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Abstract

Driven by the explosion transmission and computation requirement in 5G vehicular networks, mobile edge
computing (MEC) attracts more attention than centralized cloud computing. The advantage of MEC is to provide a
large amount of computation and storage resources to the edge of networks so as to offload computation-intensive
and delay-sensitive applications from vehicle terminals. However, according to the mobility of vehicle terminals and
the time varying traffic load, the optimal task offloading decisions is crucial. In this paper, we consider the uplink
transmission from vehicles to road side units in the vehicular network. A dynamic task offloading decision for flexible
subtasks is proposed to minimize the utility, which includes energy consumption and packet drop rate. Furthermore,
a computation resource allocation scheme is introduced to allocate the computation resources of MEC server due to
the differences in the computation intensity and the transmission queue of each vehicle. Consequently, a
Lyapunov-based dynamic offloading decision algorithm is proposed, which combines the dynamic task offloading
decision and computation resource allocation, to minimize the utility function while ensuring the stability of the
queue. Finally, simulation results demonstrate that the proposed algorithm could achieve a significant improvement
in the utility of vehicular networks compared with comparison algorithms.

Keywords: Mobile edge computing, Offloading, Energy-efficient, Lyapunov optimization

1 Introduction

With the rapid development of internet of vehicles (IoV),
vehicular communications have led to the emergence of
intelligent transportation systems. Vehicles become as
intelligent as smart mobile devices which can support
various applications and services, such as autonomous
driving, augmented reality (AR), virtual reality (VR), and
online gaming [1, 2]. Particularly, most of these appli-
cations are delay-sensitive and computation-intensive,
which result in significant challenges of the computational
capability and the battery capability of vehicles [3, 4].
Moreover, offloading computation tasks and data traffic
to a remote centralized cloud is considered as an effective
approach for resolving the above challenges by employ-
ing abundant computation resources, which could relieve
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the pressure of the computational capability of vehicles
[5]. However, the long transmission distance from vehicles
to the centralized cloud results in high latency execution
time and challenges for the backhaul bandwidth. In future
vehicular networks, there will be an ever-increasing num-
ber of high-traffic applications, and multiple tasks from
smart vehicles need to be processed simultaneously. The
shortage of local computation resource will bring more
severe challenges.

Currently, mobile edge computing (MEC)-enabled
vehicular network is considered as another potential
approach, which could provide powerful computation
resources for the computation-intensive applications.
Compared with other edge computing, e.g., mobile cloud
computing (MCC), fog computing (FC), and cloudlet [6],
MEC technology is favored by academia and industry.
With the development of IoV, benefit from the MEC,
effective transmission for the network with heavy traffic
load, high bandwidth and low latency transmission could
be guaranteed. Generally, MEC servers are cooperated
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with cellular base stations to offer services to vehicles in
the edge of the radio access network.

Additionally, in the vehicular ad hoc network (VANET),
vehicles use DSRC (dedicated short-range communica-
tions), Wi-Fi, or cellular networks to access the infrastruc-
ture (e.g., road side unit (RSU)) at roadside. The vehicle
can communicate to the near RSU through vehicle-to-
infrastructure (V2I) communications [7]. The MEC server
are deployed close to the RSU, which can connect to RSU
to provide abundant computation resources for tasks from
vehicles, and significantly shorten the execution time and
reduce the local energy consumption of vehicles.

Although vehicles may benefit from MEC, it is not easy
to make an appropriate offloading decision due to the
mobility of vehicles. Notably, not all tasks from vehi-
cles can be offloaded to the MEC server. Based on their
individual attributes, tasks are classified into the local sub-
tasks, which should access local components and can only
be processed in vehicles, e.g., sensors, cameras, and user
interfaces [8]. Besides, there are flexible subtasks, which
can be processed either in the vehicle or in the MEC
server. For these flexible subtasks, vehicles could make a
decision whether offloading them to the MEC server or
executing locally according to the network utility.

The large-scale mobile applications are typically served
with the assistance of on-board units (OBUs), result in
vast energy consumption of CPU, which is the top con-
cern for users [9, 10]. To guarantee low-energy con-
sumption and latency transmission, vehicles with differ-
ent tasks need to find an appropriate offloading deci-
sion criteria to achieve a better network performance.
Furthermore, dynamic topology changes caused by the
mobility of vehicles and packet drop make offloading
decisions more complex. Therefore, in this paper, we
propose a dynamic task offloading scheme to jointly min-
imize the packet drop rate and energy consumption based
on various tasks in the vehicular network by Lyapunov
optimization.

1.1 Related works

MEC-enabled offloading have been proposed as a promis-
ing approach to solve the task offloading problems in
recent research literatures [11-15]. In [11], authors pro-
posed a joint task offloading and resource allocation algo-
rithm in vehicular networks to minimize the cost of dual-
sides, which includes smart vehicle and the MEC server.
In [12], a distributed computation offloading scheme was
proposed to optimize offloading decisions, while guar-
anteeing the quality of experience (QoE) of vehicles and
maximizing the utility of the MEC server, where the
utility consists of the energy consumption, delay, and
computation resources. In [13], authors proposed a sup-
port vector machine-based offloading algorithm to reduce
computation complexity, which ensures low latency in
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the offloading process for high-speed vehicles. A coop-
erative scheme for parallel computing and transmission
was proposed in [14] to reduce the latency of VR appli-
cations, where the parallel computing in the MEC server
was applied for subtasks. In [15], the authors focused
on the resource allocation scheme for multi-user MEC
offloading systems by orthogonal frequency-division mul-
tiple access technologies to minimize energy consumption
while reducing the computation complexity.

Vehicular fog computing and other edge computing
have also been widely investigated for task offloading in
literatures [16—19]. The authors proposed a task schedul-
ing scheme based on the computing capabilities of dif-
ferent vehicles [16], which could improve the utilization
of computing resources, while ensuring the low-latency
transmission and system stability. A hierarchical cloud-
based vehicular edge computing (VEC) offloading frame-
work was proposed in [17], where the backup computing
server was deployed close to the VEC server to pro-
vide computing resources. Furthermore, an optimal mul-
tilevel offloading scheme was designed by employing the
Stackelberg game, which introduced an iterative distribu-
tion algorithm to maximize the system utility of vehicles.
Resource allocation problem of multi-user and multi-
server VEC system was investigated in [18], a offloading
scheme was proposed to reasonably allocate resources
for on-board applications to balance load and offloading.
Guo et al. proposed a constrained randomized offload-
ing scheme and a centralized heuristic greedy offloading
scheme to improve resource utilization [19]. In addition,
collaborative task offloading among the remote cloud, the
edge servers and vehicles can be achieved via vehicle-to-
vehicle (V2V) and V2I communication by making offload-
ing decision.

Moreover, V2V communication is also considered as an
alternative way for task offloading. In [20], a bus-based
content offloading algorithm was proposed to maximize
the overall amount of offloading tasks while ensuring
fairness between vehicles. The number of buses with
offloading requirement could be predicted by their posi-
tions and the corresponding transmission rates. In [21],
a software-defined network inside the mobile edge com-
puting (SDNi-MEC) architecture was proposed, and each
vehicle could offload tasks by either the SDN-MEC server
or the V2V link according to the transmission cost.

In [22], vehicles were considered as a cloudlet, which
could execute tasks for mobile devices. In order to ensure
the reliability of the communication link, the task were
divided into multiple parts, each vehicle acted as a relay
to execute a part of the task. In [23], the author proposed
a task offloading scheme based on machine learning,
and vehicles could get feedback from their neighbor-
ing service vehicles, to effectively share the computing
and storage resources from service vehicles. Similar to
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[23, 24] proposed an offloading decision scheme based
on knowledge driven, which optimized offloading deci-
sions by the deep reinforcement learning to minimize the
transmission delay.

In addition, in vehicular heterogeneous networks, which
was composed of VANET and the cellular network,
authors focused on the optimal offloading strategy for
the online video traffic [25]. In [26], authors proposed
a contact duration aware optimal offloading scheme
to optimize resource management and data offloading
of vehicles through the cellular network and vehicu-
lar opportunistic communications. Furthermore, game
theory was used to opportunistically offload the vehi-
cle traffic through the Wi-Fi network in [27]. Most
of the previous works focused on how to make opti-
mal offloading decisions to increase the utilization of
the computation resource of service nodes, while reduc-
ing the network delay or energy consumption of the
task execution. However, the cost of energy consump-
tion of the on-board unit and the packet drop are rarely
considered.

1.2 Contributions

Parts of research works considered task offloading
schemes for a specific time, meanwhile, the low task
granularity assumption, such as bit, is also unrealistic.
In this paper, we consider the energy-efficient offloading
decision-making for mobile edge computing in vehicu-
lar networks to minimize network utility, which includes
packet drop rate and energy consumption. A Lyapunov-
based dynamic task offloading algorithm is proposed to
minimize the total network utility under the optimal
offloading decisions by jointly considering energy con-
sumption and packet drop rate. The main contributions
are listed as follows:

- Firstly, we consider the uplink transmission from
vehicles to road side units in the vehicular network.
According to the properties of subtasks, the subtasks
are classified into local subtasks and flexible subtasks.
The utility of the vehicular network is composed by
the weighted sum of energy consumption and packet
drop rate. To minimize the network utility, we
propose a dynamic task offloading model for flexible
subtasks.

- Secondly, to simplify the optimization problem, we
firstly optimize the computation resource allocation
of MEC server due to the computation intensity and
the transmission queue of each vehicle.

- Finally, a Lyapunov-based dynamic offloading
decision algorithm is proposed, which combines the
dynamic task offloading decision and computation
resource allocation, to minimize the utility function
while ensuring the stability of the queue.
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The rest of this paper is organized as follows. Section 2
introduces the system model and presents the opti-
mization problem formulation. In section 3, a computa-
tion resource allocation scheme and a Lyapunov-based
dynamic offloading decision algorithm are introduced to
solve the optimization problem. The simulation results are
presented and discussed in section 4. Finally, section 5
draws the conclusion.

2 Theoretical method

2.1 System model

2.1.1 Scenario description

Consider N RSUs deployed on the roadside and a MEC
server is connected to a RSU by the wired line. Let A =
{1,2,...,n,..,N} denote the set of RSUs. There are K, vehi-
cles within the coverage of RSU n, K, = {1, 2, ..., kyy, ..., Ky}
denote the set of vehicles within the coverage of RSU
n, the average speed of vehicles is v. The network sce-
nario is shown in Fig. 1. Assume that each vehicle has
computation-intensive and delay-sensitive tasks, which
could either be offloaded to the MEC server through the
associated RSU, or executed locally. For the sake of sim-
plicity, a task offloading period is divided to several time
period ¢. Therefore, the network scenario is quasi-static,
the positions of vehicles and wireless channels conditions
are unchanged during each optimization iteration, and
changing between optimization iterations. Notice that,
the handover process between RSUs is not considered in
this scenario.

Moreover, the task of vehicle k;, can be divided into sev-
eral subtasks, each subtask includes Ly, (¢) packets with
the computation intensity Zx, (cycle/bit). According to the
particular properties, the subtasks can be classified into
the following two classes [8].

1) Local subtask: The subtask should be processed
locally in the vehicle. It takes more time and energy
to transmit relevant information to the MEC server
than to process it locally, or the subtask must access
local components (e.g., sensors, cameras, and user
interfaces). Additionally, there is no transmission
delay, and the energy consumption is from the
computational energy of the vehicle.

2) Flexible subtask: The subtask can be processed either
in the vehicle or in the MEC server. The offloading
decision depends on the difference in transmission
delay and energy consumption between the MEC
offloading and the local execution.

Based on the above discussion, finding the optimal
offloading decision of the task is equivalent to optimiz-
ing the offloading decisions of the flexible subtask base on
energy consumption and packet drop rate. Particularly, if
all vehicles decide to offload flexible subtasks to the MEC
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Fig. 1 Network scenario of V2| communications. Vehicles offload the task to the MEC server connected to the RSU via the V2l
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server, the transmission delay and the packet drop rate will
be increased simultaneously, resulting in low transmission
quality of the vehicular network. The notations used in the
paper are summarized in Table 1.

2.1.2 Communication and offloading decision model
Consider the uplink transmission from a vehicle to the
RSU in the vehicular network, the vehicle could offload
computation task to the MEC server via the associ-
ated RSU. Orthogonal frequency division multiplexing
(OFDM)-based orthogonal channels are assigned to vehi-
cles by RSUs [28]. The transmission power of vehicle &
is denoted as p,’(’i , and the received signal-to-interference-
plus-noise ratio (SINR) of RSU # from vehicle k;, at ¢ is
given by

p H ()

SINR? () = — S~
& (0 I, () + NoB

1)
where H ,fn (¢) is the channel gain between vehicle k, and
RSU n at ¢, I, (t) is the received interference power from
other vehicles within the coverage of other RSUs to RSU
n at t. Ny is the noise power spectral density, and B is
the channel bandwidth [29]. Therefore, for vehicle &, the
uplink transmission rate can be expressed as

R (t) = Blog, (1 + SINR]. (t)) /S )

where S is the size of a data packet.
Assume the task generated by vehicle &, at ¢ consists of
two different categories subtasks, the number of the local

subtasks is N ,lw (¢) and the flexible subtasks is N,}; (®).

The local subtasks should be executed on the local
vehicle, whereas the flexible subtasks could be executed
locally or offloaded to the MEC server depending on the
offloading decision. Let oy, (£), Bx, (t) denote the offload-
ing decisions of vehicle k, at ¢, o, () €[0,1], Bk, (t) =
1—ay, (¢). For instance, the number of the flexible subtasks
is NI (8), a, () =0.6, B, () =04 indicates 0.6N, (t) flex-
ible subtasks will be offloaded to the MEC server, the rest
of 0.4N,’: (t) flexible subtasks will be executed locally. The
ofﬂoadirnlg decision and execution process of the proposed
scheme are shown in Fig. 2.

In the scheme, the total number of the data packets be
offloaded to the MEC server at ¢, Afn (¢), and the total

number of the data packets be executed locally at £, A,l(n ®),
are given respectively by

A1) = Li,, (D, (DN, (8) (3)
AL (t) = L, (0B, (ON], (8) + Li,, (ONL (0) (4)

Based on the above analysis, due to the constraint on
A;Z (), the total number of the packets to be offloaded to
the MEC server cannot exceed the transmission capacity
at £, namely, A,’(’y” ) < R,’(’; ).

2.1.3 Queue model

Generally, to avoid drastically increasing latency and
energy consumption, the task is divided into several sub-
tasks, vehicles will decide to offload parts of flexible
subtasks to the MEC server to ensure the transmission
performance according to the data packet queues. Each
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Table 1 Notation

Notation Definition
N Number of RSUs
N Set of RSUs
Ky Number of vehicles connects to RSU n
<y Set of vehicles connects to RSU n
HQ” Channel gain between k, and RSU n
B Channel bandwidth
No Noise power spectral density
S Size of a data packet
Ik, Interference power from other RSU to vehicle k,
pk”n’ Transmission power of ky,
p’kn Local execution power of k,,
ka” Transmission rate of k,,
CQ: Number of packets executed by the MEC server
C/kn Number of packets executed by kp,
Nﬁn Number of flexible subtasks of k,
N’kn Number of local subtasks of k,
ak, . Pr, Offloading decision
Fm Total computation resource of the MEC server
FL: Allocated computation resource to k, by the MEC server
FL” Local computation resource
Lk, Packet number of each subtask of k,
Zx, Computation intensity of each subtask of k,
EL: Transmission energy consumption of flexible subtask of ky,
EQN Local energy consumption of flexible subtasks of k,,
EEN Local energy consumption of local subtasks of k,
Akmn Number of arrival packets in the transmission queue of k,
A’kn Number of arrival packets in the local queue of k,,
;Z Transmission queue of k,
Q/n Local queue of k,
DQ: Number of drop packets in the transmission queue of k,
D’kn Number of drop packets in the local queue of k,
qg Packet drop penalty in the transmission queue of k,
qf(n Packet drop penalty in the local queue of vehicle k,

flexible subtask consists of several data packets, therefore,
the offloading decisions for flexible subtasks are equiv-
alent to finding the optimal decisions for the associated
data packets so as to minimize the network utility. Specif-
ically, Q]’(’; (t) is denoted as the transmission queue of
vehicle k,, at time ¢, which includes the data packets to
be offloaded to the MEC server. Qf(n (¢) is the local queue
which includes the data packets to be executed locally.
Consequently, the transmission queue and the local queue
of vehicle &, at £ + 1 are given respectively by
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Qi (t+1) = max{Q (t) — C/(t) — DI (1), 0} + A} (¢)
(5)

ngf t+1) = max{Qf{ﬂ ®) — C,in @) — Din ®),0} + Ain )
(6)

where ka,, 0) =0, Qf{n (0) = 0. In the transmission queue
and the local queue of vehicle k,, at £, Dfn (¢) and D,in (t) are
the number of drop packets due to the delay constraint,
respectively. Akm,, (t) and Af(n (¢) are the number of packets
to be offloaded to the MEC server and executed locally,
respectively, which are calculated as the arrival data pack-
ets at ¢ in the queue updating process. C,i”n () and C,l(n )
denote the number of packets executed by the MEC server
and the local vehicle at ¢, respectively, which are related to
the allocated computational resource by the MEC server
F”’ (¢), the local computation capablllty s as well as the
computatlon intensity of the subtask. leferent vehicles
have different computation capabilities according to the
local CPU frequency.

Additionally, to guarantee the transmission require-
ment, data packets will be dropped when the delay con-
straint is violated, namely, the maximum queue length is
exceeded, which is given by

QL6 > Q™) )
Q6 > Q™ 8)

where Qm M3 () and Ql max(t) are the maximum trans-
mission queue length and local queue length at ¢, respec-
tively.

2.1.4 Energy consumption
Consider the task of vehicle &, at ¢ is composed of N ,l(n (t)

local subtasks and N]}; (¢) flexible subtasks, E]’(’:t (t) denotes
the energy consumption to offload the data packets Al’('z (t)

of o, (t)N{n (¢) flexible subtasks to the MEC server, which
is given by
PR AL (D)

9
R,’(’; () ©)

E(6) =

where pk is the transmission power. Moreover, El (t)
denotes the local energy consumption of k, at ¢, whlch is
given by

P AL ®

Lo =El @+ E2@ T

(10)
where pf(n is the local computation power. E]l(n(t) con-
sists of energy consumption when the data packets Ain ()
of ,Bkn(t)Nlin (¢) flexible subtasks and Nll(n (t) local sub-

tasks are executed locally, which are denoted as E,g )
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Fig. 2 Process of offloading and execution. The task generated by the vehicle are classified into two subtasks at t, the local subtasks should be
executed locally, whereas the flexible subtasks could be executed locally or offloaded to the MEC server depending on the offloading decision

and EZ (t), respectively. Notice that, parts of data pack-
ets will be dropped when the delay constraint can not
be satisfied, and the associated energy consumption is
not included in the total energy consumption model.
Moreover, the MEC server is powered on, the compu-
tational energy consumption can be neglected. Besides,
energy consumption and the backward transmission time
of results to vehicle k;, from the MEC server also could be
neglected [30].

2.1.5 Problem formulation

In this paper, we aim at minimizing the utility of vehicular
networks, including energy consumption and packet drop
rate, which is given by

uw= Y (q0p® +d,0ho) + E,® (D

kyekC,

where qkm,, and qf(n are the packet drop penalty factor for
the transmission queue and the local queue of vehicle &,
respectively. E; (£) denotes the total energy consumption
of vehicle k;, at ¢, which includes energy consumption of
offloading data packets to the MEC server and locally
executing data packets. Therefore, the total energy con-
sumption can be expressed as

E, () =E () + EL () + EZ(9)

PL Lio, (0B, (ON], (1)
G, ®

P L, (O, (ON], (8)
a I0)

P Li, (ONL (1)
G,
(12)

Consequently, the optimization problem P;(¢) can be
formulated as:

oy, (Ig)lg;n @) ue
st.(C) @) < m
(C2) AL () <RP(D)
(C3)  ag,(® + B, (=1
(€4 N, ®)>0, Ni(@®>0
(C5) pp()>0, pi()>0 (13)

where (C1) indicates the maximum number of offloaded
packets C,’(Z (t) to the MEC server at £, F"” is the total
computation resource of the MEC server. (C2) is the con-
straint on the number of flexible packets offloaded to the
MEC server, which cannot exceed the packet transmis-
sion rate. (C3) is the offloading decision vector constraint,
which indicates the offloading decision for the flexible
subtask of k;, 0 < oy, (£) < 1,0 < B, (1) < 1. In (C4),

when Nf (t) = 0, there is no flexible subtask. (C5) is the
tradltlonal transmission power and local execution power
constraint.

3 Computation resource allocation and
offloading decision-making

Based on the above analysis, the optimization problem

could be solved by a computation resource allocation algo-

rithm and a Lyapunov-based dynamic offloading decision

(LDOD) algorithm, which can be used to obtain C,Tn (®)

and Py (t), respectively.

3.1 Computation resource allocation

Moreover, we dynamically adjust the computation
resource of the MEC server allocated to vehicle k,, with
respect to the computation intensity of subtasks. F”’ ()

and Fl are the computation resource allocated to vehlcle
ky at t by the MEC server and local vehicle respectively,
and F,ﬁ”ﬂ (t) < F™. Specifically, to minimize the maximum
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task execution time for all offloading vehicles, the opti-
mization problem of computation resource allocation is
given by:

) Zi, Q1)
min max [
EPL @)k F (@)

anelCn

s.t. (C6) anem Fl'(t) = F™
(C7) F'@®) >0
(C8) Q>0 (14)

Constraints (C6) and (C7) represent the total compu-
tation resources allocated to vehicles at ¢, (C8) is the
constraint on transmission queue of vehicle &, at ¢.

3.2 Lyapunov optimization

The queue delay, the packet drop rate and energy con-
sumption are jointly considered to make the optimal
offloading decisions and minimize the utility of vehicu-
lar networks. The Lyapunov optimization function can be
represented as

1
Lo =2 ) Qh®°+Q, 0 (15)
nek,
The Lyapunov drift is given by
A@) =LE+1) —L©® (16)

The Lyapunov penalty item includes the packet drop
cost Y <q,’f DY () + qi Df( (t)) and total energy con-
kne K, n n n n
sumption Y Ej (¢), which is given by
knekl,

VU® =V Y (D0 +q,,Df, ) +V Y Ex 0
kne](:n kne’cn
(17)

The control parameter V indicates the importance of
energy consumption and the number of drop packets.
The larger V indicates the higher priority of the packet
drop number and energy consumption are considered
in the utility function than the stability of the queue.
In other words, the smaller the V, the higher the prior-
ity of the queue stability in the packet offloading deci-
sion. Therefore, to ensure the stability of the data packet
queue while minimizing Lyapunov penalty, a Lyapunov
drift-plus-penalty item is included in the queue, which is
formulated as

AO+V Y (qk’"an (t) + g}, D}, (t)) +V Y B,
knEICn knEICn
(18)
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Accordingly, the original optimization problem P (#)
can be transferred to the equivalent Lyapunov drift-plus-
penalty minimization problem P, (t), which can be repre-
sented as

min < AO+V Y (4D 0+, D 0) +V Y Ei
Aty (B () o\l Pk R

s.t.(C2) — (C5)
(€9 CrO+DEB<QL®
(C10) Cp (&) + D) () < Q ()
(19)

n (C9)-(C10), the total number of data packets, which
are offloaded to the MEC server or executed locally, could
not exceed the current data packet queues to ensure the
stability of the queue.

Based on [31], with the given constant K, the Lyapunov
drift-plus-penalty should satisfy

AO+V Y (4D ® + 4, DL 0) +V Y B ®
knelCy knelkly

=La+ D =LO+V Y (4RO +af, D, 0) +V Y E,®
knek, knekn

1
=3 > ACE®+DE M+ AL O + (C (+ Dy, )+ AL ®°)

knek,
= Y AQr@Cr®Y = Y QL (OC, ()} + Ps(t) — Palt)

knelkly knek,

<K= Y AQROCE®Y— Y Q) (OCk (O} + Ps(t) — Palt)
knen kn€kp
(20)
where K at ¢t is given by
1 2
K=2 Y (U@ + Dy ®) +Ap™>®’

kyekC,

+(cm @ + Dijm(t))z + At (@)
According to Eq. (20), the optimal Lyapunov drift-plus-
penalty, offloading decisions, energy consumption, and
the packet drop strategy could be obtained. Consequently,
the optimization problem P,(¢) is converted to minimize
optimization sub-problem P3(¢) and maximize optimiza-
tion sub-problem P4 (¢) which are respectively given by

Po®) = Y o, 0 (Li, (OQL (ON], (0 + VEZ ()

kpekC,
+ Y B ® (Li, Q) ON, 0 + VEL )
kneKy

+ Y Ly, (0)Q) (N, () + VEZ (1)
knekl,

(22)



Huang et al. EURASIP Journal on Wireless Communications and Networking

Py = Y DR (@ - vaz) + 0k, o (- val, )

knekly,

(23)

P3(t) is related to energy consumption and the stability of
queues, which will generate optimal offloading decisions.
Whereas P4 (¢) is related to the number of drop packets,
which will decide the packets drop strategy.

3.3 Offloading decisions and energy consumption
Accordingly, optimal offloading decisions, energy con-
sumption, and the state of queues at ¢ can be obtained by
minimizing P3(£), which is composed of K, polynomials
due to K, vehicles. The optimal offloading decisions of
vehicle &, can be obtained by minimizing polynomial k;,.
Therefore, P3(¢) is given by

min (24)

e, (0):Be, (2)

ag, (OWh(t) + ,Bk,, OWh(t) + VE%, )

where Wi(5) = L, (DQ) (IN (£) + VEZ(£), Wa(t) =
L, (0QL (ON] () + VEL 0.

For vehicle k,, energy consumption and the stability of
queues are different with respect to offloading decisions.
The optimal offloading decision vectors oz,fn ®), ﬁ;(kn ®
could be obtained by

ok, (YWL(0) + Br, (OWa(0) + VER (1)

arg min
ap (0.8, )
s.t.  (C2)-(C5), (C9)-(C10) (25)

Based on the optimal offloading decisions, the total
energy consumption can be obtained by

Ex,(t) =EJ'(t) + E (t) + EZ (¢)
mum%mﬁm P L, (0B} (ONY, (©)
R (D) G @
Pl Lk, (ON}, (©)
Ci (0

(26)

Thus, the optimal offloading decisions a,fn (0, ,B,’(‘n () can
be obtained by minimizing WW(¢), as shown in Eq. (25).
Furthermore, energy consumption of vehicle k,, can also
be obtained with the associated optimal offloading deci-
sions, as shown in Eq. (26).

3.4 Packet drop strategy

To ensure the transmission latency of the vehicular net-
work, the data packets which can not guarantee the delay
constraint will be dropped. The number of drop packets
in the transmission queue and the local queue could be
obtained by maximizing Pa(t). Pa(?) is also composed of
K, polynomials, which indicates the associated vehicles,
and the number of drop packets in the transmission queue
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D,’(’}’q (t) and the local queue Df(n (t) at ¢ can be expressed
respectively by

DM QI (8) > Vgl
DI@y=1{ "k 7 “hi Ko 27
& { 0, others @7)

/,max ! I

Dy Q0 > Vg
D) =4 "k o o 28
b () [ 0, others (28)
where Dm max Dl M3 are the maximum number of drop

packets in the transmlssmn queue and the local queue,
respectively. In consequence, the packet drop strategy of
the vehicular network can be obtained.

To optimize the offloading decisions and energy con-
sumption, while ensuring the transmission delay and the
packet drop rate, we propose a Lyapunov-based dynamic
offloading decision algorithm, which is given by the fol-
lowing steps:

Step 1, the task of vehicle k;, is divided into flexi-
ble subtasks and local subtasks. All the local subtasks
are executed locally, and parts of flexible subtasks will
be offloaded to the MEC server according to the utility
function. The utility of vehicle &, includes energy con-
sumption and penalty of packet drop, which is related to
the transmission queue Q,’(” (¢) and the local queue Q,i (2).

Step 2, calculate Cl (D based on the computation inten-
sity of the subtask and the computation capacity of vehicle
k, at t. Moreover, C”’ (¢) is related to the computa-
tion intensity of the subtask and Fm (¢), which could be
obtained by computation resource allocatlon

Step 3, vehicle k;, makes optimal offloading decisions
for all flexible subtasks to minimize the utility of vehicular
networks by the LDOD algorithm.

Assume the average number of vehicles is K, and
the average number of flexible subtasks per vehicle is
Ng. In the algorithm, the complexity of computation
resource allocation is O(K), and the complexity of making
offloading decision is O(KNj). Therefore, the complex-
ity of the algorithm is O(K) 4+ O(KN). The Lyapunov-
based dynamic offloading decision algorithm is shown in
Algorithm 1.

4 Simulation results and discussions

In this section, we set the main parameters, present the
simulation results of the optimization algorithm, and eval-
uate the performance of the proposed LDOD algorithm in
comparison with different algorithms in various aspects.
The following algorithms are introduced for compari-
son: random offloading (RO) algorithm, full-offloading
(FO) algorithm, and the mobility aware task offloading
(MATO) algorithm, which was proposed in [32] to offload
parts of the task so that the offloading delay of the sub-
task is the same as the local execution delay, thereby, to
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Algorithm 1 Lyapunov-based Dynamic Offloading Deci-
sion Algorithm

1: Detect the data packet queue Q]'(’; (t), Q,in (t), calculate

the number of arrival packets A,’(’; (t) and Ain ®).
2: Allocate computation resources of MEC server to
vehicles, which is F,Zﬁ (®).
3: Calculate C/zl, (¢) and C,in (t) based on the Zy , F,t”n (%)
and Fllw‘
4: Let ® = ’Cn.
5: for vehicle k;, € ® do
6:  Update the offloading decisions oz]’(“’1 ), ,Blfn (t) by
Eq. (25);
7. Update energy consumption E, (¢) by Eq. (26);
8:  Update the packet drop strategies D,’(’; (t),Df(n (¢t) by
Egs. (27) and (28), respectively;
o Update A" (1), A} (0);
0. A (D) = o,Alkn (£) = 0 then

11: break

122 endif

13 Update Q7' (0), Q’kn (t) by Egs. (5), (6).
14: end for

15: Output optimal offloading decisions a,’("n(t),ﬂ;n(t),

packet drop strategies D}’ (t), Df(n (t) and energy con-
sumption Ey, ().

minimize the total delay. In the random offloading algo-
rithm, vehicles randomly offload flexible subtasks to the
MEC server, whereas, in the full offloading algorithm, all
the flexible subtasks will be offloaded to the MEC server.

4.1 Parameter setting

Consider the coverage area of each RSU is a circle of radius
200 m, and k, = 10 vehicles are randomly distributed in
two unidirectional lanes within the coverage of RSU #,
and they do not move out of the coverage of RSU n dur-
ing AT. The speed of vehicles is 40 km/h, and the distance
between adjacent vehicles in the same lane is not less than
10 m. Assume time period is 10 ms, the data traffic satis-
fies Poisson distribution. The main parameters used in the
simulation are described in Table 2.

4.2 Performance analysis

In Fig. 3, we evaluate the average packet drop rate versus V'
with various traffic load for the LDOD algorithm, where
the packet drop penalty factor q,’:; = qin = 2. From the
figure, the average packet drop rate decreases rapidly with
the increasing V, then decreases slowly and approaches to
zero finally. Obviously, when V is increasing, the queue
delay constraint will be relaxed, resulting in smaller num-
ber of dropped packets. In addition, the average packet

(2020) 2020:35 Page 9 0of 16
Table 2 Simulation parameters
Parameter Value
Transmission power of vehicle kp, pg 100 mw
Local execution power of vehicle kp, p/k,7 300 mw

Maximum number of drop packets in the

transmission queue D™
n

200 packets

Maximum number of drop packets in the
local queue DQ:”BX

200 packets

CPU frequency of vehicle kp, FLN 1 ~3GHz

CPU frequency of the MEC server, F™ 50GHz

Traffic load, Ak, 5~ 20KB/t
Computation intensity, Z, 500 ~ 1000 cycle/b
Channel bandwidth B 1 MHz

Path loss model ITU UMa/UMIi [33]
Noise power No —100dBm/Hz
Intra-interface Iy, dy*

Packet length S 500b

drop rate increases with the increasing traffic load A,
packets are more likely to violate queue delay constraints
under the heavy traffic load.

Figure 4 shows the average energy consumption ver-
sus V with various traffic load for the LDOD algorithm.
From the simulation results, we can seen that the aver-
age energy consumption for the LDOD decreases with the
increases of V. Specifically, when V increases, energy con-
sumption has higher priority in the offloading decision
process. When V is large enough, the total average energy
consumption decreases and approaches to a stable value.
With the same V, the average energy consumption of the
transmission and the local execution increases with the
increase of the traffic load Ag,.

Figure 5 depicts the average queue length versus V with
various traffic load for the LDOD algorithm. Obviously, it
can be seen that the average queue length increases with
the increasing V, and the queue delay constraint will be
relaxed. Additionally, larger A;, will result in more arriv-
ing packets at each time slot and the average queue length
will be increased.

Figure 6 presents the average packet drop rate versus
V with various packet drop penalty factor for the LDOD
algorithm, where qk"‘n = q,in denoted as g, and A, = 14.
With the same V;, the increasing g relaxes the queue length
constraint; hence, average packet drop rate is a decreas-
ing function of g. Moreover, the average packet drop rate
decreases rapidly with the increasing V, due to the relax-
ation of the delay constraint. Finally, the packet drop rate
on the transmission queue will quickly drop to 0 and
the packet drop rate on local queue decreases gradually,
resulting in the decrease of the average packet drop rate.
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Average packet drop rate
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Fig. 3 The average packet drop rate versus the control parameter V with different A

In Figs. 7 and 8, we evaluate the average energy con-
sumption and the average queue length versus V with
various packet drop penalty factor for the LDOD algo-
rithm. From the simulation results, we can see that the
average energy consumption is a decreasing function of V,
whereas the average queue length is an increase function

of g. With the same V, the average packet drop rate
is a decreasing function of ¢, which can be obtained
from Fig. 6. Therefore, the weight of packet drop rate
in the network utility decreases with the increasing ¢,
while the weight of the average energy consumption
increases and more flexible subtasks will be offloaded to

6
—©— =8
55 —— =11 H
—=— =14
5 A=17 [
4.59] b
2 4 ,
S
2
g 351 .
3[7 = = = = 1= H1
2.5 b
> e P P P B g
2 - -
100 120 140 160 180 200 220 240 260 280 300
Control parameter V
Fig. 4 The average energy consumption versus the control parameter V with different A
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Fig. 5 The average queue length versus the control parameter V with different A

the MEC server. Similarly, the increasing g could relax
the queue delay constraint and increase the average queue
length.

Figure 9 presents the computation resources allocated
by MEC server to vehicles for the LDOD algorithm when
t =2,V =100,9 = 2, A, €[5,20]. The bars in the figure
indicate the ratio of the allocated computation resources

of MEC server. Figure 10 presents the offloading deci-
sions of flexible subtasks of vehicle k,, at different time
slots when V' = 100,q = 2,Ar, €[5,20]. In the figure,
the blue bar represents the proportion of the offloaded
flexible subtasks to the MEC server, whereas the yellow
bar shows the proportion of the locally executed flexible
subtask.
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Average packet drop rate

0
100 120 140 160 180
Control parameter V

Fig. 6 The average packet drop rate versus the control parameter V with different g
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Fig. 7 The average energy consumption versus the control parameter V with different g

The time varying average length of the transmission
queue and the local queue in the LDOD algorithm are
shown in Figs. 11 and 12, respectively, where g = 2, A, €
[5,20]. From the figures, the average length of the trans-
mission queue and the local queue are increasing initially,
and slowly approach to the convergence. Moreover, the
length of the queue is an increasing function of V, the

length of the queue at V' = 100 is less than the length
of the queue at V' = 300. Meanwhile, the average length
of the local queue is longer than the transmission queue
with the same V, due to the higher execution rate of the
transmission queue compared with that of the local queue.

Figure 13 is the comparison of the average packet drop
rate of the LDOD, the FO, and the RO algorithms. It
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Fig. 8 The average queue length versus the control parameter V with different g
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Fig. 9 The ratio of the computation resource allocated to vehicles to the total computation resource of the MEC server

can be seen that the average packet drop rate decreases
with the increases of V for all algorithms. Meanwhile, in
the FO algorithm, all the flexible packets are offloaded
to the MEC server, resulting in a large packet drop rate
in the transmission queue, with a small local queue.
Thus, the packet drop rate of the FO algorithm is larger
than that of the LDOD algorithm. When V is small, the

packet drop rate of the MATO algorithm is smaller than
that of the proposed algorithm. However, the weight of
packet drop rate in offloading decisions also increases
with increasing V, and the packet drop rate of the MATO
algorithm is larger than that of the proposed algorithm
with increasing V. Obviously, in the packet drop rate,
the LDOD algorithm has better performance than the
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0%
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Time[10ms]

Fig. 10 The task offloading decisions of vehicle k, at different time periods
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Fig. 11 The average length of the transmission queue versus time with different V/

comparison algorithms, the RO algorithm has the worst
performance.

The comparison of different algorithms with respect
to the average energy consumption is given in Fig. 14.
Among them, the average energy consumption of the
LDOD algorithm decreases with the increasing V,
whereas the RO algorithm and the FO algorithm obtain
the highest and the lowest average energy consumption,

respectively. In addition, based on the simulation results,
the energy consumption of the MATO algorithm is larger
than that of the proposed algorithm with increasing V.
Moreover, the local execution power consumption is rela-
tively larger than the transmission power consumption, as
aresult, the FO has the best performance in energy saving.
Specifically, when vehicles decide to offload tasks simul-
taneously, the MEC server will be overloaded, resulting

450
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Fig. 12 The average length of the local queue versus time with different V
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Fig. 13 The average packet drop rate versus V with the proposed algorithm, MATO algorithm, and RO and FO algorithm

in a high packet drop rate in the FO algorithm. Dynami-
cally adjusting the control parameter V' could optimize the
tradeoff between the packet drop rate, energy consump-
tion, and the stability of the queue.

5 Conclusion

In this paper, we investigated the task offloading decision
in vehicular networks by jointly considering energy con-
sumption and packet drop rate. The tasks of vehicles were
classified into local subtasks and flexible subtasks accord-

ing to the particular properties. Moreover, a dynamic task
offloading scheme was proposed in the offloading process,
which would execute flexible subtasks by the local termi-
nals or the MEC server based on the offloading decision.
To further improve the task offloading performance, a
computation resource allocation scheme was proposed to
allocate the computation resource of MEC server to vehi-
cles. Based on that, the equivalent Lyapunov drift-plus-
penalty minimization problem was proposed to minimize
the utility, while ensuring the stability of the queue.

3.4
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Fig. 14 The average energy consumption versus V with the proposed algorithm, MATO algorithm, and RO and FO algorithm
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