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Abstract

In 5G networks information about localization of a user equipment (UE) can be used not only for emergency calls or
location-based services, but also for the network optimization applications, e.g., network management or dynamic
spectrum access by using Radio Environment Maps (REM). However, some of these applications require much better
localization accuracy than currently available in 4G systems. One promising localization method is Global Navigation
Satellite System (GNSS)-based Real-Time Kinematics (RTK). While the signal received from satellites is the same as in
traditional GNSS, a new reception method utilizing real-time data from a nearby reference station (e.g., 5G base
station) results in cm-level positioning accuracy. The aim of this paper is to obtain a model of the RTK localization error
for smartphone-grade GNSS antenna under open-sky conditions, that can be used in 5G network simulators. First, a
tutorial-style overview of RTK positioning, and satellite orbits prediction is provided. Next, an RTK localization simulator
is implemented utilizing GNSS satellites constellations. Results are investigated statistically to provide a simple, yet
accurate RTK localization error framework, which is based on two Gauss-Markov process generators parametrized by
visible satellites geometry, UE motion, and UE-satellite distance error variance.
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1 Introduction
The development of localization methods in cellular net-
works started with the formulation of the enhanced 911
(E911) location requirements by the Federal Communica-
tions Commission (FCC) of the USA in the 1990s [1]. The
aim of the E911 requirements were to locate user equip-
ment (UE) emergency calls with the root-mean square
error (RMSE) of 125 m in 67% of all cases [1]. In cellu-
lar networks from 2G to 4G, firstly standardization effort
was put into fulfil government requirements. With the
networks development UE localization information began
to be attractive for operators from a commercial point of
view, resulting in introduction of location-based services
(e.g. social networking, advertising) [1].
5G networks come with a set of new use cases where UE

localization information is necessary, not only for emer-
gency and user-plane applications, but also for Intelli-
gent Transportation Systems Aerial Vehicles or Industrial
Applications [2]. Moreover in 5G systems localization,
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data will be utilized for network optimization applica-
tions such as self-organizing networks (SON), network
management, or dynamic spectrum access (DSA) [1].
Implementation of the mentioned network optimiza-

tion applications may be based on the Radio Environment
Maps (REMs) for both SON [3] and DSA [4]. REM can
be understood as a real-time model of the real-world
radio environment using multi-domain information (e.g.,
available radio links, wireless channel parameters) [5].
However, the implementation of REM requires accurate
and robust localization information, firstly during data
acquisition, and secondly when serving REM users. Local-
ization can be achieved either by means of trilateration
[6–8], triangulation [9], or fingerprinting [10]. However,
the most suitable localization method for REM under out-
door and open-sky conditions is the Real Time Kinematics
(RTK) [11] which is based on Global Navigation Satel-
lite System (GNSS). It provides centimeter-level accu-
racy based on standard satellite-based GNSS signal while
requiring constant connection to a reference station of
known coordinates, e.g., 5G base station (BS). Although
the localization error of the conventional GNSS is well
investigated [12], there is no RTK error model that takes
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into account the localization error as a function of daytime
and geographical localization.
The aim of this paper is to study on the RTK local-

ization error for smartphone-grade antenna under open-
sky conditions, assuming line-of-sight (LoS) propaga-
tion between UE and each of the satellites. For better
understanding of the RTK localization approach, detailed
tutorial-style mathematical description is also provided.
Based on simulations and statistical analysis important
factors are extracted and a simplified yet accurate frame-
work for the generation of RTK localization error is pro-
posed. The framework takes into account UE motion,
UE location and time of a day influencing geometry of
visible satellites. One additional parameter is the cutoff
angle allowing to consider only GNSS satellites exceeding
given elevation above horizon. This allows for mimicking
RTK operation in the urban environment where build-
ings block LoS propagation between some satellites and
an UE. The resultant error both follows the proper dis-
tribution and is time continuous. The proposed model
is of high importance when simulating 5G systems that
utilize REM technology in outdoor environment with rel-
atively low altitude buildings. Step-by-step description
of the proposed algorithm is presented to simplify its
implementation.
This paper is organized as follows: related work

is discussed in Section 2. Section 3 provides brief
description of REM concept and highlights some of
the REMs applications where accurate localization
may be required. Section 4 introduces the concept
of RTK in relation to the conventional GNSS local-
ization. Section 5 describes mathematical models of
RTK, almanac-based satellites orbits prediction, and the-
ory related with Gauss-Markov process including its
generation with autoregressive model. Section 6 dis-
cusses the simulation results of the RTK localization
error. The simplified framework for generation of RTK
localization error under open-sky conditions is pro-
posed in Section 7. Conclusions are formulated in
Section 8.

2 Related work
As mentioned there are various ways to obtain user posi-
tion. Some of them utilize trilateration, e.g., Observed
Time Difference of Arrival (OTDoA) defined for cel-
lular networks in LTE Positioning Protocol (LPP) [6],
802.15.4a ultra wide band (UWB) [7], or different imple-
mentations of GNSS, e.g., Global Positioning System
(GPS) or Galileo [8]. Other ones, may use triangula-
tion. This approach requires accurate Angle of Arrival
(AoA) measurements, thus it is expected to be used in
5G systems utilizing massive MIMO (M-MIMO) tech-
nology [9]. Another interesting localization technique is
utilization of radio frequency pattern matching (RFPM),

called also fingerprinting. User position is estimated by
comparing measured value (e.g., received signal strength
(RSS)), with the fingerprint (previously measured RSS,
tagged with geographical localization) from database.
User position is the localization tag of the best matching
fingerprint [10]. Fingerprinting is not explicitly defined
in LPP; however, there are some works describing its
implementation on the basis of the LTE positioning
infrastructure [13, 14].
On the other hand RTK is defined in LPP [6] and fore-

seen for 5G networks [15]. The RTK method is mostly
useful when REM is utilized in 5G network under out-
door conditions. With its centimeter-level accuracy it is
currently widely used in geodesy or agriculture. Further-
more, it has been shown that RTK may be available for
smart phones and provide cm-level accuracy in the open-
sky conditions [16]. However, its performance can be
degraded in urban environment, e.g., due to the cycle-slips
phenomenon [17, 18].
While considering localization techniques as impor-

tant features of the 5G systems, questions arise on the
reliability of acquired localization data and the influ-
ence of the localization error on the network perfor-
mance. The localization error of the conventional GNSS
can be modeled as a bivariate normal distribution with
x (e.g., North-South) and y (e.g., East-West) direction
errors being uncorrelated [12]. In the case of RTK such
a model, suitable, e.g., for 5G network simulations, is
not available. In [19], authors analyzed localization error
components of the RTK variant utilizing several coop-
erating base stations arranged in network, i.e. network
RTK (NRTK). The final localization error obtained on
the basis of the mathematical models and raw measure-
ments is given only in terms of root-mean square (RMS).
However, no information could be found about distri-
bution, influence of satellites constellation or correlation
of error in time. Studies in [20] are focused on the
impact of the air humidity and sky obstruction on RTK
localization error, but with no proposal of global RTK
error model.
In [21], an error model is proposed, but its parameters

are obtained only on the basis of the raw RTK mea-
surements related to specific geographical localization.
Also, the impact of the visible satellites geometry on RTK
localization error was not taken into account.

3 5G radio environmentmaps
As it was mentioned in the Section 1, REMs are going to
be a significant part of the future 5G networks. Their main
aim is to improve the efficiency of the network and radio
resources management. This section will firstly briefly
describe REM concept and secondly discuss some of the
5G REMs applications, where accurate localization can be
required.
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3.1 REM concept
REM can be described as a live-changing model of a real-
world radio environment usingmulti-domain information
[5]. REM stores and processes information to support pre-
diction and intelligent network management. Data stored
in REM can be divided into long-term information (e.g.,
base station antenna parameters, local country law restric-
tions) and short-term information (e.g., available radio
links, wireless channel parameters) [22].
Figure 1 depicts an example structure realization of

REM as suggested in [23]. The context information tagged
with localization and time is provided by so-called mea-
surement capable devices (MCDs), e.g., UEs or BSs. Cap-
turing the data from the MCDs is managed by the so-
called REM acquisition module, and the information is
further stored in REM storage structure. REM users sends
service requests tagged with its current localization to the
REM manager. REM manager is an intelligent part of the
REM responsible for processing data from REM storage
module and handling REM users requests.

3.2 Possible RTK applications in 5G REMs
As depicted in Fig. 1, REMs require localization infor-
mation firstly to tag MCDs measurements with location,
and secondly when REM user requests service from REM
manager. There are many applications of 5G REMs which
require accurate positioning, e.g.,

• Interference coordination: [24] where power density
maps allow to perform interference coordination
between users in a network.

• M-MIMO [25] where a database of the UEs AoAs
related to the localization is proposed to manage

Fig. 1 The example REM structure

Spatial Division Multiple Access (SDMA) in MIMO
networks.

• Location-based protocols in vehicular networks [26]
where REM provides location-specific transmission
parameters for each vehicle.

In the spectrum sensing and M-MIMO, an accurate local-
ization method like RTK can reduce errors related to
the database measurement grid. This can allow for more
accurate information especially in higher frequencies. In
the case of location-based protocols in vehicular networks
RTK can be utilized for much more precise definition of
transmission areas.

4 GNSS localization
This section provides a brief description of the conven-
tional positioning with GNSS, and later introduces the
concept of RTK. In addition some features of RTK, e.g.,
UE-satellite range error, energy consumption, are dis-
cussed in relation to the conventional GNSS.

4.1 Conventional GNSS
A GNSS receiver uses the trilateration method to com-
pute its position based on the distances measured to at
least four satellites of known coordinates. A conventional
GNSS receiver computes the distance between a UE and a
satellite by obtaining the time offset between spread spec-
trum code transmitted by the satellite and a local code
replica (code phase measurements). A chipping rate for
basic civil L1 GPS signal is 1.023 Mcps. Even though the
received signal is sampled at frequencies higher than the
chip rate, due to, e.g., the multipath propagation and the
receiver noise the UE-satellite range error equals for the
state of art receivers about 1 m [8]. Additional source of
error is the propagation through the troposphere and the
ionosphere. The signal propagation speed and direction
is changing while passing through these atmosphere lay-
ers. Moreover, non-perfect clocks synchronization, espe-
cially caused by relatively low quality UE’s local oscillator,
causes the satellite-UE clock offsets. These are another
sources of propagation error causing the final UE-satellite
range error for the stand-alone single-frequency receiver
to equal around 6 m [8].

4.2 RTK
Real-Time Kinematics refers to the obtaining position
estimation of moving UE in real time (i.e. without addi-
tional post-processing), with the help of a reference sta-
tion, and on the basis of the carrier phase measurements
[20]. Similarly, as in concventional GNSS receiver, RTK
also provides UE position estimate based on the trilat-
eration method. The difference lies in the method for
obtaining the distance between the UE and the satellite.
While conventional GNSS receiver utilizes code phase
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measurements, in RTK, the UE-satellite range computa-
tion is based on the phase difference between the carrier
signal received from the satellite and the local carrier
replica (carrier phase measurements). Second difference
in relation to the conventional GNSS is taking advantage
of the so-called relative positioning, where a reference sta-
tion of known coordinates is utilized, as shown in Fig. 2.
The position of UE in relation to the reference station
position is obtained with the help of assistance data pro-
vided by the reference station (e.g., its localization and raw
carrier phase measurements data) [8].
The UE-satellite range influences the received signal

phase which is normalized to a carrier wavelength. The
distance between satellite and UE is presented as the
sum of an integer and a fractional number of carrier
wavelengths. By the solving proper equation, the receiver
can find this integer number of wavelengths, and thus
solve the so-called “integer ambiguity” shown in Fig. 3.
At the same time, UE position approximating mostly the
received carrier phase from all visible GNSS satellites is
established. The fractional phase φ(t) estimate allows for
tracking UE position with sub-wavelength accuracy. The
RTK receiver initialization time which is referred to as
time to ambiguity resolution (TAR) [16], corresponds to
the time necessary for resolution of the integer ambigu-
ities. The maximum error in carrier phase measurement
is below 1 carrier wavelength which for the L1 GPS signal
frequency, i.e., 1575.42 MHz, equals about 19 cm [8].
The carrier phase measurements are affected by the

same types of phenomena like code phase measurements:
multipath propagation, receiver noise, atmospheric prop-
agation errors, and satellite and UE clock biases. However,
thanks to the relative positioning, atmospheric propa-
gation errors, and clock biases may be canceled out as
discussed in Section 5.1. UE-satellite range error for car-
rier phase measurements is typically in the range from 0.5
to 1 cm and is mainly caused by themultipath propagation

Fig. 2 Concept of the reference station providing assistance data
(mainly it’s raw measurements) to the UE

Fig. 3 Comparison between code and carrier phase measurements

of GNSS signals, while best UE-satellite range accuracy
achieved using code phase measurements is about 1 m
[8]. Such high RTK performance is achieved at the cost
of increased power consumption in the order of 100 mW
as compared to about 10 mW for code phase measure-
ments [16]. Additionally, continuous raw measurements
data from the reference station (e.q., 5G BS) have to be
provided to the UE. However, such amechanism is already
standardized in LPP [6].

5 RTK positioning and error
A general RTK description from the previous section
can be extended to form a mathematical model. In this
section, the state of the art about RTK positioning, and the
satellite orbits prediction are presented in a tutorial-style
to simplify implementation by interested readers. Both
the utilization of the autoregressive model for UE-satellite
distance error modeling, and the RTK error estimation
simulation environment are proposed by the authors.
The phase of a GPS signal is measured as the number

of wavelength cycles in rad
2π

1 i.e., a standard phase chang-
ing from 0 to 2π over single carrier period can be divided
by 2π to form values from 0 to 1. Denoting f (t̂) as an
instantaneous GNSS signal frequency at time instant τ ,
the signal phase at the time t, ϕ(t), depends on the phase
at time instance t0 as [8]:

ϕ(t) = ϕ(t0) +
∫ t

t0
f (t̂)dt̂. (1)

Assuming perfect clocks measuring time epochs t0 and t,
and f (τ ) being constant, f (τ ) ≈ f0, for short time interval,
we can write

ϕ(t) = ϕ(t0) + f0 · (t − t0). (2)

The signal phase changes linearly and proportionally to
the time difference. If the GNSS signal travels from satel-
lite to UE, a delay of �t is introduced by the propagation.
At the time, instant t the GNSS receiver will detect phase

ϕ(t − �t) = ϕ(t) − f0�t. (3)

1this unit will be used to express phase in all subsequent equations
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The satellite-receiver carrier phase distance measure-
ment can be now expressed as a measured fraction of the
wavelength cycle and an unknown integer number of full
cycles (integer ambiguity) [8]:

φ(t) = ϕr(t) − ϕs(t − �t) + N , (4)

where N is an integer ambiguity, ϕr(t) is the local carrier
replica phase, and ϕs(t − �t) is the phase of the carrier
received from satellite delayed by the propagation time
�t.When the receiver acquires a phase lock with the satel-
lite signal, then ϕr(t) = ϕs(t). Based on Eq. (3), Eq. (4) can
be expressed as

φ(t) = f�t + N = r
λ

+ N , (5)

where r is the satellite-receiver distance in meters and λ

is the carrier wavelength in meters. However, the mea-
sured phase is distorted by the satellite and the receiver
clock biases, δts, δtr , caused by the non-ideal synchroniza-
tion between satellites and receivers clocks. Secondly, the
measured phase suffers from the troposphere propagation
error (T, in meters) and the ionosphere propagation error
(J, in meters). Moreover, the receiver noise and the multi-
path propagation introduces an additional error ε, so that
the final measured carrier phase can be expressed as [8]

φ = r + J + T
λ

+ c
λ

(δtr − δts) + ε + N . (6)

Errors from the above equation can be split into the slow
and fast varying. Slow varying errors are atmospheric
delays (J, T) and clock biases (δts, δtr), which can persist
for tens of minutes [8]. Fast varying errors are related to
multipath propagation, and receiver noise (ε). They are
claimed to be zero mean i.e. E[ ε]= 0, and uncorrelated
between measurements related to the different satellites
i.e. E[ εiεj]= 0, for i �= j, and E[ εiεj]= σ 2

φ , for i = j.
Indices i, j denote satellite i, and j respectively [8].

5.1 Relative positioning
To cancel out propagation errors (T, J) and clock biases
(δts, δtr), the RTK is taking advantage of the so-called
relative positioning. The position of a user receiver is esti-
mated on the basis of its own measurements and the raw
measurements from a reference base station of known
coordinates (possibly a 5G base station). The position is
estimated as an offset to the reference station coordinates
[8].

5.1.1 Single difference
A general carrier phase measurement formula is given
by (6). Let us denote the phase of the ith satellite signal
measured at the UE as φi

u, and the phase of the ith satel-
lite signal measured at the reference station as φi

r . After
subtracting Eq. (6), related with UE and reference station
we get

φi
ur = φi

u − φi
r = λ−1 [(

riu − rir
) − (

J iu − J ir
) + (

Ti
u − Ti

r
)]

+ c
λ

· (δtu−δtr+δtis − δtis) + (Ni
u − Ni

r)+ (εiu−εir).
(7)

When the UE is close enough to the reference station i.e.,
less than 5 km of distance [16], the ionosphere and tro-
posphere propagation errors are proven to be the same
(J iu − J ir = 0 and Ti

u − Ti
r = 0) [16], which can simplify (7)

to

φi
ur = λ−1riur + c

λ
· δtur + Ni

ur + εiur , (8)

where (•)iur = (•)iu − (•)ir .

5.1.2 Double difference
While atmospheric errors and satellite clock bias are can-
celed out by the single difference operation, UE and ref-
erence station clock biases (δtur) may be canceled out
by double difference. Having single difference related to
the ith satellite (φi

ur), and single difference related to the
jth satellite (φj

ur), we can subtract them to get double
difference [8]:

φ
ij
ur = φi

ur − φ
j
ur = λ−1

(
riur − rjur

)
+ c

λ
· (δtur − δtur)

+
(
Ni
ur − Nj

ur
)
+

(
εiur − ε

j
ur

)
= λ−1rijur + Nij

ur + ε
ij
ur ,

(9)

where (•)
ij
ur = (•)iur − (•)

j
ur .

It can be observed that the result of double difference
operation is affected only by an error caused by receiver
noise and multipath propagation ε

ij
ur . Studies show that

the dominant distortion is introduced by the multipath
propagation. While receiver noise introduces about 1–
2 mm rms error, in the UE-satellite range the UE-satellite
rms range error caused by combined receiver noise and
multipath propagation varies from 0.5 to 1 cm [8]. UE
position estimation process utilizes a set of double dif-
ference Eq. (9) to estimate integer ambiguities (Nij

ur) and
obtain final UE position.

5.1.3 Double difference correlations
As already mentioned fast varying errors of the car-
rier phase measurement between UE and satellite (εiu
in Eq. (7)) are uncorrelated and have the same variance
and zero mean. The undifferenced measurements error
covariance matrix may be expressed as

R = E
[
[φu − E[φu] ] [φu − E[φu] ]H

] = E
[
εuεu

H]
, (10)

where φu =[φ1
u,φ2

u, . . . ,φK
u ]T , εu =[ ε1u, ε2u, . . . , εKu ]T and

H denotes Hermitian transpose. After taking into account
our assumptions, it can be shown that, Eq. (10) can be
simplified to
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R = σ 2
u IK×K , (11)

where σ 2
u is the variance of the measured phase difference

related to the UE, I is the K × K identity matrix, and K
is the number of visible satellites. Note that the same rea-
soning can be applied in case of reference station-satellite
undifferenced phase measurement error covariance.
The single difference operation from (7) can be pre-

sented for the ith and the jth satellites using matrix
notation as

φsd =
[

φi
ur

φ
j
ur

]
=

[
1 −1 0 0
0 0 1 −1

]
⎡
⎢⎢⎣

φi
u

φi
r

φ
j
u

φ
j
r

⎤
⎥⎥⎦ . (12)

Carrier phase measurements related to the UE and
reference station have different error variances σ 2

u , σ 2
r ,

respectively [16]. It can be shown that for any K visible
satellites single difference covariance matrix is given by

Rsd = E[ [φsd − E[φsd] ] [φsd − E[φsd] ]H ]=
= (σ 2

u + σ 2
r ) · IK×K .

(13)

In other words, single difference operation results are
also uncorrelated, and their variances are two times
greater.
By taking three single differences related with the ith

satellite (φi
ur), the jth satellite (φj

ur), and the kth satel-
lite (φk

ur) we can write the corresponding pair of double
differences in matrix notation [8]:

φdd =
[

φ
ji
ur

φki
ur

]
=

[
1 −1 0
1 0 −1

] ⎡
⎣

φi
ur

φ
j
ur

φk
ur

⎤
⎦ . (14)

For a given pair of double differences the covariance
matrix can be expressed as

Rdd = E[ [φdd − E[φdd] ] [φdd − E[φdd] ]H ]=
= (σ 2

u + σ 2
r )

[
2 1
1 2

]
.

(15)

It can be shown that for any K visible satellites the
double difference covariance matrix is given by [16]

Rdd = (σ 2
u + σ 2

r )

2

⎡
⎢⎢⎢⎢⎣

4 2 · · · 2
2 4

...
...

. . . 2
2 · · · 2 4

⎤
⎥⎥⎥⎥⎦
K−1×K−1

(16)

As it can be seen, double differences are correlated even
if raw phase measurements and phases differences are
not. This observation, together with (16) will be used in
Section 5.4.1 to obtain RTK covariance matrix.

5.1.4 Linearmodel for position estimation
In the relative positioning, our target is to estimate the
position of UE relative to the reference station [8]:

xur = xu − xr , (17)

where xr = (eastr , northr ,upr)T is the vector of known
reference station coordinates, herewith given using east-
north-up (ENU) coordinates system ( see Appendix A),
xu = (eastu, northu,upu)T is the vector of UE coordi-
nates (fixed over the measurement period but not known
at the UE), and xur is the UE relative position vector to
be established by RTK. Let’s choose x0 (could be x0 = 0
in practice [8]) as our initial estimate of the UE relative
position vector xur , then [8]:

xur = x0 + δx, (18)

where δx is the unknown correction to the initial position
estimate x0.
Our target now is to introduce xur into the double

difference given by (9). Figure 4 depicts the single differ-
ence measurement UE (xu)-reference station (xr)-satellite
geometry. When UE is ina smaller distance than 10 km
from reference station we can assume that unit vector
pointing from reference station to the satellite i (1i

r) is
equal to the unit vector pointing from UE to the satel-
lite i (1i

u) i.e., 1i
r = 1i

u [8]. Now riur from Eq. (8) can be
approximated as follows [8]:

riur = riu − rir = −1i
r · xur . (19)

Fig. 4 Geometry of the single difference measurements
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In the east-north-up (ENU) coordinates ( see Appendix
A) 1i

r is given by [8]:

1i
r = (

cos el(i) sin az(i) cos el(i) cos az(i) sin el(i)
)
,
(20)

where el(i) is the satellite i elevation angle and az(i) is the
satellite i azimuth angle.
On the basis of the (19) rijur , from the double difference

given by (9), can be expressed as

rijur = riur − rjur = −
(
1i
r − 1

j
r
)

· xur . (21)

Combining (18) and (21) we get [8]

rijur = −
(
1i
r − 1

j
r
)

· xur
= −

(
1i
r − 1

j
r
)

· x0 −
(
1i
r − 1

j
r
)

· δx

= rij0 −
(
1i
r − 1

j
r
)

· δx,

(22)

where rij0 is estimated on the basis of x0 UE-reference
station distance.
Combining (22) with (9) we obtain [8]

φ
ij
ur = λ−1rij0 − λ−1

(
1i
r − 1

j
r
)

· δx + Nij
ur + ε

ij
ur . (23)

By setting yijur = φ
ij
ur−λ−1rij0 , and gij = −λ−1

(
1i
r − 1

j
r
)
,

(23) can be rewritten as a linear equation [8]:

yijur = gij · δx + Nij
ur + ε

ij
ur . (24)

Having K satellites visible, indexed 1, . . . ,K , K − 1 inde-
pendent linear Eq. (24) can be formulated, e.g., by setting
j = 1 and i = 2, ...,K . Under the assumption that all mea-
surements are done in the same time period and that a
single frequency receiver is utilized, these equations can
be presented in vector-matrix notation as follows [8]:

⎡
⎢⎢⎢⎣

y21ur
y31ur
...

yK1
ur

⎤
⎥⎥⎥⎦ = −1

λ

⎡
⎢⎢⎢⎣

12
r − 11

r
13
r − 11

r
...

1K
r − 11

r

⎤
⎥⎥⎥⎦·δx+

⎡
⎢⎢⎢⎣

N21
ur

N31
ur
...

NK1
ur

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

ε21ur
ε31ur
...

εK1
ur

⎤
⎥⎥⎥⎦ ,

(25)

or

y = G · δx + n + e, (26)

where y is the K − 1 element vector of the differences
between double differences of measured phase data and
estimated double differences for initial position x0 (that
can be projected to a proper value of rij0 ) ,G is theK−1×3
matrix describing UE-reference station-satellite geometry,
n is the K − 1 element vector of the double difference
integer ambiguities to be estimated, e is the K − 1 ele-
ment vector of the double difference errors, and δx is

the correction to the initial UE position estimate, to be
estimated.
The target is to estimate the real-valued δx, and the inte-

gers n denoted as δx̂ and n̂. This can be done by solving
the following least-squares optimization problem [8]:

min
n̂,δx̂

‖y − Gδx̂ − n̂‖2 (27)

Methods for integer ambiguity resolutions are compre-
hensively described in [8]. [27] discusses reducing time to
integer ambiguity resolutionwith receiver randommotion
for smartphone grade GNSS antennas. For further com-
puter simulations, n is assumed to be already estimated.

5.2 Undifferenced carrier phase measurement error
No zero error in UE localization estimate, i.e., δx̂ �= δx,
is caused by non-zero ε

ij
ur values in (24). The main source

of this error is multipath propagation. The double differ-
ence errors ε

ij
ur are caused by raw phase measurements

errors, e.g., εir and εiu as visible in (7). These can be mod-
eled by a Gauss-Markov (GM) process are shown in [27].
The GM process is specified by its variance σ 2 and its
correlation time - τ with the autocorrelation function for
discrete time systems given by [28]

Rεε(m) = σ 2e
−|mTs|

τ , (28)

where Ts stands for sample period, and m is an integer
number representing autocorrelation sample index. It has
to be noted that the sample period is here related with the
time intervals between consecutive position estimations
and not the GNSS receiver sample rate.

5.2.1 Autoregressivemodel
A discrete stationary random process can be generated
from white noise with the use of linear filter of transmit-
tance H(z), as depicted in Fig. 5. If the stationary random
process is a GM process then H(z) consists only of the
poles. This case is called autoregressive (AR) model.
AR model parameters, i.e., the filter coefficients (ak),

and the input white noise variance (σ 2
s ) can be computed

with the following formula [29]:

Rxx(m) =
⎧⎨
⎩

− ∑p
k=1 akRxx(m − k), m > 0

− ∑p
k=1 akRxx(−k) + σ 2

s m = 0
R∗
xx(−m) m < 0

, (29)

where Rxx(m) is the m − th autocorrelation sample of the
desired random process, and p denotes the order of AR
model.

Fig. 5 Generation of stationary random process by filtering input
white noise
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5.2.2 Autoregressivemodel parameters for Gauss-Markov
process

Adopting a first order model AR(1) for the GM process
andwriting (29) for p = 1, and combining with (28) results
to the following set of equations:⎧⎪⎨

⎪⎩
σ 2e

−|mTs|
τ = −a1σ 2e

−|(m−1)Ts|
τ m > 0

σ 2 = −a1σ 2e
−Ts
τ + σ 2

s m = 0
Rxx(m) = R∗

xx(−m) m < 0
, (30)

where σ 2
s stands for the input white noise variance.

Because in the first equationm > 0, we can write |mTs| =
mTs, and |(m − 1)Ts| = mTs − Ts. Equation (30) can be
simplified to

⎧⎪⎨
⎪⎩

e
−mTs

τ = −a1e
−mTs

τ e
Ts
τ m > 0

σ 2
(
1 + a1e

−Ts
τ

)
= σ 2

s m = 0
Rεε(m) = R∗

εε(−m) m < 0
. (31)

After further transforms, we can obtain

a1 = −e−
Ts
τ

σ 2
s = σ 2

(
1 − e

−2Ts
τ

) (32)

which can be used directly for the generation of the
required GM process.

5.2.3 Fitting Gauss-Markov process parameters
Now a reverse problem can be considered: having sam-
ples of the random process x(n), the target is to model it
with the GM process and obtain parameters: σ̂ 2 and τ̂ .
While variance σ̂ 2 can be computed directly from x(n)

samples, the estimation of the correlation time is more
complicated.
By transformation of (32), τ̂ is given by

τ̂ = −Ts
ln(−a1)

. (33)

The filter coefficient a1 can be estimated based on (29)
as [29]:

a1 = − R̂xx(1)
R̂xx(0)

, (34)

where R̂xx(m) is the estimated autocorrelation function of
x(n). This approach is sufficient when x(n) is an ideal GM
process as it is impossible to create over-determined set
of equations from (29) in that case. In practice simulation
results presented in further sections (e.g., Fig. 12) would
have autocorrelation not being ideal function described
by (28).

5.2.4 Proposed a1 estimation algorithm
In such a non-ideal case it is reasonable to use more than
two autocorrelation function samples. Equations (29) can
be rewritten in matrix notation as [29]:

⎡
⎢⎢⎢⎣

R̂xx(0) R̂xx(1) · · · R̂xx(p)
R̂xx(1) R̂xx(0) · · · R̂xx(p − 1)

...
... · · · ...

R̂xx(p) R̂xx(p − 1) · · · R̂xx(0)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1
a1
...
ap

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

σ 2
s
0
0
0

⎤
⎥⎥⎦ .

(35)

Consider now extending autocorrelationmatrix to dimen-
sions N × p, where N is number of the autocorrelation
samples used for coefficients vector estimation. After dis-
carding components related with σ 2

s estimation, as this
will be estimated using standard x(n) variance estimator,
and some minor transforms (35) can be rewritten as

⎡
⎢⎢⎢⎣

R̂xx(0) R̂xx(1) · · · R̂xx(p − 1)
R̂xx(1) R̂xx(0) · · · R̂xx(p − 2)

...
... · · · ...

R̂xx(N−1) R̂xx(N−2) · · · R̂xx(N−p)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1
a2
...
ap

⎤
⎥⎥⎥⎦=

= −

⎡
⎢⎢⎢⎣

R̂xx(1)
R̂xx(2)

...
R̂xx(N)

⎤
⎥⎥⎥⎦

(36)

For the considered first order ARmodel, (36) simplifies to
⎡
⎢⎢⎢⎣

R̂xx(0)
R̂xx(1)

...
R̂xx(N − 1)

⎤
⎥⎥⎥⎦ · a1 = −

⎡
⎢⎢⎢⎣

R̂xx(1)
R̂xx(2)

...
R̂xx(N)

⎤
⎥⎥⎥⎦ , (37)

by introducing

d =

⎡
⎢⎢⎢⎣

R̂xx(0)
R̂xx(1)

...
R̂xx(N − 1)

⎤
⎥⎥⎥⎦ , (38)

c =

⎡
⎢⎢⎢⎣

R̂xx(1)
R̂xx(2)

...
R̂xx(N)

⎤
⎥⎥⎥⎦ (39)

equation (37) can be written in vector notation as

d · a1 = −c. (40)

The estimation of a1, using least squares criterion is
given by

â1 =
(
dTd

)−1
dT (−c). (41)

As d is a vector, (41) can be rewritten as

â1 = − dT

‖d‖22
c, (42)
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where ‖ • ‖2 denotes the Euclidean norm. Now τ̂ can be
estimated from (33).

5.3 GPS satellites orbits prediction
Apart from UE (reference station)-satellite range errors,
also the geometry of the visible satellites influences the
final position error in RTK. This is visible, e.g., in (27) by
G varying with the satellites geometry. Because GPS is the
most popular GNSS systems, in this paper, we will focus
on estimating GPS satellites constellation. However, sim-
ilar algorithms could be used for other systems, e.g., for
Glonass [30].

5.3.1 Ideal elliptical orbit parameters
For simplicity, it is assumed that the GPS satellite motion
can be modeled with ideal elliptical orbit. This approach
results in 1–2 km standard deviation of the error in esti-
mating satellites position [8], but remains good enough
for evaluation of satellites constellation geometry influ-
ence on UE position error. The influence of satellites
position accuracy on the performance of proposed UE
localization error is evaluated by simulations in Section 6.
Satellite position at specified time epoch on such orbit can
be described with Keplerian elements defined below (see
Fig. 6) [8]:

• GPS satellite ellipse orbit size and shape can be
described by two parameters:

– Semi-major axis (a)
– Eccentricity (e)

• The next two parameters are describing relation
between orbital plane, and the Earth’s equatorial
plane, and the direction of vernal equinox:

Fig. 6 Characterization of an ideal orbit and satellite position by
Keplerian elements, where the reference direction is the vernal
equinox direction, and the plane of reference is the Equatorial plane

– Inclination (i ), angle measured between the
satellite orbital plane and the Earth’s
equatorial plane.

– Longitude of the ascending node (�), angle in
Earth’s equatorial plane measured between the
vernal equinox direction, and the ascending
node which is the point on the satellite’s orbit
where it crosses the equatorial plane, moving
in the northerly direction.

• The following single parameter characterizes
orientation of the ellipse in orbital plane:

– Argument of perigee (ω), angle in the plane of
the orbit, measured between the ascending
node and the perigee, which is point in the
satellite orbit, where the satellite is closest to
the center of the Earth.

• The last Keplerian orbit parameter determines
satellite position on its orbit in given time epoch:

– True anomaly (ν), angle measured in orbital
plane between perigee, and the satellite
position at given time.

5.3.2 System effectivenessmodel almanac
Each GPS satellite distributes simple ephemerides (Kep-
lerian orbit parameters) for whole constellation (so-called
almanac). Receiving full almanac data takes 12.5 min [8].
A more practical and flexible approach is to use Sys-
tem Effectiveness Model (SEM) almanac available online
instead of obtaining almanac transmitted by a GPS satel-
lite. The definition of the SEM almanac content can be
found in [31].

5.3.3 Satellite position computation algorithm
With the data from SEM almanac, it is possible to obtain
a coarse position of all satellites in the GPS system con-
stellation. The satellite position computation algorithm is
presented below [32].

1. In the first step, two World Geodetic System 84
(WGS 84) constants must be introduced [32]:

μ = 3.98605 × 1014
[
m3

s2

]
, (43)

which is WGS 84 value of the Earth’s gravitational
constant for GPS users [32]. The second constant is
the WGS 84 value of the Earth’s rotation rate given
by

�̇e = 7.2921151467 × 10−5
[
rad
s

]
(44)
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2. The satellite mean motion (n0) is computed using
square root of semi major axis from SEM almanac
(
√
a):

n0 =
√

μ

a3
(45)

3. Now, the difference between almanac time (defined
by GPS Week Number - taw and GPS time of
applicability - tas), and the desired time (defined by
weeks number - tdw and seconds number - tds) is
computed from the following formula:

�t = tds − tas + (tdw − taw) · s, (46)

where s is the number of seconds in a single week.
4. In this step, mean anomaly for desired time is

obtained using mean anomaly for almanac time (M0)
from SEM almanac, and the values obtained from
Eq. (45) and (46):

M = M̃0 + n0 · �t, (47)

where M̃0 = π · M0, is converted to radians (1
semicircle = π radians), as SEM givesM0 in the
units of semicircles.

5. Eccentric anomaly (E measured in radians) can be
found by solving the so-called Kepler’s equation
given by

M = E − e sinE, (48)

where e is the eccentricity from SEM almanac.
Kepler’s equation can be iteratively solved with one
of the several available methods [33].

6. Having eccentric anomaly calculated, the GPS
satellite position on the Keplerian orbit can be
defined by true anomaly:

ν = arctan
√
1 − e2 sinE
cosE − e

, (49)

and the radius by

r = a(1 − e cosE) (50)

7. After transformation of the satellites coordinates
from radial to Cartesian, we get{

x = r cos (ν + ω)

y = r sin (ν + ω)
(51)

8. Next, the satellite coordinates in Keplerian orbit
plane are transformed to ECEF ( see Appendix A)
coordinates. Two parameters are obtained to perform
this operation. First, the inclination is given by

i = ĩ0 + δĩ, (52)

where both i0 and δi are given in the SEM almanac in
semicircles units and must be converted to radians

(ĩ0 = π · i0, and δ̃i = π · δi). Next, the longitude of
the ascending node is

�p = �̃0 + ( ˜̇� − �̇e)�t − �̇etas, (53)

where �̃0 = π · �0 and ˜̇� = π · �̇, because �0 and �̇

are given in SEM almanac in the units of semicircles,
and semicircles/second, which are converted to the
units of radians and radians/second, respectively.

9. The final step is to obtain the GPS satellite position
in ECEF coordinates with the following formulas:

⎧⎨
⎩
xECEF = x cos�p − y cos i sin�p
yECEF = x sin�p + y cos i cos�p

zECEF = y sin i
(54)

5.3.4 Algorithm implementation and validation
The presented GPS satellite position estimation algorithm
had been implemented in Python programming language.
To validate the implemented algorithm, visible satellite
list had been captured from USB-GPS antenna. USB
antenna outputs the data via serial port using National
Marine Electronics Association (NMEA) protocol. To
this end, a C++ program has been developed to cap-
ture only data frames containing information about visible
satellites and log them to text file (see Fig. 7). Satellite
coordinates are the azimuth (az) and the elevation (el)
angles seen from GPS antenna position (52.3921476900N,
16.7982299300E). Observations were performed in a 24 h
period between 29 and 30 of December 2018.
Results of the comparison between the computed and

the captured satellites coordinates are presented in Fig. 8.
The former are derived by using the algorithm described
in Section 5.3.3, with SEM almanac obtained 28 Decem-
ber 2018 19:56:48 UTC, while the latter are extracted
from NMEA messages. There are two sources of errors:
the first source of error is related to the 1◦ quantiza-
tion of NMEA data (even though internally GPS receivers
use much more accurate satellites positioning), while
satellite coordinates computed with SEM almanac data
domain is continuous. Up to 0.5◦ of error can be expected.
The second source of errors is related to the computing
satellites coordinates, i.e., the utilized satellites position
forecasting, on the basis of ideal elliptic orbit, while in
fact there are some temporary deviations in the satellites
orbits.
As it can be observed in Fig. 8, satellites orbits predic-

tion error doesn’t grow over the analysed time period.
This turns satellite constellation obtained on the basis of
the algorithm described in Section 5.3.3 to be a reasonable
tool for 24 hours long simulations. Also prediction errors
around 1◦ seems to have no significant impact on the error
modeling, as it is shown in Section 6.2.3.
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Fig. 7 Example set of the visible satellites coordinates (1◦ resolution)
extracted from NMEA data captured by G-Mouse USB antenna and
logged into text file

5.4 RTK error estimation simulation environment
Ablock scheme illustrating initial framework for UE local-
ization error modeling in RTK system under open-sky
conditions is presented in Fig. 9. The simulation envi-
ronment consists of several functional blocks presented
in previous subsections: Gauss-Markov noise generators
(Section 5.2.2), SEM almanac-based satellites orbit pre-
diction (Section 5.3.3), and linear model for position
estimation (Eq. (26)).
For a given time instance, a list of visible satellites is

computed on the basis of SEM almanac with the 7◦ ele-
vation cutoff angle, i.e., satellites close to the horizon
are treated as not visible for the UE receiver [8]. Next,
on the basis of reference station position, and UE "true"
position satellite-reference station, and the satellite-UE
ranges are computed for each visible satellite. With the
use of the independent GM process generators (with the
given fix parameters: variance σ 2 and correlation time
τ ) obtained ranges are noised. Noised ranges and visi-
ble satellites coordinates are then used in linear model

Fig. 8 Comparison between visible satellites coordinates computed
with algorithm from Section 5.3.3, and those obtained from NMEA
data provided by USB antenna

Fig. 9 Block scheme illustrating simulation environment for the RTK
positioning error estimation

for position estimation to formulate Eq. (27) under the
assumption of having resolved integer ambiguities. Finally
the position error is computed as the difference between
true UE coordinates, and the ones computed from the
noised reference station-satellite and the UE-satellite
ranges.

5.4.1 RTK positioning error covariancematrix estimation
In the other less computationally complex approach, the
RTK positioning error covariance matrix may be esti-
mated with the analytic formula, describing the least
squares estimator covariance matrix and given by [8]

cov(δx) =
(
GTG

)−1
GT · Rdd · G

(
GTG

)−1
, (55)

where G is the satellite-reference station-UE geometry
matrix (Eq. (26)) , and theRdd is the double difference cor-
relation matrix (Eq. (16)). Unfortunately, in this approach,
random variables variances, can be only obtained, with no
information on the positioning error distribution. More-
over, autocorrelation function cannot be estimated.

6 Simulation results and discussion
For evaluation purposes, the environment described in
Section 5.4 is implemented in python programming lan-
guage. Several computer simulation experiments have
been performed for various sets of input parameters.
Three places globally had been chosen for simulations.
These are listed in Table 1. Loc1 refers to the first
author’s home near Poznan in Poland, Loc2 to the point
where prime meridian intersects equator, and Loc3 to
the Huawei headquarters in the Chinese city of Shenzen.
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Table 1 Coordinates of the reference station and UE used in the
simulations

Scenario name Reference station
geodetic coordinates

UE geodetic coordinates

Loc1 52.3921476900N
16.7982299300E
117.19200 m

52.3911476900N
16.7972299300E
117.19200 m

Loc2 0.00000000000N
0.00000000000E
0.00000 m

0.00100000000N
0.00100000000E
0.00000 m

Loc3 22.6530360000N
114.060506000E
110.00000 m

22.6540360000N
114.061506000E
110.00000 m

The UE-reference station distance is chosen to be 130 m,
157 m, and 151 m for Loc1, Loc2, and Loc3, respectively.
Choosing such distances ensures the UE and reference
station are affected by the same atmospheric propaga-
tion delays, as explained in Section 5.1. This is reasonable
for a dense 5G network and allows for the simplification
of error modeling by assuming that errors related with
ionosphere and troposphere delays are equal at UE and
reference station.
The input parameters for GM process generators, which

models the UE-satellite, and reference station-satellite dis-
tance error are specified based on the measurements
with the use of smartphone-grade and survey-grade GNSS
antenna, respectively, under open-sky conditions done in
[16]. The values of the GM process parameters are shown
in Table 2. Static correlation time refers to the scenario
when the receiver antenna does not move, i.e., the ref-
erence station is always static. Dynamic correlation time
refers to the scenario, when UE moves randomly within
the GPS L1 carrier signal wavelength. The trajectory of the
receiver is modeled as a GM process and has an average
speed of 7.65 km

h [16].
In all simulations, SEM almanac is utilized (almanac

date: 28 December 2018 19:56:48 UTC). For all simula-
tions, start date is 29 December 2018 14:58:09 UTC, and
end date is 30 December 2018 14:58:09 UTC. Longer than
a 24 h simulation period is not necessary due to the fact
that visible satellites constellation repeats every 23 h and
56 min [8].

6.1 Continuous 24 h scenario
The first computer simulation is performed for Loc1,
with static GM noise parameters. There are 15, 24-h-long

Table 2 GM process parameters for modeling of undifferenced
carrier phase measurement error for a static reference station

σ τ - static τ - dynamic

Reference station 2.5 mm 100 s —

UE 6 mm 300 s 0.01 s

simulation runs; UE position is computed in 1 s inter-
vals. During the whole simulation experiment, the satellite
constellation is continuously changing.

6.1.1 Localization error distribution
The first field of study for this simulation scenario is
localization error empirical probability density function.
Figure 10 present the localization error distribution in the
east and north directions with fitted Gaussian functions.
As can be seen, distributions have shape of the Gaussian
distribution.

6.1.2 Autocorrelation analysis
Apart from the localization error distribution, also the
autocorrelation functions are analyzed. If the localization
error can be described by GM process, autocorrelation
function can be given by Eq. (28). Here, it appears the
problem of fitting GM process parameters already dis-
cussed in Section 5.2.3. Correlation time is estimated
with the use of (42). However, the number of the utilized
autocorrelation function samples must be established.
Figure 11 illustrates RMSE between the empirical autocor-
relation function and fitted GM autocorrelation function
while changing the number of the empirical autocorrela-
tion function samples (N) used in the fitting process. As
it can be seen, higher N results in lower RMSE. How-
ever, the improvement is negligible for N > 500. As
such N = 500 is used in all subsequent simulation
experiments.
Autocorrelation functions for east and north directions

are presented in Fig. 12. In each figure there is the autocor-
relation obtained from the simulation results, and two fit-
ted GM processes: using Eq. (42) withN = 500 and using
(34). It can be seen that the fitted GM process autocorre-
lation function approximates the one obtained from sim-
ulation results very well. This, along with the localization
error samples following the Gaussian distribution, leads

Fig. 10 Localization error distribution
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Fig. 11 Dependence between number of utilized autocorrelation
function samples used for GM process fitting and the resultant RMSE

to the conclusion that the UE localization error in RTK
system may be modeled as a GM process.
To check if there is a correlation between RTK localiza-

tion error in the east and north directions, the correlation
coefficient (see [34]) has been computed with the result
of − 0.0669. A correlation coefficient close to 0 leads
to the conclusion that east and north localization errors
are uncorrelated and can be modeled independently.
With other words independent GM process generators
can be utilized to produce east and north localization
error.

6.2 Step 24 h scenario
All previous simulations revealed that RTK localization
errors in east and north directions are uncorrelated and
may be modeled as a GM process. Next, we study the

Fig. 12 Autocorrelation of the localization error in Loc1, computed on
the basis of: simulation, Eq. (42) with N = 500, and Eq. (34). σ and τ

parameters are estimated with 95% confidence intervals

influence of the visible GPS satellites geometry on the
RTK localization error at a given time and geographical
position.
Simulation is performed in a "step mode." Every single

step is related to a constant satellites constellation, and
15 independent simulation runs, each utilizing a differ-
ent random generator seeds. During each simulation run,
3600 UE position error samples are collected at 1 Hz sam-
pling frequency. From 29December 2018 14:58:09 UTC to
30 December 2018 14:58:09 UTC, a new satellite constel-
lation is computed every 10 min, and the corresponding
simulations are performed, resulting in 144 steps. The
simulations are performed for all locations in Table 1,
static reference station and static/dynamic UE.

6.2.1 Variance analysis
Firstly, RTK localization error variance obtained with
the use of the simulation environment presented in
Section 5.4 is compared with the one estimated using
analytical formula (55), as it is depicted in Fig. 13 for Loc1.
The variance obtained with (55) visibly overlap with simu-
lation results for the dynamic UE. In the static UE scenario
variance obtained on the basis of simulation and Eq. (55)
differs more. This can be caused by longer correlation
time (300 s) that results in smaller number of independent
localization error samples over the simulated period.
However, it can be stated that the estimated variance is
independent of UE motion. Additionally, it is confirmed
that the localization variance can be generated using (55)
instead of performing full system simulations. In Fig. 14,
localization error variances obtained on the basis of (55)
for all considered geographical localizations are compared
for the same time instances. It canbeobserved that the results
differ significantly. This implies that RTK localization
error variance depends on the visible satellites geometry.

Fig. 13 Comparison between RTK localization error variance in Loc1
obtained from simulations, and computed with Eq. (55)
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Fig. 14 Comparison between RTK localization error variances
obtained at different geographical localization

6.2.2 Correlation time analysis
Apart from the variance, the GM process is also described
by correlation time. As an example, simulation results
obtained for Loc1 are presented in Fig. 15, in the case
of dynamic UE, and Fig. 16, in the case of static UE. In
both presented examples, the correlation time seems to
be randomly fluctuating around a mean value, with no
dependence of daytime or geographical localization. This
hypothesis is validated by means of analysis of variance
(ANOVA) statistical test on the correlation time data.
ANOVA is a statistical test that allows to check if sev-
eral data sets have statistically equal means, by analysis of
their variance [35]. The ANOVA test has been indepen-
dently performed for each simulation scenario and for all
data sets related with static and dynamic UE respectively.
The aim of the ANOVA test was to reject or not hypothe-
sis h0 that all data sets (correlation time over daytime and
geographical localization) have the same mean value. To

Fig. 15 Correlation time obtained on the basis of simulation results in
Loc1 and for the dynamic UE

Fig. 16 Correlation time obtained on the basis of simulation results in
Loc1,and for the static UE

reject or not hypothesis, the ANOVA test output, i.e., p
value, is compared with the so-called significance level (α),
i.e., the probability of rejecting hypothesis which is actu-
ally true (typical α value is 0.05) [35]. The hypothesis may
be rejected with significance level α when pvalue< α. The
corresponding ANOVA results are presented in Table 3.
The hypothesis is rejected only in the case with dynmic
UE in east direction and Loc2.
In conclusion, the RTK localization error correlation

time depends only on undifferenced carrier phase mea-
surement error and is independent of daytime and geo-
graphical localization, i.e., visible satellites constellation.
The mean values of correlation time, averaged over all
144 steps, for all of studied geographical locations are
presented in Table 4. For dynamic UE localization error

Table 3 ANOVA statistical tests results for localization error
correlation times

Dataset p value h0

Dynamic UE

Loc1 - east 0.57 Not rejected

Loc1 - north 0.10 Not rejected

Loc2 - east 0.014 Rejected

Loc2 - north 0.93 Not rejected

Loc3 - east 0.19 Not rejected

Loc3 - north 0.17 Not rejected

all (excluding Loc2 - east) 0.17 Not rejected

Static UE

Loc1 - east 0.30 Not rejected

Loc1 - north 0.42 Not rejected

Loc2 - east 0.43 Not rejected

Loc2 - north 0.36 Not rejected

Loc3 - east 0.12 Not rejected

Loc3 - north 0.71 Not rejected

all 0.25 Not rejected
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Table 4 RTK east and north localization error correlation times,
averaged over 24 h with 95% confidence intervals

Localization East error correlation
time [s]

North error correlation
time [s]

Dynamic UE

Loc1 2.0429 ± 0.0404 2.1172 ± 0.0441

Loc2 2.0392 ± 0.0388 1.9983 ± 0.0403

Loc3 2.0517 ± 0.0414 2.0738 ± 0.0421

Static UE

Loc1 257.04 ± 4.78 255.94 ± 5.04

Loc2 251.96 ± 4.50 258.45 ± 4.90

Loc3 251.84 ± 4.62 255.97 ± 4.70

correlation time in both east and north directions can be
assumed to be 2 s. Themean value of the correlation times
in the case of static UE (in both east and north direc-
tions) is 255.2 s and fits in the confidence intervals in
Table 4.

6.2.3 Visible satellites coordinates resolution analysis
The proposed RTK localization error framework rely on
visible satellites coordinates. The utilized satellites local-
ization prediction uses SEM almanac introducing typi-
cally 1–2 km error (as mentioned in Section 5.3). The aim
of this section is to verify whether degradation of satellites
coordinates accuracy significantly impacts the final UE
localization error. On the basis of Eq. (55), the localization
error variance for Loc1 geographical localization is com-
puted with the visible satellites coordinates rounded to 1◦
and compared with the full-accuracy results in Fig. 17. As
it can be seen, the presented results are almost identical.

6.2.4 Adaptation of the proposed scheme for urban
environment

In addition, the proposed RTK localization error frame-
work may be applied to provide initial estimate of the

Fig. 17 RTK localization error variance, computed with Eq. (55), for
non-rounded and rounded to 1◦ satellites coordinates (az, el) in Loc1

localization error in urban environment, i.e., without tak-
ing into account NLoS UE-satellite signals propagation
or cycle-slip occurrence. This can be done by increasing
the elevation cutoff angle αel from the default 7◦ to the
value related to street geometry: width W and neigh-
boring buildings height H as depicted in Fig. 18. This
approach mimics signals from some GNSS satellites being
blocked by buildings.
Dependence between street geometry of width W, and

height H, and elevation angle cutoff αel is given by

αel = arctan
(
2H
W

)
. (56)

A simulation was performed to estimate RTK local-
ization error variance in Loc1 while changing αel. The
elevation angle was increased to the value of 18◦ that cor-
responds to the H

W street geometry ratio equal to 0.162.
Results are depicted in Fig. 19. As expected, a higher ele-
vation cutoff angle causes fewer satellites visibility. This
finally results in a larger localization error in relation to
the one obtained with default 7◦ elevation cutoff angle.

7 Final RTK localization error modeling algorithm
On the basis of the previous results a RTK localization
error model for smartphone-grade GNSS antenna under
open-sky conditions is proposed. Simulation experiments
from Section 6.1 shown that RTK localization errors in
both east and north directions are uncorrelated and may
be modeled as a GM process. Further simulations from
Section 6.2 proved that there is a dependence between
localization error variance and geographical localization
and daytime as a result of the different visible satellites
geometry. The localization error correlation time seems
to be related to the UE motion. The proposed model
considers correlation time for two scenarios. First, it is
appropriate for staticUEs, e.g., people sitting on the bench
in a park. Second, it can be applied for dynamic UEs,
e.g., fast walking pedestrians. However, additional studies
would be required to obtain a mathematical formula to

Fig. 18 RTK LoS under urban conditions, modeled by adjusting
elevation cutoff angleαal to the street geometry: widthW andheight H
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Fig. 19 RTK localization error variance obtained at Loc1 for open-sky
and urban scenario modeled with elevation cutoff angles 7◦ and 18◦ ,
respectively

express the dependence of UE speed and RTK error cor-
relation time, necessary for dealing with a big amount of
other cases.
Figure 20 illustrates a block diagram representing the

proposed RTK localization error generator. There are two
independent GM process generators (see Section 5.2.2),
one for error generation in the east direction and another
one for the error generation in north direction, as the east
and north localization errors are assumed to be uncorre-
lated. Furthermore, the GM process is described by two
parameters: correlation time τ and variance σ 2, and can
be generated as depicted in Fig. 21. Equation (32) explains
how to convert given GM process parameters: correlation

Fig. 20 Block diagram of the RTK localization error generator

Fig. 21 GM process generator structure

time and variance, into the generator parameters (a1 and
σ 2
s from Fig. 21).
Simulation results show that localization error correla-

tion time depends only on the UE motion. For static UEs,
it is assumed to be the 255.2 s, while for dynamic UEs
(moving with average speed of 7.65 km

h ), it is assumed to
be 2 s.
The variances of east and north localization errors

change over geographical localization and daytime.
Therefore, variance in both east and north directions will
be computed with Eq. (55) using geometry matrix (see
Eqs. (26, 25)). First, the GPS satellites coordinates (for
every satellite in the constellation) are obtained on the
basis of SEM almanac (see Section 5.3.2), with the use
of the algorithm described in Section 5.3.3. Then visible
satellites are those for which elevation angle (measured
from the reference station) is greater than 7◦.
Finally, undifferenced error standard deviation values

obtained on the basis of experimental measurements in
[16] and related to the UE (σu = 2.5 mm) and reference
station (σr = 6 mm), required in the Eq. (55) are taken
from Table 2.
Additionally, RTK localization error under urban con-

ditions can be initially modeled by adjusting the eleva-
tion cutoff angle to the street geometry as proposed in
Section 6.2.4.

8 Conclusions
The UE localization in 5G networks will be used not only
for commercial and emergency purposes, but also for net-
work optimization, intelligent transportation systems, and
industrial applications. One of the most promising local-
ization methods already described in LPP and foreseen
for NR is GNSS-based RTKmethod providing centimeter-
level accuracy.
The aim of this paper is to study daytime, geographi-

cal localization, and UE motion impact on the resulting
RTK localization error and its distribution under open-sky
conditions. For evaluation purposes a simulation environ-
ment is proposed and implemented including implemen-
tation and validation of the GMprocess generators, imple-
mentation of the satellite position computation algorithm
(on the basis of the SEM almanac), and implementation of
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the program capturing real visible satellite data (with the
use of the NMEA protocol).
A series of simulations have been performed to study

the impact of geographical position, daytime, and UE
motion on the RTK localization error variance and cor-
relation time. As a conclusion, the RTK localization error
may be modeled with a Gauss-Markov process, described
by time-varying variance, dependent on UE geographi-
cal position and daytime, and constant correlation time
dependent on UE motion.
Finally, on the basis of the simulation results, the RTK

localization error model has been proposed. It could be
a useful tool for simulations studying performance of the
future 5G networks utilizing REMs or intelligent trans-
portation systems.
Future work include the study of imperfections in the

UE-reference station side link quality and their impact on
the RTK localization error.

Appendix A: Coordinates Systems
In this paper, various global coordinates systems (e.g.,
Earth-Centered Earth-Fixed, east-north-up) are men-
tioned in several places. The purpose of this appendix is
to describe them, and introduce transformations between
them.
All coordinates systems described here refer to the

World Geodetic System 1984 (WGS 84), which is cur-
rently the official geodetic system for navigation, mapping
and charting purposes [8]. WGS 84 defines the Earth-
Centered Earth-Fixed (ECEF) cartesian coordinate frame,
geometric model of Earth’s shape, the Earth’s gravity
field, and a set of constants (e.g., Earth’s gravitational con-
stant, Earth’s rotation rate, used in Section 5 during GPS
satellites orbits computation process) [8].

Geodetic
Geodetic coordinate system (Fig. 22) characterizes point
near Earth’s surface with the following set of coordinates
[36]:

• longitude λ in the range of (− 180◦ to 180◦)
measured between Prime Meridian and desired point

• latitude φ - in the range of (− 90◦ to 90◦) measured
between the equatorial plane and the normal of the
reference ellipsoid that passes through the measured
point

• The height h (or altitude) is the local vertical distance
between the measured point and the reference
ellipsoid surface

Earth-centered Earth-fixed
ECEF coordinate system (Fig. 22) is an inertail coor-

dinates system (rotates with Earth). In result, any cho-
sen fixed point on the Earth surface has fixed set of

Fig. 22 Comparison of Earth-Centered Earth-Fixed (ECEF),
East-North-Up (ENU) and geodetic coordinate systems

coordinates. The origin of ECEF coordinate system is
located in the center of Earth, and the axes are defined in
following form: [36]

• Z-axis is along the spin axis of the Earth, pointing to
the north pole

• X-axis intersects the sphere of the Earth at 0◦
latitude and 0◦ longitude

• Y-axis is orthogonal to the Z- and X-axes with the
usual right-hand rule

East-north-up
East-north-up (ENU) coordinate system (Fig. 22) is so-
called local-level-system. Its origin is defined at the given
position (e.g., reference station position), axis are defined
in following form [8]:

• Axis-1 points east
• Axis-2 points north
• Axis-3 points upward

Coordinates transformations
Coordinates systems transformations that are necessary
for computer simulations of the RTK localization error
will be described here. For details please refer to [36], [8].
Geodetic-ECEF
To perform transformation between geodetic coordi-

nates (λ,φ, h) to ECEF (x, y, z) two parameters fromWGS
84 describing Earth’s Meridian ellipse (defined as connec-
tion between all points on the ellipsoid with λ = const [8])
must be introduced [36]:{

awgs = 6378137m
ewgs = 0.08181919, (57)

where awgs is the semi major axis and ewgs is the eccentric-
ity of the meridian ellipse.
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Let’s define now constant N to simplify calculations
[36]:

N = awgs√
1 − e2wgssin2φ

. (58)

Geodetic to ECEF transformation is given with the
following formula [36]:⎡

⎣ x
y
z

⎤
⎦ =

⎡
⎣ (N + h) · cosφ cos λ

(N + h) · cosφ sin λ

(N(1 − e2wgs) + h) · sinφ

⎤
⎦ (59)

Inverse coordinates transformation is more complex and
will not be discussed, because it is not necessary for the
implementation of simulation environment.

ECEF-ENU
As mentioned before, ENU is a local-level-system, per-
forming transformation of the point in ECEF system
(e.g., satellite coordinates xs = (xs, ys, zs)T ), reference
point (e.g. reference station) coordinates in ECEF (x0 =
(x0, y0, z0)T ), and Geodetic (λ0,φ0, h0)) systems are neces-
sary.
The main part of the transformation is the rotation

matrix Renu. This matrix rotates ECEF axes to make them
coincident with the ENU axes. Renu is given as [8]:

Renu =
⎡
⎣ − sin λ0 cos λ0 0

− sinφ0 cos λ0 − sinφ0 sin λ0 cosφ0
− cosφ0 cos λ0 − cosφ0 sin λ0 sinφ0

⎤
⎦ . (60)

Now xs in ENU coordinates (xsenu = (es, ns,us)T ) is
given with the following formula [8]:

xsenu = Renu(xs − x0) (61)

Sometimes it is more useful to express position in ENU
system with the azimuth (az) and elevation (el) angles
(e.g., satellite position with respect to the reference sta-
tion). Azimuth angle (0◦ − 360◦) is measured clockwise
from the north, and elevation angle (0◦ − 90◦) is mea-
sured from local horizon (positive up coordinate). ENU
can be transformed to az and el with the following
formulas [8]:

tan az = es
ns

(62)

sin el = us√
e2s + n2s + u2s

(63)
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