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Abstract 

Cognitive radio (CR) technology with dynamic spectrum management capabilities is 
widely advocated for utilizing effectively the unused spectrum resources. The main 
idea behind CR technology is to trigger secondary communications to utilize the 
unused spectral resources. However, CR technology heavily relies on spectrum sensing 
techniques which are applied to estimate the presence of primary user (PU) signals. 
This paper firstly focuses on novel analysis filter bank (AFB) and FFT-based cooperative 
spectrum sensing (CSS) techniques as conceptually and computationally simplified 
CSS methods based on subband energies to detect the spectral holes in the interest-
ing part of the radio spectrum. To counteract the practical wireless channel effects, 
collaborative subband-based approaches of PU signal sensing are studied. CSS has the 
capability to relax the problems of both hidden nodes and fading multipath channels. 
FFT- and AFB-based receiver side sensing methods are applied for OFDM waveform 
and filter bank-based multicarrier (FBMC) waveform, respectively, the latter one as a 
candidate beyond-OFDM/beyond-5G scheme. Subband energies are then applied for 
enhanced energy detection (ED)-based CSS methods that are proposed in the context 
of wideband, multimode sensing. Our first case study focuses on sensing potential 
spectral gaps close to relatively strong primary users, considering also the effects of 
spectral regrowth due to power amplifier nonlinearities. The study shows that AFB-
based CSS with FBMC waveform is able to improve the performance significantly. Our 
second case study considers a novel maximum–minimum energy detector (Max–Min 
ED)-based CSS. The proposed method is expected to effectively overcome the issue of 
noise uncertainty (NU) with remarkably lower implementation complexity compared 
to the existing methods. The developed algorithm with reduced complexity, enhanced 
detection performance, and improved reliability is presented as an attractive solu-
tion to counteract the practical wireless channel effects under low SNR. Closed-form 
analytic expressions are derived for the threshold and false alarm and detection prob-
abilities considering frequency selective scenarios under NU. The validity of the novel 
expressions is justified through comparisons with respective results from computer 
simulations.

Keywords:  Cognitive radio, Cooperative spectrum sensing, AFB-based ED, Power 
amplifier nonlinearity, Max–Min ED
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1  Introduction
With the growing attention on wireless communications, radio spectrum scarcity has 
become modern days’ challenge. Higher demand of spectral bandwidth is pushing spec-
trum usage to utmost limits. However, the limitations of traditional wireless technol-
ogy lead to spectrum wastage, inviting opportunistic usages of those valuable unused 
resources [1]. These studies have mainly focused on technologies that solve the problem 
of spectral scarcity by using opportunistically the frequency band to establish secondary 
communication. Such technology is commonly known as cognitive radio (CR) technol-
ogy, which defines new dimension to the modern communication systems advocating 
environment-adaptive radio transmission [2]. CR keeps track of the radio transmission 
environment continuously, while it dynamically varies its transmission parameters so as 
to adjust its operation to the surroundings.

Spectrum sensing-based CR technology is considered as highly interesting topic in 
wireless communications. Spectrum sensing, in other words, involves tracking of the PU 
activity so as to estimate the spectral holes. Different sensing algorithms find the avail-
ability of spectral holes as an opportunity to enable the secondary communication [3]. 
Recent studies have suggested a wide variety of spectrum sensing techniques, but none 
of them is fully satisfying in terms of all relevant metrics like implementation complex-
ity, reliability, and loss in secondary system throughput. Especially, spectrum sensing 
under low signal-to-noise ratio (SNR) is widely covered in the literature, under condi-
tions where the noise dominates the weak PU signal [3, 4]. Under these conditions, the 
spectrum sensing becomes critically sensitive to imperfect knowledge of the power and 
characteristics of noise and interferences [5–7].

Spectrum that is originally assigned to the PU can be used by a secondary user (SU) if 
and only if the PU becomes idle. Since SUs can only use spectrum as an opportunity in 
terms of the spectrum sharing, spectrum sensing has a great role to play in CR technol-
ogy [3, 8]. Regarding the importance of the radio scene analysis function, basic spectrum 
sensing methods show numerous limitations. Shadowing, hidden node problems, etc., 
always make spectrum sensing challenging. A PU transmission may be unobservable for 
a CR sensing station, while its signal is fully usable by a nearby PU receiver. In order to 
make the spectrum sensing function reliable, efficient, and to counteract both multipath 
and hidden node problems, cooperative spectrum sensing (CSS) is considered as a vital 
solution especially in wideband situations. CSS involves two or more cooperative radio 
receivers in decision making during spectrum sensing. Collaboration among number of 
CR users to enhance the detection performance was suggested in [9].

Wideband sensing approaches are applied over multiple PU channels in an efficient 
way, which is highly desirable to increase the probability of determining unoccupied 
spectrum bands. Cooperative wideband spectrum sensing under fading channels has 
been recently proposed in the literature [10–13]. These approaches not only provide 
computation and memory savings compared to the existing wideband spectrum sens-
ing methods, but also reduce the hardware requirements and the energy costs at CRs 
[10–13].

Our studies further exploit the collaborative approach of spectrum sensing. The stud-
ies of this paper firstly focus on subband-based spectrum sensing methods that add the 
collaboration among a number of CR receivers to enhance the sensing performance and 
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to counteract practical wireless channel effects. In the first part of current study, we 
develop the ideas that we presented in [14] under more practical situations and study the 
performance of our algorithms in more details. CSS exploits the diversity among a num-
ber of CR receivers having different multipath channel profiles and experiencing differ-
ent large-scale fading (shadowing) characteristics towards the PU transmissions [15].

Moreover, maximum–minimum energy detector (Max–Min ED) has been found to be 
a robust and effective non-cooperative spectrum sensing scheme [6, 7]. This approach 
applies subband decomposition of the received signal and the difference of maximum 
and minimum subband energies as a test statistic. This method has been shown to pro-
vide acceptable performance at the low SNR regime with noise uncertainty (NU) [6, 7]. 
The intuitive simplistic idea behind these approaches is that in certain scenarios, the 
minimum subband energy can be regarded as an estimate for the noise variance. Moreo-
ver, the presence of a PU signal introduces frequency variability of the received power 
spectral density (PSD), which is not critically affected by the NU. Based on the above, it 
becomes evident that subband detection is capable of mitigating the NU effects. To the 
best of the authors’ knowledge, this approach has not been considered in the context 
of CSS. Hence, in this study we present a highly accurate and robust CSS method with 
reduced computational complexity utilizing the Max–Min ED approach.

More specifically, the contributions of this paper are listed below:

•	 Conceptually and computationally simplified CSS methods based on subband ener-
gies are developed. Subband energies are evaluated either using fast Fourier trans-
form (FFT) or analysis filter bank (AFB). Subband-based CSS methods are proposed 
in the context of wideband, multimode sensing employing FFT or filter bank meth-
ods for the required spectrum analysis procedures. These approaches can be applied 
in wideband heterogeneous dynamic spectrum use scenarios, where different kinds 
of PUs and SUs can coexist.

•	 CSS methods are applied to ideal OFDM waveform in most of the studies in the liter-
ature. In the proposed study, subband ED-based CSS methods are applied on the tra-
ditional OFDM as a reference model and on filter bank multicarrier (FBMC) wave-
forms, the latter one as a candidate beyond-OFDM/beyond-5G scheme.

•	 The effects of both power amplifier (PA) nonlinearities and practical wireless chan-
nels on subband ED-based CSS are investigated, comparing the performance of FFT- 
and AFB-based CSS schemes. The most critical issue in this context is the spectral 
regrowth due to the nonlinear PA of the PU transmitter. While FBMC/OQAM has 
superior spectral containment, AFB on the receiver side improves the resolution of 
spectrum sensing, making it possible to detect potential narrowband PUs in the tar-
geted sensing band.

•	 A novel Max–Min ED-based CSS is proposed and found to be robust to NU, provid-
ing better performance than traditional CSS with significantly less complexity com-
pared to the advanced eigenvalue-based sensing approaches [7]. The proposed Max–
Min ED-based approaches have also lower computational complexity compared 
to the differential Max–Min ED [16] considered as an alternative reference model, 
which is included in the performance comparisons of this paper.
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•	 Novel analytic models for energy threshold and false alarm and detection probabili-
ties are derived considering frequency selective scenarios under NU. The offered 
results are validated extensively through comparisons with respective computer 
simulations. These results provide meaningful insights that are for future beyond-
OFDM/beyond-5G design and deployments of CR communication systems and net-
works.

1.1 � Overview and methods

In this study, two novel approaches (i) subband FFT- and AFB-based CSS and (ii) Max–
Min ED-based CSS are proposed in the context of spectrum sensing. In the study of sub-
band-based CSS, traditional OFDM and FBMC waveforms (beyond-OFDM/beyond-5G 
scheme) are considered under PA nonlinearity and practical frequency selective channel 
with log-normal shadowing model.

The remainder of the paper is organized as follows: Sect. 2 gives a general idea about 
traditional CSS methods. Novel FFT- and AFB-based CSS methods are presented in 
Sect. 3. Also, signal models including PA nonlinearities, frequency-selective fading, and 
shadowing for FFT- and AFB-based CSS are described in the same section. Novel Max–
Min ED-based CSS with its detailed analytical model is presented in Sect.  4. Numer-
ical results for sensing performance are shown in Sect.  5. These include comparisons 
between the analytical model and performance results that are obtained through Monte 
Carlo simulations based on a developed MATLAB script. Finally, closing remarks are 
given in Sect. 6.

2 � Traditional cooperative spectrum sensing
Practical wireless channels show characteristics like NU, multipath fading, and shadow-
ing. In order to mitigate the effects of practical wireless channels, cooperation among 
many CR users, i.e., CSS is considered. CSS is regarded as a potential solution to miti-
gate effects of both multipath and shadowing which causes the hidden node problem [9]. 
It also enhances the detection performance and reliability [4]. Spatial diversity among 
multiple receivers is achieved, as illustrated in Fig. 1. The concept of exploiting SUs’ spa-
tial diversity to counteract the hidden node effects and enabling cooperation among SUs 
is coined as CSS and has reached growing attention in recent years.

CSS uses two or more spatially separated CR receivers to combine their sensing results 
so as to increase the reliability of the sensing decision. Combining the results from dif-
ferent CR receivers is performed at the fusion center (FC) [17, 18]. Different rules may be 
considered for combining the individual sensing results in order to achieve the highest 
accuracy at the FC, depending on the radio environment. With an increase in the num-
ber of CR users, the CSS procedure becomes more complicated. On the other hand, with 
increased number of CR receivers, the sensing performance enhances significantly, con-
sidering performance parameters like sensing time and reliability. So there is a trade-off 
between sensing performance and complexity of the CSS system. It is noted that based 
on experimental tests, the number of sensors is selected as 8 in our study. When the 
number of sensors is decreased, the performance of the sensing is significantly degraded. 
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With higher number of sensing stations, the performance was not significantly improved 
in our simulation scenarios. However, in practice this depends on the geographical dis-
tribution of the sensors.

Cooperative schemes can be classified as hard and soft fusion schemes. When CRs 
provide binary information about the presence of PUs, the FC applies hard fusion rules. 
If the CRs may provide reliability information about their sensing results in the form of 
non-binary soft decisions, the FC applies a soft fusion scheme [18]. Our studies consider 
the ED-based CSS approach with hard decision combining.

2.1 � Hard decision fusion with linear fusion rules

Hard fusion can be implemented using linear rules such as AND rule, OR rule, or Major-
ity rule. Hard decision fusion does not need to exchange data among secondary nodes. 
Soft schemes generally improve the sensing result by sending richer information to the 
FC. Soft fusion techniques increase the complexity compared to hard fusion techniques. 
Linear fusion rules are commonly applied by the FC to exploit the cooperation among 
CR receivers. Binary decision from independent CR receivers is forwarded to the FC. FC 
processes the decisions from all CRs to make the collective decision. Linear fusion rules 
are based on the general k-out-of-M rule [18, 19].

2.1.1 � OR rule

is one of the fusion rules which is applied at FC. When at least one SU detects the PU 
signal, OR rule declares the presence of PU. With M SUs, the cooperative detection 
probability PD,t and false alarm probability PFA,t after the decision at the FC are com-
puted as follows:

Fig. 1  CR topology including a PU transmitter and M CR stations
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Here, PD and PFA are the detection and false alarm probabilities of individual SUs 
reported to the FC, which are assumed to be equal for all CR stations.

2.1.2 � AND rule

declares the presence of a PU signal if and only if all SUs detect the PU signal indi-
vidually. With M SUs, the cooperative detection probability PD,t and false alarm prob-
ability PFA,t at a FC are computed as follows:

2.1.3 � Majority rule

According to various studies, both AND rule and OR rule are limited in terms of 
detection and false alarm probabilities. Majority rule is another case of the general-
ized k-out-of-M rule. If at least half of the SUs report the presence of PU, FC declares 
the presence of PU, otherwise it declares that the spectrum is free to use for CR trans-
mission [15, 17]. Considering an even number M of sensing stations in the CSS, the 
cooperative detection and false alarm probabilities of the Majority rule can be written 
as follows:

2.1.4 � Generalized k‑out‑of‑M rule

The generalized form of the linear rule can be defined by requiring k SUs out of M 
to report the presence of a PU signal. Here the number k can take any value between 
1 and M, based on the requirements. As discussed earlier, the special cases k =  1, 
k =  M/2 +  1, and k =  M are equivalent to OR rule, Majority rule, and AND rule, 
respectively. Nevertheless, the number k can be optimized according to the targeted 
detection and false alarm performance [17, 19]. The cooperative detection and false 
alarm probabilities of this rule are as follows:

(1)OR-Rule :
{
PD,t = 1− (1− PD)

M

PFA,t = 1− (1− PFA)
M .

(2)AND Rule :
{
PD,t = PD

M ,

PFA,t = PM
FA.

(3)M/2+ 1 -out-of-M :






PD,t =
�M

j=M/2+1

�
M
j

�
P
j
D · (1− PD)

M−j

PFA,t =
�M

j=M/2+1

�
M
j

�
(1− PFA)

M−j · Pj
FA.

(4)Kof N :






PD,t =
�M

j=k

�
M
j

�
P
j
D · (1− PD)

M−j

PFA,t =
�M

j=k

�
M
j

�
(1− PFA)

M−j · Pj
FA.
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3 � Novel FFT‑ and AFB‑based cooperative spectrum sensing
FFT- and AFB-based techniques are applied to a wideband signal to generate equally 
spaced subband signals. Subband energies are then calculated and the subband 
energy detector (SED) decides on the presence of PU signal(s) within the processed 
frequency band based on the subband energies [3, 5, 7]. The entire procedure is rep-
resented in Fig. 2. The receiver front-end collects the PU signals which are followed 
by a channel filter and analog-to-digital converter (ADC). The subband signals can be 
obtained either via FFT or AFB and then processed accordingly [5].

3.1 � Subband‑based sensing

A subband signal can be represented as follows,

Here, Sk [m] is the transmitted signal by PU as it appears at the mth FFT or AFB out-
put sample in subband k and Wk [m] is the corresponding channel noise sample. H1 
denotes the present hypothesis of a PU signal whereas H0 denotes the absent hypothesis 
of a PU signal. When the AWGN only is present, the white noise is modeled as a zero-
mean Gaussian random variable with variance σ 2

w , i.e., Wk [m] = N
(
0, σ 2

w

)
 . The OFDM 

and FBMC signals can also be modeled in terms of zero-mean Gaussian variables, 
Sk [m] = N (0, σ 2

k ) , where σ 2
k  is the variance (power) at subband k. The subband energy is 

calculated from the subband signals of Eq. (5). The integrated test statistics to be used in 
the SED process is calculated as

Here, Nf  and Nt are the averaging window lengths in frequency and time domains, 
respectively. Assuming flat PU spectrum over the sensing band, the probability distribu-
tion of the test statistics can be expressed as

and

This yields

and

(5)Yk [m] =
{
Wk [m] H0,

Sk [m]Hk +Wk [m] H1.

(6)T (ym0, k0) =
1

NtNf

k0+[Nf /2]−1∑

k=k0−[Nf /2]

m0+Nt+1∑

m=m0

|yk [m]|2.

(7)T (ym0, k0)|H0 ∼ N

(
σ 2
w,k ,

σ 4
w,k

NtNf

)

(8)T (ym0, k0)|H1 ∼ N

(
σ 2
x,k + σ 2

w,k ,

(
σ 2
x,k + σ 2

w,k

)2

NtNf

)
.

(9)PFA = Pr(T (y) > �|H0) = Q

(
�− σ 2

w,k

σ 2
w,k/

√
Nf Nt

)
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Here, γk = σ 2
x,k/σ

2
w,k is the SNR of subband k and σ 2

w,k = σ 2
w/NFFT and σ 2

x,k denote noise 
variance and the PU signal variance in subband k, respectively.

Applying FFT- or AFB-based processing and adjusting the averaging window in fre-
quency, it is possible to tune the sensing frequency band for a specific PU channel while 
maximizing the sensitivity of the sensing process. Limited number of possible PU chan-
nels with different bandwidths and center frequencies can be handled by having par-
allel integration processes for each of candidate channels, based on a common FFT or 
AFB module. Alternatively, sensing decisions can be done blindly, without knowledge 
of the PU channel raster, by integrating the test statistics for fixed equally-spaced sub-
bands. Obviously, such approach is sensitive to frequency-selective fading effects, and 
the diversity provided by CSS would greatly improve the reliability of such schemes. In 
such cases, the required averaging window length in time depends on the subband width 
and targeted sensitivity of sensing. In this way, multiple center frequencies, bandwidths, 
and multiple spectral gaps can be identified rapidly, efficiently, and flexibly for potential 
use by the CR.

For given PFA , the threshold � can be calculated as

3.2 � Waveforms and spectrum sensing schemes

OFDM with cyclic prefix, i.e., CP-OFDM, is the dominating multicarrier technology in 
the field of wireless communications. Additionally, discrete wavelet multitone (DWMT), 
cosine modulated multitone (CMT), filtered multitone (FMT), and OFDM with off-
set-QAM (OFDM/OQAM, also known as FBMC/OQAM) are commonly considered 
alternative forms of multicarrier techniques [20]. FBMC waveforms, especially FBMC/
OQAM have been widely considered as candidates for beyond-OFDM multicarrier sys-
tems. It is particularly suitable for dynamic opportunistic spectrum use and CR [21]. 
FBMC/OQAM shows better spectral efficiency compared to CP-OFDM. Such FBMC/
OQAM systems utilize a signal model with real valued symbol sequence at twice the 
QAM symbol rate, instead of complex QAM symbols. Polyphase filter banks in trans-
multiplexer configuration constitute the core elements of the transmission link. Specifi-
cally, synthesis filter bank (SFB) and AFB are used at the transmitter and receiver sides, 
respectively [3, 5].

On the receiver side, the FFT of an OFDM receiver or AFB of an FBMC receiver can 
be used also for spectrum sensing purposes, providing SED capability without addi-
tional processing elements. Subband-based ED can be used in wideband spectrum sens-
ing which covers multiple PU frequency channels or even the whole service band. For 
FBMC, the PHYDYAS prototype filter with overlap factor K = 4 [3] is used in our study. 
Such filter bank reaches about 50 dB stopband attenuation, providing efficient detection 
of narrow spectral gaps between PU channels [20, 21].

(10)PD = Pr(T (y) > �|H1) = Q

(
�− σ 2

w,k(1+ γk)

σ 2
w,k(1+ γk)/

√
Nf Nt

)
.

(11)� = σ 2
w,k

(
1+

Q−1(PFA)√
Nf Nt

)
.
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In the following, we consider two scenarios: (i) sensing CP-OFDM signal using FFT-
based SED and (ii) sensing FBMC/OQAM signal using AFB-based SED. The two wave-
forms have the same number of active subcarriers with common subcarrier spacing.

3.3 � Power amplifier model for PUs

Various interference leakage effects due to RF imperfections affect critically the spectrum 
sensing performance in practice. The most significant issue in this context is the spectral 
regrowth due to the nonlinear PA of the PU transmitter. For a practical PA model, we con-
sider the linear time-invariant (LTI) portion of the Wiener PA model, which has a pole/zero 
form of the system function given by [3]

This is extracted from an actual Class AB PA with fifth order nonlinearity. In this study, 
5 dB backoff is assumed with this PA model.

The potential spectral hole between two relatively strong PUs is shown in Fig. 3 for 
both scenarios, as determined by the corresponding sensing process, i.e., FFT for CP-
OFDM and AFB for FBMC. While FBMC/OQAM has superior spectral containment, 
AFB on the receiver side enhances the resolution of spectrum sensing, making it pos-
sible to detect potential narrowband PUs within the sensing band.

In theory, considering Gaussian approximation, it is possible to model the effect of PU 
transmitter’s spectral leakage due to the PA nonlinearity on the actual false alarm prob-
ability P̃FA as follows:

(12)H(z) =
1+ 0.3z−2

1− 0.2z−1
.

a

b

Fig. 3  Effects of the PA model on a OFDM and b FBMC-based PU spectra. A Wiener behavioral model with 
fifth order nonlinearity and 5 dB backoff is used for the PA
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where,

corresponds to the leakage power from the adjacent PU transmitter with out-of-band 
emission spectrum ψPA(f ) to the sensing frequency band between frequencies f1 and f2 . 
H2(f ) is the channel frequency response from a primary transmitter to the CR receiver. 
In (11), the threshold value � is calculated using the traditional well-known analytical 
model from estimated noise variance and desired false alarm probability PFA . Similarly, 
the detection probability P̃D can be expressed as follows

In the case of reliable estimate of the PU’s emission spectrum shape, the above analy-
sis could be used for improving the spectrum sensing at the frequencies affected by the 
spectrum leakage. However, this is very difficult in practice due to the unpredictability of 
the PA characteristics, and the above model is used only for the purpose of performance 
analysis.

3.4 � Channel model

This study applies frequency selective multipath channel model together with log-nor-
mal shadowing model. All PU and CR channels use Indoor frequency selective channel 
model having 90 ns RMS delay spread with 16 taps [22].

The log-normal path loss is modeled as follows:

or in dB scale as,

Here, PL0 is the path-loss at the reference distance d0 , a represents the path-loss expo-
nent, dj represents the distance of jth CR receiver, and ϕ represents the shadow fading 
with Gaussian distribution, zero mean, and standard deviation σ.

We consider the two scenarios mentioned above, while the CR waveform is always 
FBMC. For log-normal fading σ = 9 dB and the path-loss exponent a = 2.

(13)P̃FA(k) = Q




�−

�
σ 2
w,k + Iadj(k)

�

�
1

Nf Nt

�
σ 2
w,k + Iadj(k)

�





(14)Iadj(k) =
∫ f2

f1

∣∣H2(f )
∣∣2ψPA(f )df

(15)P̃D(k) = Q




�−

��
σ 2
w,k + Iadj(k)

�
+ σ 2

x,k

�

�
1

Nf Nt

��
σ 2
w,k + Iadj(k)

�
+ σ 2

x,k

�



.

(16)PL = PL0 ∗
( dj
d0

)a ∗ ϕ,

(17)PLdB = PL0dB + 10 ∗ a ∗ log(dj/d0)+ ϕdB.
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4 � Novel maximum–minimum energy detection‑based cooperative spectrum 
sensing

In this section, the novel Max–Min ED-based CSS method is proposed. This sensing 
technique, considered earlier only basic single-station sensing, is robust to the NU and 
yet reduces the complexity in comparison with existing methods with such robust-
ness. The proposed sensing techniques outperform the other advance spectrum sensing 
methods under NU condition.

A matter of primary interest is to design algorithms that can deliver acceptable spec-
trum sensing performance with reduced complexity and reliability in terms of detection 
and false alarm performance. Existing spectrum sensing techniques are not satisfying in 
this respect. Particularly, sensing in low SNR range, i.e., (− 25 dB, − 10 dB), is challeng-
ing due to the noise susceptibility issues and the hidden node problem also exists. To 
counteract these issues, the spectrum sensing technique has to be more robust to NU, 
while exhibiting realistic computational complexity for practical implementation. In this 
section, a novel cooperative Max–Min ED scheme is proposed which reduces complex-
ity and NU. Literature in [7, 16] covers the idea of the frequency diversity gain exploita-
tion with the help of the statistics of the energy spectral density (ESD). Differentiation 
stage is suggested in the literature as a solution to the NU. However, studies in our group 
have proposed a solution without the differentiation stage, while maintaining the robust-
ness to NU and exhibiting reduced computational complexity. Results show that the 
proposed solution outperforms the traditional ED and other detection algorithms. Fig-
ure 4 shows the steps implemented in different variants of the Max–Min ED algorithm.

4.1 � Proposed Max–Min ED‑based CSS method

In this subsection, an enhanced Max–Min ED method is considered, which is less com-
plex than existing methods which are robust to NU. Illustration of the methods is as 
seen in Fig.  4. The maximum and minimum energies of the subbands are utilized for 
constructing the decision statistics. These statistics are used to estimate the presence 
and absence of PU. Actually, we consider here three alternative schemes, which are uti-
lizing the subband energies in a different manner [6, 7]. These methods consist of follow-
ing steps:

–	 SED to calculate subband energies,
–	 Ordering of the determined subband energies,
–	 Differentiation of the ordered subband energy sequence,
–	 Quantification of the maximum and minimum energies level,
–	 Calculation of a threshold and the implementation of decision device.

The proposed method removes the ordering and differentiation blocks from Fig.  4. 
Hence, the proposed method is less complex yet outperforms the other sensing methods.

The FFT operation on blocks of NFFT input samples is applied. Alternatively, AFB with 
NFFT subbands can be used and this choice is preferred in high dynamic range scenar-
ios. The subband signals are formulated as in Eq.  (5). Frequency variability of ESD is 
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featured in Max–Min ED algorithms as depicted in Fig. 4 and the process is summarized 
as, Uk = 1

Lt

∑Lt
m=1 |Yk [m]|2 , where Lt = N/NFFT represents length of the window. From 

the central limit theorem, Uk for both H0 and H1 hypotheses is expressed as,

Maximum and minimum energies are estimated as depicted in Fig. 4 and the test sta-
tistics is calculated from the energy values. Test statistic is then compared with a pre-
determined threshold that is obtained from the target PFA with the aid of Gumbel 
distribution. The presence and absence status of the PU signal is determined by compar-
ing the threshold and test statistics. Analytical approach to calculate the thresholds will 
be given later in Sect. 4.2.

It is noted that differential subband energy-based scheme in [16] utilizes the following 
additional steps upon knowledge of the subband energies: 

∗	� Ordering: This step requires placing of the subband energies in the order of mag-
nitude. This has no effect on the statistical properties of the ordered sequence, Ûk , 
which follows the distribution in (18).

∗	� Differentiation: The ordered subband energy sequence is differentiated such that 
Dk = Ûk+1 − Ûk . This operation can be interpreted as a subtraction of two nor-
mally distributed random variables, as shown in (18), yielding

 

Under H0 hypothesis, the above expression yields a normal distribution with zero mean 
and twice the variance in (18). It is also noted that when the observed PU is white, the 
mean value reduces to zero and all subband energies follow a zero-mean Gaussian distri-
bution also under H1 hypothesis. As a consequence, the algorithm fails to sense the PU.

The energy threshold γ is calculated as in the simplified method. Finally, if 
Dmax − Dmin > γ , the PU signal is assumed present, otherwise only noise is assumed 
present.

In terms of the computational complexity, the ordering and differentiation steps in 
the differentiation-based approach bring additional O(NFFT ) and O(NFFT ) complexities, 
respectively, compared to our proposed simplified method.

4.2 � Analytical models for Max–Min‑based energy detector

In this section, novel analytic expressions for the Max–Min ED-based CSS are formu-
lated. Later, the derived analytical results are compared to simulation results, and a very 
good match is found between them [7].

(18)Uk =






N
�
σ 2
w,k ,

2
Lt
σ 4
w,k

�
, H0

N

�
|Hk |2σ 2

x,k + σ 2
w,k ,

2
Lt

�
|Hk |2, σ 2

x,k + σ 2
w,k

�2
�
. H1

(19)Dk ≃






N
�
0, 4

Lt
σ 4
w,k

�
, H0

N

�
E[�Uk ] − E[�Uk−1], 4

Lt

�
|Hk |2σ 2

x,k + σ 2
w,k

�2�
. H1
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4.2.1 � Probability of false alarm and energy threshold

Recalling earlier studies, the test statistics depend on the maximum and minimum val-
ues of Uk . The statistics of maximum and minimum distribution is characterized by the 
von Mises theorem [7]. Following these statistics, the Gumbel distribution [23] is used 
for efficient representation of the extreme values of an arbitrary distribution namely,

and

here α and β represent the location and scale parameters of the distribution. The 
expected value and standard deviation of the difference of maximum and minimum 
values are derived from Eqs.  (20) and (21), respectively. Based on the above equation 
and earlier studies of our group [7], both detection and false alarm probabilities for each 
sensing station are formulated as Eqs. (23) and (25), respectively.1

Using Gumbel distribution with mean and variance values of Uk in (18) for the H0 
hypothesis one obtains

where QG(α,β) denotes the Gumbel distribution and C =  0.577215665 is the Euler’s 
constant. The standard Gumbel complementary distribution function is given by 
G
(
x−α
β

)
= 1− e−e

− x−α
β  [23–29].

In the practical environment, both expressions PFA and PD have to consider the NU. It 
is recalled that the noise distribution is summarized in the range by σ 2

w,k ∈ [ 1
ρ
σ 2
n,k , ρσ

2
n,k ] 

where ρ is the corresponding NU parameter. Hence, the worst-case false alarm probabil-
ity is expressed as follows:

where ρ is corresponding uncertainty parameter. Based on Eq. (23), threshold is formu-
lated as,

(20)fmin(x) =
1

β
e
x−α
β e−e

x−α
β

(21)fmax(x) =
1

β
e
− x−α

β e−e
− x−α

β

(22)

Umax−min|H0
∼ QG

(
α|H0

,β|H0

)

∼ QG

(
σ 2
w,k

2
+ C

√
6

Lt

σ 2
w,k

π
,

√
6

Lt

σ 2
w,k

π

)

(23)

PFA = max
σ 2
w,k∈[

1
ρ
σ 2
n,k ,ρσ

2
n,k ]

G

(γ −
(

σ 2
w,k

2
+ C

√
6
Lt

σ 2
w,k

π

)

(
6
Lt

)1/4 σw,k√
π

)

= G

(γ −
(

ρσ 2
n,k

2
+ C

√
6
Lt

ρσ 2
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)

(
6
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)
,

(24)γ = G−1
(
PFA

)( 6

Lt

)1/4√
ρ

π
σn,k +

ρσ 2
n,k

2
+ C

√
6

Lt

ρσ 2
n,k

π
.

1  The detailed analysis is provided in the “Appendix.”
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4.2.2 � Probability of detection

Similarly, detection probability is derived for H1 hypothesis from Eq. (18) as follows,

where κ = Emax − Emin + σ 2
w,k and κ̂ = EMax − EMin + σ 2

n,k/ρ . Emax and Emin are evalu-
ated as Emax = m

k
ax

(
|Hk |2Ek

)
 and Emin = m

k
in
(
|Hk |2Ek

)
 . Hk and Ek are PU channel gain 

and PU signal energy in subband k.
NU introduces severe effects in basic ED-based spectrum sensing methods. Since the 

observed primary signal PSD is frequency dependent and the noise is additive white 
Gaussian noise, the proposed maximum–minimum approach eliminates the noise floor. 
Removal of the noise floor minimizes the uncertainty effects, and hence, the proposed 
Max–Min-based CSS method is robust is to NU. Later, numerical results for the vari-
ation of the detection threshold γ based on Eq. (24) on the proposed Max–Min ED are 
shown in Sect. 5.2.

4.3 � Cooperative maximum–minimum energy detection

Analytical detection and false alarm probabilities with Max–Min ED for an individual 
sensing station are obtained from Eqs. (25) and (23), respectively. Linear fusion rules are 
applied to combine the sensing results from the sensing stations, each of which applies 
the Max–Min ED. Here, linear fusion rules for hard decision combining are applied at 
FC using AND rule, OR rule and Majority rule. Details of these linear fusion rules have 
been covered in Sect. 2. Cooperative probabilities after implementation of linear fusion 
rules are obtained from Eqs. (1), (2), and (3).

5 � Experimental results and discussion
This section is divided into two subsections to separate the numerical results for the 
basic FFT- and AFB-based CSS and Max–Min ED-based CSS under different channel 
environments and receiver non-ideality conditions. The two schemes are tested in the 
following subsections in specific scenarios with different system parameters.

5.1 � Numerical results for FFT‑ and AFB‑based methods

In the FFT- and AFB-based study, the potential spectral hole between two relatively 
strong OFDM or FBMC channels is illustrated in Fig. 3. We focus on two cases, one with 
a gap between two OFDM channels and another one between two FBMC channels. The 
results can be generalized to cases where the gap is between an OFDM channel and an 
FBMC channel. The spectrum leakage due to transmitter non-idealities can lead to even-
tually filling up this spectral gap and raising the false alarm rate of the spectrum sensing 
module.

(25)

PD = min
σ 2
w,k∈[

1
ρ
σ 2
n,k ,ρσ

2
n,k ]

G

(γ −
(

κ
2
+ C

√
6
Lt

κ
π

)

(
6
Lt

)1/4 κ√
π

)

= G

(γ −
(
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2
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√
6
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π

)

(
6
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)1/4√ ρ
π
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We specifically focus on a spectrum use scenario with two active PU channels, which 
operate in the 2.4 GHz ISM band. This is an unlicensed frequency band which is utilized 
by various applications, including WLAN signals, cordless phones, Bluetooth wireless 
devices, and even microwave ovens. OFDM-based 802.11g-type WLANs, or 802.11g-like 
FBMC spectra are considered at 3rd and 8th WLAN channels. The adjacent PU spectra 
do not overlap each other, and a 5 MHz or 8 MHz spectral hole is available between the 
two channels in the OFDM and FBMC cases, respectively. The difference is due to wider 
guard-bands needed around the active subcarriers in the OFDM case. Both active sig-
nals are assumed to have the same power level, normalized to 0 dB in our scenario.

Additionally, it is assumed that in the false alarm test situation, there is no additional 
signal in the spectral hole. However, the spectrum sensing may give false alarms due 
to interference leakage from the adjacent PUs due to their nonlinearity. Obviously, this 
effect depends on the strength of the adjacent PU signal as observed at each sensing 
station. In the inband detection test situation, there is a weak inband PU signal in the 
spectrum gap between the WLAN or FBMC channels which, however, are not active 
in this test case. Notice that the presence of any adjacent channel interference would 
increase the detection probability. In both tests, we normalize the observed PU power to 
the noise power, using the SNR of a PU at the sensing station as a parameter character-
izing the observed PU signal strength. In the following figures, “Adjacent PU SNR” and 
“Inband PU SNR” refer to the average PU SNR at the sensing stations, while the log-
normal fading characterizes the variations of the PU power level at the sensing stations.

A smaller subband spacing of 81.5 kHz is used for spectrum sensing and CR transmis-
sions, instead of the 312.5 kHz sub-carrier spacing of WLAN. This improves the spec-
tral resolution of spectrum sensing and CR operation. The frequency window is chosen 
as Nf = 5 to increase the detection performance. Then, the effective sensing subband 
width is 407.5 kHz. For consistent comparison, the sensing is done over 5 MHz spec-
trum gap in both WLAN and FBMC cases, using 12 sensing subbands. In the inband 
detection test situation, a single subband is occupied by the PU. A SU reports the pres-
ence of a PU if the sensing threshold is exceeded in any of the subbands.

The required sample complexity for PD = 0.9 and PFA = 0.1 at the target 
SNR = − 5.08 dB is determined with the aid of Eq. (8) in [5] as Nt = 91 for non-coop-
erative spectrum sensing of a single subband with AWGN channel as a reference case. 
The same sample complexity is considered in our CSS study and desired cooperative 
PFA,t = 0.1 is assumed with all fusion rules in the absence of adjacent channel interfer-
ence. The PA nonlinearity of adjacent PUs introduces interference leakage to the spec-
trum gap between the PUs, as illustrated in Fig. 3, and the width of the spectral hole is 
reduced.

As it is mentioned in details in Sect. 2, the number of sensors is determined as 8 in this 
study. When higher number of sensing stations is considered, the performance of CSS 
is not significantly improved, on the contrary, the computational complexity increases 
significantly in our simulation scenarios. Considering a practical trade-off between the 
complexity and performance, the number of sensing stations is selected as 8 based on 
experimental results. Due to the space limit, the sensing performance of different num-
ber of sensing stations is not shown in this study.
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Results from ideal and practical PA cases using the Indoor frequency selective chan-
nel for log-normal fading with standard deviation of σ = 9 dB are shown in Figs. 5 and 
6 for the OFDM and FBMC cases, respectively. FBMC-based WLAN-like signal model 
shows much-improved spectral containment compared to OFDM-based WLAN under 
both the ideal and practical PA cases. Furthermore, AFB-based SED shows significant 
enhancement over the FFT-based one. Looking at the cooperative false alarm probabil-
ity close to the target level of 0.1, the AND rule makes the CSS process least sensitive to 
interference leakage from the adjacent relatively strong PUs, while the OR rule shows 
highest sensitivity. This is true for both scenarios and both PA models. FBMC/OQAM 
with AFB-based SED is more robust towards the interference leakage from adjacent 
channels comparing with OFDM and FFT-based SED. With linear PA, the difference 
is quite significant, about 38 dB with all fusion rules as seen in Table 1. With the used 
highly nonlinear PA model, the difference is only 6–8 dB. On the other hand, OR rule 
gives the highest detection probability for inband PU signals. This confirms the observa-
tion  [30] that “for many cases of practical interest,” the OR rule delivers the best perfor-
mance among hard-decision rules.

With FBMC waveform and AFB-based sensing, the Majority rule provides a reason-
able trade-off between inband PU detection performance and robustness to interference 

a

b

c

Fig. 5  Comparison of cooperative false alarm and detection probabilities between FFT-based SED for three 
different linear fusion rules under Indoor channel and log-normal fading ( σ = 9 dB ), time record length of 
Nt = 91 , and M = 8 sensing stations. a PFA with linear PA. b PFA with nonlinear PA. c PD for inband PU
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from adjacent channels. With linear PAs, the adjacent channels could have 30 dB higher 
SNR with respect to the sensing threshold. With the used nonlinear PA model and 
Majority rule, the average SNR of adjacent PUs should not exceed the SNR threshold of 
inband sensing, which severely limits in the sensing performance. We can conclude that, 
in order to make effective use of the good spectrum localization of FBMC waveform and 
AFB-based sensing in such scenarios, significantly better linearity for the PAs would be 
required with respect to the used nonlinear PA model.

b

c

a

Fig. 6  Comparison of cooperative false alarm and detection probabilities between AFB-based SED for three 
different linear fusion rules under Indoor channel and log-normal fading ( σ = 9 dB ), time record length of 
Nt = 91 , and M = 8 sensing stations. a PFA with linear PA. b PFA with nonlinear PA. c PD for inband PU

Table 1  SNR requirements for  inband and  adjacent  channel PU SNRs for  PD ≥ 0.9 
and PFA ≤ 0.2

Min SNR of Inband PU (dB) Max SNR of Adjacent PU

Linear PA (dB)  Nonlinear 
PA (dB)

OFDM/FFT—OR rule − 15 − 22 − 22

            —Maj rule − 8 − 16 − 16

            —AND rule + 3 − 12 − 12

FBMC/AFB—OR rule − 15 + 16 − 14

            —Maj rule − 8 + 22 − 8

            —AND rule + 3 + 26 − 6
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5.2 � Numerical results for Max–Min ED‑based methods

The performance of the proposed novel Max–Min ED-based CSS and the comparison 
with traditional ED-based CSS are provided in this subsection. Proposed Max–Min ED-
based CSS methods is considered here mainly in the 2x-oversampled signal cases. The 
main reason for the use of 2x-oversampled processing model is that it gives uncompro-
mised sensing performance, while no oversampling or modest oversampling models give 
somewhat lower complexity at the cost of slightly reduced performance [7]. Results for 
non-oversampled case are also included for one of the scenarios. For the PU, we assume 
basic single-carrier signal with QPSK modulation at 20  MHz symbol rate. Assuming 
20% roll-off in Nyquist pulse-shaping, the overall bandwidth is 24  MHz. In the non-
oversampled case, the spectrum sensing process uses 20 MHz bandwidth between the 
3-dB points of the transmitted spectrum, while in the 2x-oversampled case, the sensing 
bandwidth is extended to 40 MHz. In this study, the focus is on detection performance 
in the absence of strong interference effects, and the FFT- and AFB-based schemes pro-
vide quite similar results. For simplicity, we include only FFT-based schemes in this sub-
section, with two choices for the FFT length, 8 and 32.

The Indoor frequency selective channel [22] is assumed also here, along with the 
worst-case NU of 1-dB. The desired false alarm probability is chosen as PFA = 0.01 for 
each station in all cases. The time record length is 10,240 QPSK symbols, i.e., 10,240 or 
20,480 samples for non-oversamped and 2x oversampled cases, respectively. 1000 Monte 
Carlo simulations with different channel instances are applied to ensure the reliability of 
the simulation.

The number of sensing stations is selected as M = 8 for Max–Min ED-based CSS as 
well as it is explained in the previous section that number is determined based on the 
experimental results according to the trade of between the complexity and performance. 

a

b

c

Fig. 7  CSS detection probabilities with a Max–Min ED, b Max/Min ED and c Diff. Max–Min ED and three 
different linear fusion rules for non-oversampled QPSK PU signal under Indoor channel and log-normal fading 
( σ = 9 dB ), the length of NFFT = 8 , the number of sensing stations M = 8, the sample complexity N = 10,240, 
and 1 dB NU
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There is no significant improvement on the sensing performance of Max–Min ED-based 
CSS approaches when the number of sensing stations is higher than 8.

a

b

c

Fig. 8  CSS detection probabilities with a Max–Min ED, b Max/Min ED and c Diff. Max–Min ED and three 
different linear fusion rules for 2x-oversampled QPSK PU signal under Indoor channel and log-normal fading 
( σ = 9 dB ), the length of NFFT = 8 , number of sensing stations M = 8, the sample complexity N = 20,480, 
and 1 dB NU

a

b

c

Fig. 9  CSS detection probabilities with a Max–Min ED, b Max/Min ED and c Diff. Max–Min ED and three 
different linear fusion rules for 2x-oversampled QPSK PU signal under Indoor channel and log-normal 
fading ( σ = 9 dB ), the length of NFFT = 32 , the number of sensing stations M = 8, the sample complexity 
N = 20,480, and 1 dB NU
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Three different CSS approaches, based on Max–Min ED, maximum/minimum ED 
(Max/Min ED), and differential Max–Min ED (Diff. Max–Min ED) are compared in 
Figs. 7, 8 and 9 with the two FFT lengths. Clearly, the OR rule gives the best detection 
performance in all cases. We can see that the cooperative Max–Min ED-based algo-
rithm has in all tested cases better performance than the Differential Max–Min ED and 
Max/Min ED-based CSS algorithms. Hence, Max–Min ED-based CSS is proposed for 
the spectrum sensing purposes in this paper. Furthermore, the algorithm is simpler to 
implement and yet eliminates the noise floor thus reduces the uncertainty effects.

We can also see that the FFT length of 8 gives somewhat (about 1 dB) better sensitivity 
then the FFT length of 32 for all the three algorithms. Results for both non-oversampled 
and 2x-oversampled processing with FFT length of 8 are available in Figs. 7 and 8, indi-
cating about 1 dB better sensitivity for the oversampled case. Similar differences were 
observed also in other tested scenarios. The reason for the difference is that in the non-
oversampled case there are less variations in the ESD within the sensing bandwidth due 
to the PU signal, i.e., only 3 dB. Then, the frequency variability of ESD is mainly due to 
the frequency-selective channel.

Next, analytical results of proposed cooperative Max–Min ED are compared with 
simulation results in Figs. 10 and 11 for NFFT = 8 and 32, respectively. Relatively good 
match between analysis and simulations can be seen in both cases.

In the same figures, the proposed cooperative Max–Min ED is compared with the 
traditional cooperative ED under the 1  dB NU condition. Both figures show that the 
proposed cooperative Max–Min ED clearly exceeds the performance of traditional 
cooperative ED in the presence of significant NU, which is yet realistic when consider-
ing practical receiver operation conditions. The proposed cooperative Max–Min ED has 

Fig. 10  Comparison of CSS detection probabilities between traditional ED and Max–Min ED with three 
different linear fusion rules for 2x-oversampled QPSK PU signal under Indoor channel and log-normal fading 
( σ = 9 dB ), the length of FFT NFFT = 8 , the number of sensing stations M = 8, the sample complexity 
N = 20,480, and 1 dB NU
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approximately 10 dB better detection performance compared to traditional cooperative 
ED under the 1 dB NU condition.

Figure 12 shows the variation of the detection threshold γ (based on Eq. (24)) of the 
proposed Max–Min ED for non-oversampled and 2x-oversampled cases considering the 

Fig. 11  Comparison of detection probabilities between traditional ED and Max–Min ED with three 
different linear fusion rules for 2x-oversampled QPSK PU signal under Indoor channel and log-normal fading 
( σ = 9 dB ), the length of NFFT = 32 , the number of sensing stations M = 8, and the number of sampling 
complexity N = 20,480, and 1 dB NU

Fig. 12  Variation of the detection threshold γ of the proposed Max–Min ED for different NU values
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FFT lengths of 8 and 32 under different NU values between 0.1 and 1 dB. The threshold 
is quite independent of the NU, which can be seen as another indication of the robust-
ness of this method.

The results of this subsection clearly demonstrate that OR rule is again the best in 
terms of detection performance. It should be noted that cooperative false alarm proba-
bility with Max–Min ED is independent of noise uncertainty and can be calculated using 
Eq. (1) as PFA,t = 0.077 for the assumed PFA = 0.01 of each sensing station.

6 � Conclusion
In this paper, enhanced energy detection-based cooperative spectrum sensing meth-
ods were studied. In the first considered scenario, FFT- and AFB-based CSS was used 
to detect potential PU signals with widely varying bandwidths in possible spectral gaps 
close to strong PU channels. In such scenarios, the sensing task becomes difficult due 
to interference leakage from the relatively strong adjacent channels. The results dem-
onstrated reduced sensitivity for filter bank-based waveforms and sensing schemes 
towards such interference leakage, compared to basic CP-OFDM and FFT-based sens-
ing. However, for robust sensing in such scenarios, well linearized PAs are needed for 
the transmitters operating in the adjacent channels, in addition to using waveforms with 
good spectrum localization. As for the CSS schemes, it was found that the Majority rule 
provides a good trade-off between inband sensing performance and robustness to inter-
ference from adjacent channels. Also k-out-of-M rules with 1 < k ≤ M might be useful, 
depending on targeted detection and false alarm probabilities.

The second proposed scheme, Max–Min ED-based CSS is immune to NU effects 
and reduces the implementation complexity with respect to other schemes with simi-
lar robustness. This method utilizes the frequency variability of radio spectrum due to 
PUs. Maximum and minimum statistics were used to decide the presence or absence of 
PU signals with the help of predefined threshold. The Max–Min ED approach removes 
the noise floor from the signal that is additive in nature, which makes the algorithm sta-
ble to the NU effects. The proposed algorithm has reduced complexity compared to the 
eigenvalue-based approach [7]. The proposed method exhibited around 10 dB sensitiv-
ity enhancement for 1 dB NU condition in comparison with the traditional cooperative 
ED. Analytical performance evaluation was presented for the proposed algorithm and it 
matched well with the simulation results.

This study does not cover soft decision-based CSS, which remains as an important 
topic for future work.
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Appendix
The details of closed‑form expressions of Gumbel distribution

With the aid of (20) and (21), it is primarily essential to derive the expected value and 
standard deviation of the difference of maximum and minimum value. In what follows, 
we derive novel closed-form analytic expressions for these important measures which 
are subsequently used in deriving a comprehensive analytical framework for the pro-
posed detector. It is firstly recalled that the nth moment of a continuous distribution with 
PDF f(x) is defined as E[xn] =

∫∞
−∞ xnf (x)dx and the corresponding mean value is read-

ily obtained for n = 1, i.e., µ = E[x] . As a result, the mean value of (20) and (21) is given 
by E[Umin] =

∫∞
−∞ xfmin(x)dx and E[Umax] =

∫∞
−∞ xfmax(x)dx , respectively, which yields 

µmin = E[Umin] = −α + βC and µmax = E[Umax] = α − βC , where C = 0.577215665 is 
the Euler’s constant. Consequently, the expected value of the difference of the maximum 
and minimum values is expressed as,

and the location parameter can be determined by

Likewise, the corresponding variances are obtained by

and

which, unlike the mean values, are equivalent to each-other,

By recalling that Var(X ± Y) = Var(X)+ Var(Y) , when X and Y are mutually independ-
ent, it immediately follows that Var[Umax − Umin] = Var[Umax] + Var[Umin] , which 
yields

and the scale parameter can be determined by

(26)µmax−min = E[Umax−min] = 2α − 2βC

(27)α = (E[Umax−min] + 2Cβ)/2.

(28)σ 2
min = Var[Umin] =

1

β

∫ ∞

−∞
(x − E[Umin])2

e
x−a
β

ee
x−a
β

dx

(29)σ 2
max = Var[Umax] =

1

β

∫ ∞

−∞
(x − E[Umax])2

e
− x−a

β

ee
− x−a

β

dx

(30)Var[Umin] = Var[Umax] =
π2β2

6
.

(31)σ 2
max−min = 2Var[Umax] =

π2β2

3
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