 600

T
ot

al
 E

xp
ec

te
d

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

0

0.5

1

1.5

2

2.5

3
Algorithm 1
LDCE
LESE
EA

Fig. 7 Total expected energy consumption versus distance between IoT device and collaborator

Table 1 Execution time of different algorithms

Algorithm Execution time (s)

Brute-force policy search 20.235

Algorithm 1 2.137

LESE 0.114

LDCE 0.406

EA 1.837

Page 20 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

can still be designed for effectively encouraging nearby peer devices to share their idle
communication and computation resources and achieve win–win situation.

Abbreviations
IoT: Internet of Things; MEC: Mobile edge computing; MECO: Mobile edge computation offloading; D2D: Device to
device; CPU: Central processing unit; KKT: Karush–Kuhn–Tucker; TDMA: Time-division multiple access; FDMA: Frequency-
division multiple access; AP: Access point; MDP: Markov decision process; DVFS: Dynamic voltage and frequency scaling;
FSMC: Finite state Markov chain; DP: Dynamic programming; LTE: Long-term evolution.

Acknowledgements
The authors would like to thank the editors and anonymous reviewers who have contributed to the enhancement of the
paper’s completeness with their valuable suggestions. We also thank Prof. Miao Hu for his valuable suggestions.

Authors’ contributions
SM contributed to the system modeling, algorithm design, performance analysis and simulations. ZZ reviewed and com-
mented on the manuscript. Both authors read and approved the manuscript.

Funding
Not applicable.

Availability of data and materials
The details of experimental parameters are given in Sect. 5.

Competing interests
The authors declare that they have no competing interests.

Author details
1 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Haidian District, 100044 Beijing,
People’s Republic of China. 2 Department of Electronic Engineering, Beijing Jiaotong University, Haidian District, Beijing,
People’s Republic of China.

Received: 3 May 2020 Accepted: 16 November 2020

References
 1. X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, Y. Zhang, Selective offloading in mobile edge computing for

the green internet of things. IEEE Netw. 32(1), 54–60 (2018)
 2. Y. Wang, M. Sheng, X. Wang, L. Wang, J. Li, Mobile-edge computing: partial computation offloading using dynamic

voltage scaling. IEEE Trans. Commun. 64(10), 4268–4282 (2016)
 3. C. You, K. Huang, H. Chae, B.-H. Kim, Energy-efficient resource allocation for mobile-edge computation offloading.

IEEE Trans. Wirel. Commun. 16(3), 1397–1411 (2017)
 4. X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/

ACM Trans. Netw. 24(5), 2795–2808 (2016)
 5. Z. Tan, F.R. Yu, X. Li, H. Ji, V.C. Leung, Virtual resource allocation for heterogeneous services in full duplex-enabled

SCNS with mobile edge computing and caching. IEEE Trans. Veh. Technol. 67(2), 1794–1808 (2018)
 6. Mu, S., Zhong, Z., Zhao, D., Ni, M.: Latency constrained partial offloading and subcarrier allocations in small cell

networks, in Proceedings of IEEE ICC, pp. 1–6 (2019)
 7. Y. Geng, G. Cao, Peer-assisted computation offloading in wireless networks. IEEE Trans. Wirel. Commun. 17(7),

4565–4578 (2018)
 8. H. Xing, L. Liu, J. Xu, A. Nallanathan, Joint task assignment and resource allocation for D2D-enabled mobile-edge

computing. IEEE Trans. Commun. 67(6), 4193–4207 (2019)
 9. S. Mu, Z. Zhong, D. Zhao, M. Ni, Joint job partitioning and collaborative computation offloading for Internet of

Things. IEEE Internet Things J. 6(1), 1046–1059 (2019)
 10. Y. He, J. Ren, G. Yu, Y. Cai, D2D communications meet mobile edge computing for enhanced computation capacity

in cellular networks. IEEE Trans. Wirel. Commun. 18(3), 1750–1763 (2019)
 11. G. Hu, Y. Jia, Z. Chen, Multi-user computation offloading with D2D for mobile edge computing, in Proceedings of IEEE

GLOBECOM, pp. 1–6 (2018)
 12. C. You, K. Huang, Exploiting non-causal CPU-state information for energy-efficient mobile cooperative computing.

IEEE Trans. Wirel. Commun. 17(6), 4104–4117 (2018)
 13. Y. Tao, C. You, P. Zhang, K. Huang, Stochastic control of computation offloading to a helper with a dynamically

loaded CPU. IEEE Trans. Wirel. Commun. 18(2), 1247–1262 (2019)
 14. A.S. Prasad, M. Arumaithurai, D. Koll, X. Fu, Raera: a robust auctioning approach for edge resource allocation, in

Proceedings of the Workshop on Mobile Edge Communications, pp. 49–54 (2017)
 15. W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, D.O. Wu, Energy-optimal mobile cloud computing under stochastic wire-

less channel. IEEE Trans. Wirel. Commun. 12(9), 4569–4581 (2013)
 16. W. Zhang, Y. Wen, D.O. Wu, Collaborative task execution in mobile cloud computing under a stochastic wireless

channel. IEEE Trans. Wirel. Commun. 14(1), 81–93 (2014)

Page 21 of 21Mu and Zhong J Wireless Com Network (2020) 2020:247

 17. M. Hu, D. Wu, W. Wu, J. Cheng, M. Chen, Quantifying the influence of intermittent connectivity on mobile edge
computing. IEEE Trans. Cloud Comput. (2019). https ://doi.org/10.1109/TCC.2019.29267 02

 18. X. Cao, F. Wang, J. Xu, R. Zhang, S. Cui, Joint computation and communication cooperation for energy-efficient
mobile edge computing. IEEE Internet Things J. 6, 4188–4200 (2018)

 19. N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, X. Shen, Space/aerial-assisted computing offloading for IoT applica-
tions: a learning-based approach. IEEE J. Sel. Areas Commun. 37(5), 1117–1129 (2019)

 20. X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, M. Bennis, Optimized computation offloading performance in virtual edge
computing systems via deep reinforcement learning. IEEE Internet Things J. 6(3), 4005–4018 (2018)

 21. S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, K.K. Leung, Dynamic service migration in mobile edge computing
based on Markov decision process. IEEE/ACM Trans. Netw. 27(3), 1272–1288 (2019)

 22. A.P. Miettinen, J.K. Nurminen, Energy efficiency of mobile clients in cloud computing, in Proceedings USENIX Hot-
Cloud, pp. 4–11 (2010)

 23. O. Munoz, A. Pascual-Iserte, J. Vidal, Optimization of radio and computational resources for energy efficiency in
latency-constrained application offloading. IEEE Trans. Veh. Technol. 64(10), 4738–4755 (2015)

 24. B. Prabhakar, E.U. Biyikoglu, A. El Gamal, Energy-efficient transmission over a wireless link via lazy packet scheduling,
in Proceedings IEEE INFOCOM 2001, vol. 1, pp. 386–394 (2001)

 25. A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEICE Trans. Electron. 75(4), 371–382
(1992)

 26. H.S. Wang, N. Moayeri, Finite-state Markov channel—a useful model for radio communication channels. IEEE Trans.
Veh. Technol. 44(1), 163–171 (1995)

 27. M.J. Neely, E. Modiano, C.E. Rohrs, Dynamic power allocation and routing for time varying wireless networks. IEEE J.
Sel. Areas Commun. 23(1), 89–103 (2005)

 28. M. Zafer, E. Modiano, Minimum energy transmission over a wireless channel with deadline and power constraints.
IEEE Trans. Autom. Control 54(12), 2841–2852 (2009)

 29. T. He, S. Chen, H. Kim, L. Tong, K.-W. Lee, Scheduling parallel tasks onto opportunistically available cloud resources, in
2012 IEEE Fifth International Conference on Cloud Computing, pp. 180–187 (2012)

 30. M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley, Hoboken, 2014)
 31. D.P. Bertsekas, D.P. Bertsekas, D.P. Bertsekas, D.P. Bertsekas, Dynamic Programming and Optimal Control (Athena Scien-

tific, Belmont, 1995)
 32. D.V. Djonin, V. Krishnamurthy, Q-learning algorithms for constrained Markov decision processes with randomized

monotone policies: application to mimo transmission control. IEEE Trans. Signal Process. 55(5), 2170–2181 (2007)
 33. X. Huang, K. Xu, C. Lai, C. Qianbin, Z. Jie, Energy-efficient offloading decision-making for mobile edge computing in

vehicular networks. EURASIP J. Wirel. Commun. Netw. 35, 1–16 (2020)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/TCC.2019.2926702

	Computation offloading to edge cloud and dynamically resource-sharing collaborators in Internet of Things
	Abstract
	1 Introduction
	2 Related work
	3 System model
	3.1 Local computing
	3.2 Direct offloading to edge cloud
	3.3 Collaborator-assisted computing or offloading
	3.4 Problem formulation

	4 Optimal computation offloading policy
	5 Results and discussion
	6 Conclusions
	Acknowledgements
	References

