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1  Introduction
Wireless communication systems are undergoing rapid development to meet the chang-
ing demands and needs of people. The increase in wireless applications and services 
made it essential to address the spectrum scarcity problem. Measurements made by 
the Federal Communications Commission (FCC) of the United States telecommuni-
cations authority have shown that licensed bands are not used at a rate of up to 90%. 
The results of the measurement were published by the FCC Spectrum Policy Task Force 
group in the report entitled “FCC Report of the Spectrum Efficiency Working Group” 
[1]. In recent years, a lot of research has been done on the effective use of these spec-
trum bands which are either empty or are not used at full capacities. One of the notable 
concepts in the researches is the cognitive radio concept, introduced by Mitola in 1999 
[2]. CR is a software-based technology that detects the electromagnetic environment in 
which it operates, detects unused frequency bands, and adapts the radio working param-
eters to broadcast in these bands [3]. CR is a key technology that enables the limited 
and inefficiently used frequency bands to be used more efficiently with an opportunistic 
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approach. Communication performance and continuity in cognitive radio networks are 
highly dependent on whether the spectrum sensing function is performed correctly.

Spectrum sensing is a critical issue of cognitive radio technology because of the shad-
owing, fading, and time-varying natures of wireless channels. To sense limited or unused 
frequency bands, different methods for spectrum sensing have been proposed in the 
literature like matched filtering [4, 5], cyclostationary-based sensing [6–8], waveform-
based sensing [9], wavelet-based sensing [10], eigenvalue-based sensing [11, 12], and 
energy detection sensing [13–15]. Matched filtering detection methods with shorter 
detection periods are preferred if certain signal information is known, such as band-
width, operating frequency, modulation type and grade, pulse shape, and frame struc-
ture of the primary user [16, 17]. The detection performance of this method largely 
depends on the channel response. To overcome this, it requires perfect timing and syn-
chronization in both physical and medium access control layers. This situation increases 
the complexity of calculation. Cyclostationary detection is a method for detecting pri-
mary user transmissions by exploiting the cyclostationarity features of the received sig-
nals [18–20]. It exploits the periodicity in the received primary signal to identify the 
presence of primary users. In this way, the detector can distinguish primary user sig-
nals, secondary user signals or interference. However, the performance of this detection 
method depends on a sufficient number of samples, which increases the computational 
complexity. Waveform-based sensing is only applicable to systems with known sig-
nal patterns. Such patterns include preambles, midambles, regularly transmitted pilot 
patterns, and spreading sequences [21]. A preamble is a known sequence transmitted 
before each burst and a midamble is transmitted in the middle of a burst or slot. In the 
case of a known model, the spectrum detection function is performed by associating 
the received signal with a copy of itself. Wavelet transform is a powerful method for 
analyzing singularities and edges. In the wavelet-based spectrum sensing method, the 
frequency bands of interest are usually decomposed as a train of consecutive frequency 
subbands [22]. By using wavelet transform, irregularities in these bands are detected and 
the spectrum is decided whether it is full or empty. Eigenvalue-based spectrum sensing 
does not require much prior knowledge about the primary user signals and noise power 
[23–25]. The concept of this detection technique is presented in 2007 [26]. In the eigen-
value-based spectrum sensing methods, the decision threshold has been obtained based 
on random matrix theory to make a hypothesis testing. In order to determine the pres-
ence or absence of the primary user signal, the decision threshold is compared with the 
test statistic formed using the ratio of the maximum or average eigenvalue to the mini-
mum eigenvalue. Nevertheless, having a high operational complexity is a disadvantage 
of this method. Similarly, if the information of the primary users is not known precisely, 
energy detection-based methods with low mathematical and hardware complexities are 
preferred [27, 28].

Energy detection is a spectrum sensing technique based on measuring the received 
signal energy and deciding on the presence or absence of the primary user by comparing 
the received energy level with a threshold. The threshold function calculation depends 
on noise power. Numerous studies have been carried out in the literature to obtain the 
optimal threshold expression and to improve spectrum sensing performance [29–34]. In 
[29], the authors proposed a new method for adaptive threshold selection in multiband 
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detection. Estimating the threshold is performed by using the functions of the first and 
second statistics of the received signal. In [30], the Wigner–Ville distribution is used to 
improve detection performance at a low SNR. In this case, a better decision threshold 
is defined by reducing the effects of the cross-correlation terms. In [31], using Gauss–
Hettite integration, analytical expressions of detection, and mean-field probabilities on 
compound Nakagami-m and log-normal fading channels were obtained, and detection 
performance was investigated. Also, an optimized threshold expression was obtained to 
increase spectrum sensing performance. In [32], an energy detector, using an adaptive 
dual threshold, is proposed for solving the detection problem. In [33], the authors pro-
posed an adaptive threshold detection algorithm based on an image binarization tech-
nique. Here, the dynamic threshold is estimated based on previous repetition decision 
statistics, parameters such as SNR, number of instances, and detection probabilities. In 
[34], a dynamic threshold detection scheme was proposed depending on the noise level 
present in the received signal. For the measurement of the noise level, a blind technique 
based was used on the sample covariance matrix values of the received signal.

The energy detection method is widely used for its simplicity in calculation and ease 
of application. However, the spectrum sensing performance of the energy detector is 
severely affected by destructive channel effects such as shadowing and fading, and noise. 
To minimize the negative effects caused by noise uncertainty and communication chan-
nel, the cooperative spectrum sensing model is defined in the literature [35, 36]. In [35], 
the researchers proposed a fuzzy logic-based perception format for collaborative energy 
detection, based on the new reliability factors for local spectrum sensing. The fuzzy logic 
process consists of three stages. These are the ordering of blurring, the run-in motor, 
and the clearing phase. The performance of the nodes is compared with the performance 
of the other nodes to try to make the most accurate predictions. When these processes 
are performed, the reliability factor is defined by using the SNR, detection differences, 
and threshold, and the detection performance is measured. In [36], energy detector 
parameters are optimized for the best detection performance. Simulation studies have 
been carried out on fading channels about the optimal threshold, several cognitive radio 
users, and the number of antennas.

In recent years, hybrid models in which two or more detection schemes are used 
together have been developed to improve spectrum sensing performance in a cognitive 
radio network. Artificial intelligence and machine learning algorithms (MLA) are widely 
used in hybrid models [37–40]. In [37], a learning algorithm based on artificial neural 
networks (ANN) is used to detect the presence/absence of primary users in a cognitive 
radio environment. In [38], the authors proposed a collaborative spectrum sensing (CSS) 
scheme based on machine learning techniques. Supervised [e.g., support vector machine 
(SVM) and weighted K-nearest neighbor (KNN)], and unsupervised [e.g., K-means clus-
tering and Gaussian mixture model (GMM)] classification techniques are used for CSS. 
In [39], the authors proposed a sensing method based on machine learning for solving 
the spectrum sensing problem. This method is dependent on signal characteristics and 
the clustering algorithm that is used for classification. The received signals are classified 
by using the k-means clustering algorithm. Class parameters, eigenvalues, and covari-
ance were determined, and the performance of the proposed algorithm was investigated. 
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Using the MLA, it is stated that the error probability decreased and the detection per-
formance increased. In [40], the researchers proposed a new decision threshold model 
based on an online learning algorithm to increase the probability of detection and 
decrease the probability of total detection.

In this paper, we proposed a new threshold expression based on online learning algo-
rithm to overcome the spectrum sensing problem and improve detection accuracy. Sta-
tistical error analysis was performed by using data on detection, miss detection, and false 
alarm parameters used in spectrum sensing performance measurement. The proposed 
new method consists of two stages. In the first stage, a hypothesis test is created and 
analyzed depending on the noise threshold. In the second stage, the threshold expres-
sion that minimizes the total error probability with the help of an online learning algo-
rithm is redefined. The detection performance of the proposed method was investigated 
on AWGN, Rayleigh, Rician, Nakagami-m, and Weibull fading channels and presented 
comparatively with the traditional method suggested in the literature.

The rest of this paper is organized as follows: Sect. 2 considers the theoretical aspects 
of energy-based spectrum sensing. Optimal thresholds are presented with a sufficient 
optimality condition in Sect. 2.2. In Sect. 3, the optimal threshold expression is redefined 
and formulated by using the proposed online learning algorithm. Simulation results are 
discussed in Sect. 4, and finally, the paper is concluded in Sect. 5.

2 � Related work
2.1 � System model

Spectrum sensing is one of the most important components of cognitive radio networks. 
Spectrum sensing enables a cognitive radio to have information about its environment 
and spectrum availability. The most widely used spectrum sensing methods are energy 
detection and matched filter detection.

2.1.1 � Energy detection

Energy detection is the most widely used method since it has low complexity and it does 
not require prior information about of the primary signals. In the energy detection pro-
cess, the spectrum occupancy decision is based only on the threshold obtained depend-
ing on the noise. The threshold is compared with the perceived energy, and it is decided 
whether the primary user is present or not. It aims essentially to decide between two 
states: primary user signal is absent, denoted by H0 , or primary user signal is present, 
denoted by H1 . The decision of energy detector is the test of the following hypothesis:

where Y (n) is the signal received by the secondary user, S(n) is the primary user’s trans-
mitted signal, and W (n) is the additive white Gaussian noise (AWGN) with zero mean. 
Figure 1 shows the basic block diagram of the energy detection.

In an energy detector, the received signal is first pre-filtered by an ideal band pass fil-
ter which has bandwidth “W.” The filtered signal is then passed through A/D converter. 
Output of the A/D converter is then squared and integrated over a predefined time 

(1)
H0 : Y (n) = W (n), :Primary user absent
H1 : Y (n) = S(n)+W (n), :Primary user present
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interval. The resultant signal is used to formulate a test statistic. The test statistic can be 
formulated as shown in Eq. 2.

where n = 0, 1, 2, 3, . . . ,N  , which represents the number of samples (detection period). 
If N  sample numbers are sufficient, the T statistic distribution, according to the central 
limit theorem, is Gaussian distribution [41]. The binary hypothesis test is redefined as 
follows:

where σ 2
n  and σ 2

s  are the noise variance and signal variance, respectively.
The test statistic ( T ) is compared with the threshold ( �) to make the final decision on 

whether the primary signal is present or not. The performance of the energy detector 
is characterized by using three parameters presented based on test statistics under the 
binary hypothesis. According to [42], the probabilities of detection Pd , false alarm Pfa , 
and miss detection ( Pm = 1− Pd) are given by,

where Q(.) is the complementary distribution function of standard Gaussian. Q-function 
Q(x) is expressed as follows:

2.1.2 � Matched filter detection

Matching filter technique is widely used in spectrum sensing as it is a good filtering 
technique that maximizes the SNR. When an unknown signal matched the known sig-
nal, it is assumed that PU is present in the spectrum. The whole process of the matched 
filter is shown in Fig. 2 [43].

The operation of matched filter detection is expressed as:
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Fig. 1  Block diagram of energy detector
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where y(n) is the received signal, s(l) is the unknown signal, and h(n− l) is the impulse 
response of the matched filter which matches with the known signal for maximizing the 
output SNR. Pd and Pfa can be given in Eqs. (8) and (9) which depend upon threshold 
[44].

where E is the PU signal energy. The detection threshold is given in Eq. 10 as a function 
of PU signal energy and noise variance.

2.2 � Threshold detection model

The performance of energy sensing-based methods is largely dependent on the previ-
ously defined threshold expression [45, 46]. A threshold is required to decide whether 
the target signal is absent or present. This threshold determines all spectrum sensing 
performance metrics. The sensing performance of the energy detector is measured 
according to two metrics. The performance metrics Pd and Pfa over AWGN channels can 
be defined as [47, 48]:

where erfc is the complementary error function. It then follows that the mean and the 
variance of the test statistic could be represented as shown in Eqs. 13 to 16.
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∞
∑
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(
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2
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2σ1

(12)Pfa =
1

2
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n (γ + 1)2

Fig. 2  Block diagram of matched filter detection
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The probability of miss detection would be given as,

The balance between Pfa and Pm should be considered when determining the thresh-
old for the energy detector. Pd should be maximized, while Pfa should be minimized. 
This is called the constant false alarm rate (CFAR) detection scheme. Pm can be set 
to a minimum value, or Pfa can be reduced to a minimum by fixing Pd to a maximum 
value. In practice, the threshold is normally chosen to meet a certain Pfa , in situations 
where only the noise power needs to be known. Depending on the balance between 
Pd and Pfa , � for a certain Pfa value is derived as:

where Q−1(.) is the inverse function of Q(.).
Due to this threshold at low SNR, the detection performance is greatly reduced. 

What is important here is to improve the low SNR perception performance. For this 
reason, the optimal threshold expression is defined by using the total error probabil-
ity,Pe , which is dependent on Pfa and Pm. The total error probability is the sum of Pfa 
and Pm weights. Pe can be given as

where PH1 and PH0 represent the probabilities of primary user presence and absence, 
respectively. The minimization problem can be represented as

The threshold can be obtained by satisfying the following conditions [46]:

From Eqs. (12, 17) on differentiating Pfa and Pm are given as follows:
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(18)� = Q−1
(

Pfa
)
√
2N + (N )σn

(19)Pe = PH0Pfa + PH1Pm
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√
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Using Eqs. 21, 22, 23, and 24, the threshold expression is redefined as follows:

where

3 � Proposed adaptive threshold optimization model
In cognitive radio systems, the detection performance of the energy detector depends 
on the high accuracy selection of the threshold expression. When developing spec-
trum sensing models, it is aimed that the noise and primary user signals are fully dis-
tinguished. Developed models are generally evaluated based on parameters such as 
accuracy and correct positive rate. However, the actual performance can be analyzed by 
using backwardly artificially generated estimates in the measurements. In this section, 
a new threshold expression model based on online learning algorithm is presented to 
improve spectrum sensing performance in cognitive radio networks.

The fundamental nature of spectrum sensing is a defined binary hypothesis testing 
problem that depends on the threshold expression. This relationship is illustrated in 
Fig. 3. This shows the expected distribution of a difference between two groups under 
H0 [true negative (TN)] and H1 [true positive (TP)]. It is clear that if we increase the 
type I error rate [false positive (FP) or false alarm], we reduce the type II error rate [false 
negative (FN) or missed detection], and vice versa. Changes in the accuracy of H0 and H1 
hypotheses cause changes in the total error probability. Therefore, there is a very deli-
cate balance between the possibility of miss detection and the possibility of false detec-
tion. To maintain and analyze the balance between these two, two classes are created 
by classifying the negative and positive data as shown in Fig. 3. Critical thresholds are 

(25)� =
−b+

√
b2 − ac

a

(26)a = σ 2
1 − σ 2

0

(27)b = σ 2
0µ1 − σ 2

1µ0

(28)c = σ 2
1µ0 − σ 2

0µ1 −
2σ 2

1 σ
2
0

ln
(

σ1
σ0

) .

Fig. 3  Statistical distribution curves related to classes
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determined for these classes, creating a gray area. Then, with the help of an online learn-
ing algorithm, the steps to be applied to obtain the most appropriate threshold in the 
gray area are given as follows:

3.1 � Stage 1: data collection and pre‑processing

The Gauss distribution curves of H1 (signal present) and H0 (signal absent) are obtained 
by using the threshold expression in Eq. 25. Two classes are constructed by classifying 
the negative and positive data, as shown in Fig. 3. Type I and II error parameters and 
correct perception parameters are analyzed. Critical thresholds are determined for these 
classes, creating a gray area.

1	 Each (Ni,Pi) value is determined, and classes are created.
2	 Critical thresholds expressions of the two classes are defined ( �N , �P).
3	 Subclasses are created within the remaining gray area between two thresholds 

(

X1,2,, . . . ,Xn

)

..

The data in the gray area, defined as R in Fig. 3, were subclassified using the k-mean 
algorithm (k = 4). The classes created are graded according to their performance levels, 
considering type I and II errors.

3.2 � Stage 2: computation on the dataset

Error analysis is performed to further increase the success level of successful classes with 
the help of the data obtained during data collection and pre-processing. As a result of 
the analysis, weight, error, and improvement coefficients are defined as follows:

1	 Weights are defined for each subclass. (wt).
2	 Averages of weights are found. It is expressed as shown in Eq. 29;

3	 The data are classified and the total error rate is obtained. It can be represented as 
shown in Eqs. 30 and 31.

4	 Incorrect positive error (H1/incorrect detection) is expressed in Eq. 32 as follows:

(29)
wt =

wt,i

N
∑

i=0

wt,i

.

(30)ET = εt = min

N
∑

i=0

wtci

(31)ci =
{

0, ht(Hi,Xi,Yi,Pi) = yi
1, ht(Hi,Xi,Yi,Pi) �= yi

.

(32)EFP =
p

∑

i=0

wt,ici.



Page 10 of 19kockaya and Develi ﻿J Wireless Com Network        (2020) 2020:255 

5	 Incorrect negative error (H0/incorrect detection) is expressed in 33.

6	 Classification probabilities and ratios can be formulated as follows, respectively:

7	 Mathews correlation coefficient can be represented as shown in Eq. 38.

8	 Improvement coefficient ( pi ) can be formulated by Eq. 39 as follows:

3.3 � Stage 3: training phase

We are provided with a training dataset (Xi,Yi), i = 1, 2, 3, . . . ,N  where Xi represents an 
n-dimensional continuous-valued vector and Yi {0,1} represents the corresponding class 
label with “0” for normal and “1” for an anomaly. The proposed method has two steps: (1) 
training and (2) testing. During training, the k-means-based anomaly detection method is 
first applied to partition the training space into k disjoint clusters C1,C2,C3, . . . ,CN . Then, 
the decision tree is trained with the instances in each k-means cluster. The k-means method 
ensures that each training instance is associated with only one cluster. However, if there are 
any subgroups or overlaps within a cluster, the decision tree trained on that cluster refines 
the decision boundaries by partitioning the instances with a set of if–then rules over the 
feature space. In the testing phase, we have two subdivided phases: (1) the selection phase 
and (2) the classification phase. In the selection phase, the Euclidean distance is calculated 
for each test sample and the closest cluster is found. The decision tree for the closest clus-
ter is calculated. In the classification phase, the data are separated according to the detec-
tion successes. Finally, in this phase, the threshold will learn from the best learner in class. 
Learner modification is expressed as,

(33)EFN =
N
∑

i=0

wt,ici.

(34)PFP =
EFP

ET

(35)PFN =
EFN

ET

(36)TPR =
TP

TP+ FN

(37)TNR =
TN

TN+ FP
.

(38)MCC =
TP ∗ TN− FP ∗ FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

.

(39)pi =
[

log

(

1− εt

εt

)](

1− PFN

PFP

)

∗MCC.
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3.4 � Stage 4: learner phase

In this phase, by comparing the advantages and disadvantages between the other two 
learners, the learners �newi  will learn from their advantages which draw on the idea of 
the differential evolution algorithm. Randomly select two learners �i and �j , where i  = j . 
Learner modification is expressed as

where rand(a) is a uniformly distributed random number between “0” and “1.” Accept 
�
new
i  if it gives an optimum threshold.

4 � Simulation results
In this section, numerical results are presented to verify the effectiveness of our pro-
posed algorithm. Spectrum sensing performance can be characterized by using the 
receiver operating characteristic (ROC) curve in cognitive radio networks. ROC curves 
are generated by plotting either detection probability versus false alarm probability or 
missed detection probability versus false alarm probability. Detection probability and 
false alarm probability depend on the threshold, number of samples, fading parameters, 
number of diversity branches, and average SNR. The sensing performance of the pro-
posed algorithm has been analyzed on different fading channels using energy-based 
detection and matched filter detection techniques. In Figs.  4, 5, 6, 7, 8, 9, 10, 11, 12, 

(40)�
new
i = �+ pi

[

min
(

energyi
)

+max
(

energyi
)

2

]

.

(41)�
new
i = �

old
i + rand(a) ∗

(

�i − �j

)

if Pi > Pj

(42)�
new
i = �

old
i + rand(a) ∗

(

�j − �i

)

if Pi < Pj

Fig. 4  ROC ( Pd vs Pfa ) of energy detector sensing under AWGN channel
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and 13, simulation results are provided to compare our (an online learning algorithm) 
threshold selection with a conventional (dynamic) threshold selection (calculated from 
Pfa = 0.1).

Because the performance of energy-based technique mainly depends on SNR, two dif-
ferent SNR values (-5 and -10 dB) are considered. Figure 4 shows the ROC curve for the 
AWGN channel. As can be seen, the performance of the proposed algorithm for differ-
ent SNR scenarios is higher than those of conventional algorithm: dynamic threshold 
(-5 dB): Pd = 0.6371; online learning threshold (-5 dB): Pd = 0.6509; dynamic threshold 

Fig. 5  ROC ( Pd vs Pfa ) of Energy detector sensing under Rayleigh fading channel

Fig. 6  ROC ( Pd vs Pfa ) of energy detector sensing under Nakagami-m fading channel (m = 3)
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(-10 dB): Pd = 0.3915; online learning threshold (-10 dB): Pd = 0.4025. Figures 5, 6, 7, and 
8 illustrate the ROC curves for Rayleigh, Nakagami-m, Rician, and Weibull channels, 
respectively. When the graphs are examined, it is seen that the detection performance 
of cognitive radio increases with the proposed method. Besides, detection probability 
is less in Rayleigh fading channel when compared to the AWGN channel and other fad-
ing channels. This situation is shown in Fig. 5. In Fig. 7, we can see that the performance 
of the energy detector in the Rician fading channel is better than in the other channels 
(Rician factor K = 5).

Fig. 7  ROC ( Pd vs Pfa ) of energy detector sensing under Rician fading channel (K = 5)

Fig. 8  ROC ( Pd vs Pfa ) of energy detector sensing under Weibull fading channel (a = 3)
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Figure 8 shows that, for energy detection in the Weibull fading channels, ROC curves 
move to the upper left corner with the proposed method, confirming better overall 
detection performance.

In Figs.  9, 10, 11, 12, and 13, the evaluation of the performance of the matched fil-
ter detection technique is carried out by plotting Pd versus Pfa and ROC curves for 
the AWGN, Rayleigh, Nakagami-m, Rician, and Weibull channels conditions. Figure 9 
shows the comparison of the performance of the proposed scheme and the dynamic 
threshold selection method and verifies the accuracy of the theoretical expressions for 
the matched filter technique over a non-fading AWGN channel.

Fig. 9  ROC ( Pd vs Pfa ) of matched filter detection sensing under AWGN channel

Fig. 10  ROC ( Pd vs Pfa ) of Matched filter detection sensing under Rayleigh fading channel
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Figure  10 shows the ROC curve in the Rayleigh fading channel. It is observed that 
when compared to AWGN, Rayleigh fading has less detection probability due to fading. 
Spectrum sensing performance is dependent on SNR. As the SNR increases, the prob-
ability of detection is improved.

Figures 11, 12, and 13 show the ROC curves over Nakagami-m, Rician, and Weibull 
fading channels, respectively.

When comparing the detection probability of all these fading channels (AWGN, Ray-
leigh, Nakagami-m, Rician and Weibull), it is clear that the Rician fading channel has the 
best detection performance. It is also seen that the performance of the matched filter 
detector is affected by the average SNR values.

Fig. 11  ROC ( Pd vs Pfa ) of matched filter detection sensing under Nakagami-m fading channel (m = 3)

Fig. 12  ROC ( Pd vs Pfa ) of matched filter detection sensing under Rician fading channel (K = 5)
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It is clearly seen that the detection performance of the online learning algorithm-
based decision threshold method and the detection performance of the dynamic deci-
sion threshold determination method are better for different SNR values on different 
fading channels. This is because conventional methods offer a strict threshold model. 
The proposed method in this study has made the threshold expression flexible. Further-
more, with the proposed online learning algorithm-based threshold expression model, 
the spectrum sensing performance of cognitive radio networks has been made more 
sensitive to changes in communication channels.

5 � Conclusions
In this study, a new threshold expression model based on online learning algorithm 
is presented to increase spectrum sensing accuracy in cognitive radio networks. 
Detection, false detection, and false alarm probabilities have been comprehensively 
analyzed statistically, and the optimum decision threshold expression has been rede-
fined to minimize the possibility of decision error. Numerical results obtained from 
simulations on AWGN and different fading channels (Rayleigh, Nakagami-m, Rician, 
and Weibull) are presented to show the performance of the proposed algorithm and 
compare it with the dynamic decision threshold determination method. The proposed 
sensing scheme has significantly improved the detection performance of the energy 
detection- and matched filter-based spectrum sensing under low SNR conditions.

In future studies, we aim to apply and verify the performance of the proposed algo-
rithm on different spectrum sensing methods. Also, we will focus on the optimization 
of some expressions used in the algorithm to reduce mathematical complexity and 
improve detection time.

Fig. 13  ROC ( Pd vs Pfa ) of matched filter detection sensing under Weibull fading channel (a = 3)
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