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Abstract

In this paper, we consider a strong global search algorithm which exhibits strong exploration ability in unmanned
aerial vehicle (UAV)-aided networks. UAVs in wireless communication have aroused great interest recently due to its
low cost and flexibility in providing wireless connectivity in areas without infrastructure coverage. Artificial bee colony
algorithm is a powerful approach for such a scene. However, due to its one-dimensional and greedy search strategy, it
still suffers slow convergence speed. In the traditional version, three types of bees, including employed bees, onlooker
bees, and scouts, are employed and they cooperate with each other to find the best food source position. Though
different roles, these three types of bees play, there is no difference of division within the internal of each type of bees.
Considering this phenomenon, this paper proposes a modified artificial bee colony algorithm with intellective search
and special division (ABCIS) to enhance its performance, where different employed bees and different onlooker bees
use different search strategies to search for food sources. Besides, the greedy selection method is also abandoned and
the food sources’ positions are updated at each iteration. Under this circumstance, the whole population’s experience
is fully utilized to guide bee’s search. Finally, to testify the proposed algorithms’ competitiveness, a series of
benchmarks are adopted, and the experimental results demonstrate its superior performance among other
state-of-the-art algorithm in UAV-aided networks.
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Introduction
Unmanned aerial vehicles (UAVs) are being increasingly
used as an innovativemethod to enable robust and reliable
communication networks [1–4]. Due to the high mobility,
flexibility, and good channel condition, UAV communica-
tion has been an emerging technique which can help to
achieve better performances [5–7]. In order to deploy a
UAV-aided network, it is important to model the reliabil-
ity and coverage of the airborne platform. In particular,
recent research has shown that the location and height of
drones can severely impact the reliability of air-to-ground
(A2G) links [8]. Furthermore, UAVs have great potential
to be employed in long-range backscatter networks to
both support more devices and increase the network effi-
ciency and reliability. Consequently, optimizing the 3-D

*Correspondence: by.liujian@gmail.com
2College of Information Engineering, Nanjing University of Finances and
Economics, 210003, Nanjing, China
Full list of author information is available at the end of the article

location of the data collecting UAV is very critical in order
to provide reliable communication for backscatter devices
which operate in the presence of very low power signals
[9–11].
In literature, UAV communication has been extensively

studied for boosting the capacity and coverage of exist-
ing wireless networks [12–15]. Li et al. [12] and Wu and
Wang [13] investigated the 2-D and 3-D placement prob-
lems of a single UAV, respectively. In [14], the authors aim
to optimize the UAV’s altitude and antenna beamwidth
for throughput maximization in three different communi-
cation models without considering the impact of altitude
and beamwidth on the flight time. In [15], an optimum
placement of multiple UAVs for maximum number of
covered users is investigated. However, evolutionary algo-
rithms have not been used for UAV-aided networks. In
nature, creatures conduct comprehensive tasks by swarm
cooperation, and each individual’s simple behavior could
indicate powerful capability because of the interaction

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-020-1659-y&domain=pdf
http://orcid.org/0000-0002-6548-3002
mailto: by.liujian@gmail.com
http://creativecommons.org/licenses/by/4.0/


Hu et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:40 Page 2 of 17

among its swarm. Inspired by this phenomenon, evolu-
tionary algorithms are gradually developed and they have
received extensive attention in recent years.
Different from the traditional mathematical optimiza-

tion algorithms, evolutionary algorithms could be applied
to extensive problems because of its no requirement of
problem characteristic. Among these algorithms, artificial
bee colony (ABC) [16] has been demonstrated powerful
competitiveness, and due to its ease of implementation,
it has been successfully applied to many real-world prob-
lems, such as industrial systems [17–20], image processing
[21–24], and so on. Compared with other evolutionary
algorithms, especially the particle swarm optimization
(PSO) and differential evolution (DE), ABC shows strong
global search ability yet poor convergence speed [25–
30]. To enhance its performance, plenty of works have
been carried out. Zhu and Kwong [25] raised that ABC
shows slow convergence speed because of its blindness
search equation; thus, they introduced the best posi-
tion found so far by the whole population to guide each
bee’s search. With the same motivation, Karaboga and
Gorkemli [26] introduced the best position found so far
by a newly defined neighborhood to direct onlooker bees’
search. Considering oscillation phenomenon as exhib-
ited in [25], Gao et al. [27] modified the search equation
from three items into two items, which utilized two ran-
domly selected individuals, and then they cooperated
this search equation with orthogonal learning scheme to
accelerate the convergence speed and further enhance
the performance. Kiran et al. [28] introduced an inte-
gration of five different search equations for various
optimization problems with diverse characteristics, uti-
lizing an adaptive selection strategy. Xianneng Li and
Guangfei Yang [29] kept a record of individuals’ past
successful search experience, and utilized them to guide
the future search, and attained superior optimization
performance.
In this paper, an intellective search strategy to optimize

the 3-D location of the aerial base stations under vari-
ous scenarios is proposed. Regarding the deficiency of this
strategy, a new division for updating the best food source’s
position is endowed to the corresponding employed bees
and onlooker bees. Besides, in the proposed ABCIS algo-
rithm, the greedy selection mechanism is abandoned, and
each food source’s position is updated at each iteration;
thus, the scout’s role is not necessary and it is eliminated
in the proposed algorithm of this paper.
The remaining part of this paper is organized as fol-

lows: Section 2 presents the traditional methods via arti-
ficial bee colony. The detailed information of the pro-
posed ABCIS algorithm is described in Section 2. In
Section 2, comprehensive experiments and discussions
with the purpose of demonstrating ABCIS’s effectiveness
are conducted. Section 2 concludes the paper.

Methods
First proposed by Karaboga in 2005, artificial bee
colony algorithm divides individuals into three groups—
employed bees, onlooker bees, and scouts. Each type of
bees shares the same purpose of locating the food source
withmaximumnectar. In the searching process, employed
bees take charge of making rough search in the search
space, and onlooker bees hold the task of making fine tun-
ing around the superior food sources. For the scouts, they
work for jumping out of local optima and maintaining the
algorithm’s exploration ability. To be more specific, this
paper explains them one by one.

Food sources
Let NP denote the population size, then the number of
food source is calculated as NP/2 . At the beginning of
artificial bee colony algorithm, these NP/2 food sources
are initialized randomly, as shown in Eq. (1):

Foodij = Lowerj+rand (0, 1)•(
Upperj − Lowerj

)
, (1)

where i denotes the ith food source, and j presents the jth
dimension, i = 1, 2, ..., NP/2 , j = 1, 2, ...,D.Lower and
Upper represent the minimum and maximum bounds of
the search space, respectively. rand(0, 1) randomly gener-
ates a real value within the range of (0,1).

Employed bees
The number of Employed bees is equal to that of the
food source, and it takes up half of the colony. For each
employed bee, it updates food source’s position by using
Eq. (2):

trialij = Foodij + rand (−1, 1) • (
Foodrj − Foodij

)
, (2)

where r �= i, and r is a randomly selected integer within
the range of (1,NP/2), rand(−1, 1)randomly generates a
real value within the range of (−1, 1) .
After a new vector triali being generated, a greedy selec-

tion mechanism is applied between triali and Foodi, and
then the corresponding object value fi and fitness value is
computed. fi can be calculated by the optimization prob-
lem (if it is a minimum problem), and Fi can be calculated
by Eq. (3):

Fi =
{
1/(1 + fi) if fi ≥ 0
1 + ∣

∣fi
∣
∣ if fi < 0 (3)

Onlooker bees
When all the employed bees finish their works, onlook-
ers start their work. They calculates each food source’s
selection probability by Eq. (4):

pi = Fi
∑NP

1 Fi
(4)
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Then the roulette wheel selection mechanism is used to
help onlookers to select a food source and make exploita-
tion around its neighbor region. In this part, the search
equation is the same as Eq. (2).

Scouts
When a food source cannot be improved for a succes-
sive number of generation, it will be abandoned and be
randomly initialized by a scouts in the search space.

Artificial bee colony with intellective search and
special division
In the traditional artificial bee colony, both employed
bees and onlooker bees update their corresponding food
source by learning from a randomly selected neighbor.
Besides, the greedy selection strategy makes all the food
sources’ position get more andmore optimal, which drops
out much search experience. In the proposed ABCIS algo-
rithm, food sources’ positions are updated at each gen-
eration, and they are updated by two elite positions with
better fitness value. In mathematical expression, it can be
presented as:

Foodij = Alphaj + Betaj
2

+ SR
(

(−1)n1
(
c1Alphaj − rand (0, 1) Foodij

)

+(−1)n2
(
c2Betaj − rand (0, 1) Foodij

)

)

(5)

where Alpha is the food source’s position with best fitness
value. In the proposed ABCIS algorithm, since the food
sources are updated at each iteration, the best position
found so far in history needed to be recorded and used
to guide other bees’ search. Under this circumstance, this
paper learns from the PSO algorithm and records each
food source’s personal best position as pbest. When con-
sidering the selection of Beta, we firstly randomly select
a food source r (r �= i) from the colony, then compare
the corresponding pbestr and pbesti , and the better vec-
tor (with better fitness value) is assigned to Beta. Thus
the search strategy illustrated in Eq. (5) is guided by two
elite vectors, which will accelerate the convergence speed.
n1 and n2 are two integers, they can be 0 or 1, they are
selected randomly and independently. SR is the success
rate. At the beginning of the search state, SR is larger and
then the step size is larger, which will help the swarm
to execute global search and open up extensive unknown
regions. At the later state of optimization, the SR will be
small and it helps bees to make fine tuning around the
potential global optimum, which will enhance the solution
accuracy. For the parameters c1 and c2 , they are generated
by:

c1, c2 = rand • rand
rand

, (6)

where rand means uniform random generator, and c1 and
c2 are generated independently.
Besides, by using Eq. (6) to generate these two parame-

ters, there may be some undesired values. To investigate
this characteristic, we adopt the Monte Carlo method
[31–33]. In this experiment, the generator rand•rand

rand is used
to generate random values, and each trial are repeated for
10,000 times. That is to say, 10 000 numbers are generated.
Then, their density distribution is plot, as shown in Fig. 1.
As Fig. 1 indicates, values may exceed 1000, which may

not be desired in the searching process. Thus, this paper
truncates them into the range of [ 0, 2] (when the gen-
erated value is out of that range, it will be deleted and
regenerated) (Fig. 2). Figure 2 shows the density distri-
bution of the 10,000 randomly generated values. Of these
numbers, More than 85% of 1000 numbers are within the
range of [ 0, 1], which is the same to the range of rand,
and there are also numbers larger than 1. Figure 2 shows
that individuals could learn more from the selected elite
vectors rather than itself. The settings of [ 0, 2] and the
effectiveness will be discussed in Section 2 by numerical
experiments.
In Eq. (5), all the dimensions are updated simultane-

ously at each generation. By using Eq. (5) to generate new
positions, employed bees and onlooker bees will be more
intellective. We further consider the case when the cur-
rent food source is the global best position, then both
Alpha and Beta vectors equals to Foodi itself. Then, Eq. (5)
can be rewrote as:

Foodji = [
1 + (−1)n1 (c1 − k3) + (−1)n2 (c2 − k4)

] · Foodji
(7)

In this case, Foodi will lose the ability of learning from
others. Thus, a special division for the best food source
should be assigned. Then, Eq. (5) cannot generate new
positions, which will cause evaluation’s waste. Thus, a new
division for the best food source should be assigned. In
ABCIS algorithm, it uses the following equation to update
the best food source’s position:

trialij = Foodmj + (−1)n3
(
c3Foodmj − rand • Foodij

)
(8)

where Foodm is a randomly selected food source and it is
different from Foodi. Similar to n1 and n2 in Eq. (5), n3 is
also a integer number selected from the collection of {0, 1}
. And similar to c1 and c2 , c3 is also generated by rand•rand

rand .
In Eq. (8), only one dimension which is randomly

selected is updated at each iteration, which is simi-
lar to that in the traditional artificial bee colony. And
Eq. (8) applies the greedy selection strategy, which aims
at enhancing the global search ability. For employed bees,
they search for each food source and decide if it is the
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Fig. 1 Density distribution of generator rand•rand
rand

global best food source. If it is not the best food source,
they will randomly select a neighbor r of the current
food source i and decide if pbestr is better than pbesti.
For Onlooker bees, they use the roulette wheel selec-
tion mechanism to select a food source to exploit. The
main pseudo code of ABCIS algorithm is presented in
Algorithm 1.

Experimental results and discussions
To investigate the proposed ABCIS algorithm’s effective-
ness, integral and comprehensive experiments are con-
ducted in this subsection. In Section 2, 14 classical bench-
mark functions, functioning as the evaluation criterion,
are listed and introduced. Section 2 conducts comparison
experiments for ABCIS and other state-of-the-art algo-

Fig. 2 Density distribution of generator rand•rand
rand within the range of [ 0, 2]



Hu et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:40 Page 5 of 17

1: Initialization: SR=1
2: For each iteration:
3: Set succ=0;
4: Employed bees:
5: For each food source:
6: If this is not the global best food source:
7: Set Alpha as the best food source;
8: Randomly select a neighbor r of the current food source i ;
9: If pbestr is better than pbesti :

10: Beta = pbestr ;
11: Otherwise:
12: Beta = pbesti;
13: Calculate c1 and c2 using Eqs. (6) and (7);
14: For all the dimensions:
15: Using Eq. (5) to generate new position;
16: If the new generated position is better than the previous one:
17: succ=succ+1;
18: Else
19: Select a neighborm of the current food source;
20: Select one dimension in the total dimension;
21: Using Eq. (8) to generate a new trial vector;
22: If the trial vector is better than the current one:
23: succ=succ+1
24: update the food position
25: Onlooker bees:
26: For each onlooker bee:
27: Using the roulette wheel selection mechanism to select a food source to exploit;
28: If this is not the global best food source:
29: Set Alpha as the best food source;
30: Randomly select a neighbor r of the current food source i ;
31: If pbestr is better than pbesti :
32: Beta = pbestr ;
33: Otherwise:
34: Beta = pbesti;
35: Calculate c1 and c2 using Eqs. (6) and (7);
36: For all the dimensions:
37: Using Eq. (5) to generate new position;
38: If the new generated position is better than the previous one:
39: succ=succ+1;
40: Else
41: Select a neighborm of the current food source;
42: Select one dimension in the total dimension;
43: Using Eq. (8) to generate a new trial vector;
44: If the trial vector is better than the current one:
45: succ=succ+1
46: update the food position
47: Calculate SR as succ/NP
48: If the termination condition is not meet, continue the loop.

Algorithm 1: The main pseudo code of ABCIS algorithm



Hu et al. EURASIP Journal onWireless Communications and Networking         (2020) 2020:40 Page 6 of 17

rithms to testify its performance. Section 2 carries out
experiments to demonstrate each component’s effective-
ness of the proposed ABCIS.

Benchmarks’ illustration
To testify the proposed algorithm’s efficacy, this paper
adopts fourteen classical benchmark functions which are
widely used in literature [34–36]. Their detailed infor-
mation, including mathematical expression, search range,
and optimal value, is provided in Table 1. All of these
benchmarks’ optimal value is zero. Among them, the first
nine benchmark functions are unimodal, which means
there is only one local minimum point and it is also
the global minimum point,and the last five functions
are multimodal functions whose local optimal positions
are numerous and the global optimal position is difficult
to access. CEC2015 learning-based real-parameter single
objective optimization problems are employed to further
verify the proposed algorithm’s performance.

Comparison experiments with other state-of-the-art
algorithms
In this subsection, this paper conducts experiments for
the purpose of demonstrating the proposed ABCIS’s com-
petitiveness among other evolutionary algorithms. In this
comparison, the traditional particle swarm optimization,
differential evolution algorithm, artificial bee colony and
five ABC variants, including GABC [21], qABC [22],
OCABC [23], ABCVSS [28], and ABCM [29], are adopted.
In this comparison, the population size is set to 40

and all the algorithms are repeated for 50 trails in order
to be justice. Experiments are conducted on 10, 30, and
50 dimensions, with the corresponding maximum itera-
tion setting as 1000, 3000, and 5000. For the maximum
function evaluation number, it is set as the product of pop-
ulation size and maximum iteration number. When the
maximum function evaluation number is achieved, the
algorithm stops iteration, and after 50 trials, their final
average fitness value (the first row) and standard devia-
tion (the second row) results on these 14 benchmarks are
recorded, as presented in Tables 2, 3, 4, and 5, correspond-
ing to 10, 30, and 50 dimensions. Besides, the Wilcoxon
rank-sum test [37–39] is also conducted to demonstrate
the statistical effectiveness. In this measurement, the sig-
nificant value is set to 5%. The result “=” means the
proposed ABCIS algorithm attains results which are sim-
ilar to the corresponding compared algorithm, “+” means
the corresponding algorithm exhibits better performance
than ABCIS and “-” means worse. This outcome is also
provided in Tables 2, 3, 4, and 5. Further, Figs. 3, 4,
and 5 also show the convergence curves of these nine
evolutionary algorithm on some typical benchmarks.
From the results, it could be easily noticed that the pro-

posed ABCIS algorithm exhibits best optimization perfor-

mance almost on all the benchmarks and on all 10, 30,
and 50 dimensions. It obtains the optimal value on several
benchmarks, and achieves best accuracy on other prob-
lems. Most algorithms could find the global optima; thus,
the convergence speed should be a criterion to evaluate an
algorithm’s performance. For the unimodal functions, the
proposed ABCIS algorithm obtains the optimal value on
several benchmarks and achieves best accuracy on other
problems, which means that the two elite vectors’ guid-
ing could better perfect the convergence speed, which can
also be verified in the convergence curves presented in
Figs. 3, 4, and 5. For the multimodal functions, the pro-
posed ABCIS algorithm also achieves great results, which
may contribute to the update strategy of global best food
source. Further demonstration will be discussed in the
following subsection.

Each component of ABCIS’s effectiveness
In this subsection, we aim at verifying each component’s
effectiveness of the proposed ABCIS. Two components
are considered: the first is of which the total dimensional
update strategy and the second is the special division strat-
egy. For the experimental settings, the population size
is chosen as 40 and the test dimension is 10. Each trial
is repeated for 50 times and the average fitness value
(the first row) and standard deviation (the second row)
are recorded. The maximum iteration number is set as
1000 and the corresponding maximum number of func-
tion evaluation is calculated as the product of population
size and maximum iteration number.

Total dimensional update strategy
In the proposed ABCIS algorithm, food sources except the
best one are updated on all the dimensions at each genera-
tion. To testify this component’s effectiveness, this subsec-
tion designs another ABC algorithm named as ABCIS-sd
(ABCIS with single dimension) to perform this compar-
ison. Experimental results are stated in Table 5, from
which it could be observed that total dimensional update
strategy could achieve much better solution accuracy on
unimodal functions.

Special division strategy
In the previous subsection, we point out that the special
division strategy does a great contribution to the multi-
modal functions’ optimization, and this subsection aims
at making demonstration. Thus, ABCIS-wd (ABCIS algo-
rithm without division) is generated to function as the
comparison algorithm. Experimental results are presented
in Table 4.
Regardless of the proposed search Eq. (5) for bees, there

are two main differences between the proposed ABCIS
and the standard ABC: one is the total dimensional update
strategy for bees except for the best one and another is
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Table 1 Detailed information of fourteen benchmark functions

f1
n∑

i=1
xi2 [− 100,100] 0

f2
n∑

i=1

(
i∑

j=1
xj

)2

[− 100,100] 0

f3 106 ∗ x12 +
n∑

i=2
xi2 [− 100,100] 0

f4
n∑

i=1
i ∗ xi2 [− 100,100] 0

f5
n∑

i=1
�xi + 0.5�2 [− 100,100] 0

f6
n∑

i=1
ixi4 + random[ 0, 1) [− 1.28,1.28] 0

f7
n∑

i=1
|xi| +

n∏

i=1
|xi| [− 10,10] 0

f8
n∑

i=1
xi2 +

n∏

i=1
xi2 [− 100,100] 0

f9 max (|x1| , |x2| , ..., |xn|) [− 100,100] 0

f10
n∑

i=1

[
xi2 − 10 cos(2πxi) + 10

]
[− 5.12,5.12] 0

f11 1
4000

n∑

i=1
xi2 −

n∏

i=1
cos( xi√

i
) + 1 [− 600,600] 0

f12
−20 exp(−0.2

√
1
n

n∑

i=1
xi2)

+ exp( 1n

n∑

i=1
cos(2πxi)) + 20 + e

[− 32,32] 0

f13 π
30 {10 · sin[ 1 + 0.25(x1 + 1)2]

+
n−1∑

i=1
{[0.25 (xi + 1) ]2 [ 1 + 10(sin(π(1

+0.25 (xi+1 + 1)))2)] }} +
n∑

i=1
yi

yi =⎧
⎪⎪⎨

⎪⎪⎩

100(xi − 10)4 xi > 10

0 −10 ≤ xi ≤ 10

100(−xi − 10)4 xi < −10

[− 50,50] 0

f14

0.1{sin2(3πx1)+
n−1∑

i=1
(xi − 1)2[ 1 + sin2(3πxi+1)]

+(xn − 1)[ 1 + sin2(2πxn)] }
+

n∑

i=1
yi

yi =⎧
⎪⎪⎨

⎪⎪⎩

100(xi − 10)4 xi > 5

0 5 ≤ xi ≤ 5

100(−xi − 10)4 xi < −5

[− 50,50] 0
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Table 2 Comparison results, D = 10

F PSO DE ABC GABC ABCIS

f1 3.44E− 25 1.67E− 49 1.04E− 16 6.79E− 17 0
8.09E− 25 2.46E− 49 3.47E− 17 1.50E− 17 0
- - - -

f2 5.30E− 07 1.07E− 18 7.27E+ 01 9.17E+ 01 1.65E− 52
9.65E− 07 1.67E− 18 3.74E+ 01 6.76E+ 01 7.38E− 52
- - - -

f3 3.82E− 25 2.20E− 48 1.38E− 16 6.10E− 17 0
7.36E− 25 6.22E− 48 5.51E− 17 1.48E− 17 0
- - - -

f4 6.34E− 24 7.35E− 49 1.35E− 16 7.71E− 17 0
2.06E− 23 1.03E− 48 6.66E− 17 3.24E− 17 0
- - - -

f5 0 0 0 0 0
0 0 0 0 0
= = = =

f6 2.87E− 03 2.03E− 03 2.12E− 02 6.44E− 03 2.27E− 04
1.75E− 03 8.82E− 04 6.24E− 03 2.74E− 03 1.62E− 04
- - - -

f7 2.28E− 15 1.44E− 26 3.91E− 16 3.00E− 16 2.09E− 243
2.51E− 15 1.73E− 26 8.79E− 17 4.50E− 17 0
- - - -

f8 8.07E− 23 2.38E− 46 1.40E− 16 7.67E− 17 0
3.29E− 22 4.71E− 46 5.75E− 17 1.62E− 17 0
- - - -

f9 4.98E− 07 3.87E− 06 1.19E− 01 3.03E− 04 6.45E− 129
3.23E− 07 1.68E− 05 8.40E− 02 6.73E− 04 2.31E− 128
- - - -

f10 3.44E+ 00 9.69E+ 00 0 60 0
1.78E+ 00 4.28E+ 00 0 0 0
- - = =

f11 8.27E− 02 7.37E− 02 1.13E− 02 9.18E− 03 2.73E− 02
3.34E− 02 6.50E− 02 4.19E− 03 2.05E− 03 1.52E− 02
- - + +

f12 3.56E− 01 5.40E− 01 1.05E− 14 6.04E− 15 3.20E− 15
1.28E− 01 8.48E− 02 4.70E− 15 7.94E− 16 1.30E− 15
- - - -

f13 2.33E− 28 1.57E− 32 8.58E− 17 5.16E− 17 1.57E− 32
5.06E− 28 8.21E− 48 2.62E− 17 1.83E− 17 2.81E− 48
- - - -

f14 7.23E− 24 1.35E− 32 1.13E− 16 7.36E− 17 1.35E− 32
1.45E− 23 2.74E− 48 4.85E− 17 2.62E− 17 2.74E− 48
- = - -

f1 3.51E− 17 3.13E− 58 1.14E− 47 8.75E− 51 0
4.78E− 17 9.19E− 58 5.11E− 47 1.95E− 50 0
- - - -

f2 1.45E+ 02 1.49E+ 01 1.24E+ 02 4.04E+ 01 1.65E− 52
7.71E+ 01 1.64E+ 01 1.17E+ 02 2.53E+ 01 7.38E− 52
- - - -

f3 1.42E− 12 2.54E− 39 3.25E− 70 3.18E− 48 0
6.01E− 12 1.13E− 38 1.08E− 69 8.02E− 48 0
- - - -

f4 5.73E− 17 1.98E− 51 2.95E− 68 8.79E− 48 0
6.20E− 17 8.85E− 51 9.11E− 68 3.92E− 47 0
- - - -
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Table 2 Comparison results, D = 10 (Continued)

F PSO DE ABC GABC ABCIS

f5 0 0 0 0 0
0 0 0 0 0
= = = =

f6 8.23E− 03 2.71E− 03 6.76E− 03 1.75E− 02 2.27E− 04
5.65E− 03 1.20E− 03 3.73E− 03 6.66E− 03 1.62E− 04
- - - -

f7 1.44E− 16 6.50E− 34 1.30E− 38 7.76E− 28 2.09E− 243
2.03E− 16 1.50E− 33 3.85E− 38 1.07E− 27 0
- - - -

f8 2.29E− 12 5.15E− 50 4.63E− 72 3.95E− 48 0
1.03E− 11 2.30E− 49 1.82E− 71 9.71E− 48 0
- - - -

f9 3.63E− 05 2.52E− 07 1.16E− 01 1.26E− 01 6.45E− 129
6.45E− 05 2.06E− 07 1.64E− 01 7.99E− 02 2.31E− 128
- - - -

f10 0 0 0 0 0
0 0 0 0 0
= = = =

f11 8.25E− 03 1.14E− 02 8.69E− 03 1.05E− 02 2.73E− 02
1.20E− 03 4.70E− 03 1.39E− 03 3.55E− 03 1.52E− 02
+ + + +

f12 2.49E− 15 6.27E− 03 3.73E− 15 1.10E− 14 3.20E− 15
2.44E− 15 2.80E− 02 1.67E− 15 3.87E− 15 1.30E− 15
+ - - -

f13 1.25E− 18 1.57E− 32 3.37E− 11 1.57E− 32 1.57E− 32
1.65E− 18 2.81E− 48 1.51E− 10 2.81E− 48 2.81E− 48
- = - =

f14 8.47E− 18 1.35E− 32 1.74E− 06 1.35E− 32 1.35E− 32
9.90E− 18 2.81E− 48 7.76E− 06 2.81E− 48 2.74E− 48
- - - -

Table 3 Comparison results, D = 30

F PSO DE ABC GABC ABCIS

f1 2.05E− 17 1.88E− 47 5.29E− 16 3.83E− 16 0
5.06E− 17 4.89E− 47 7.13E− 17 9.45E− 17 0
- - - -

f2 1.18E+ 02 1.98E− 01 5.87E+ 03 7.06E+ 03 7.24E− 03
5.64E+ 01 1.48E− 01 1.34E+ 03 1.82E+ 03 1.16E− 02
- - - -

f3 6.76E− 17 1.02E− 47 5.00E− 16 3.69E− 16 0
1.67E− 16 1.24E− 47 8.35E− 17 7.14E− 17 0
- - - -

f4 1.68E− 16 1.28E− 46 5.22E− 16 3.98E− 16 0
2.08E− 16 1.67E− 46 9.79E− 17 8.55E− 17 0
- - - -

f5 0 0 0 0 0
0 0 0 0 0
= = = =

f6 2.20E− 02 5.55E− 03 3.97E− 02 1.99E− 02 2.76E− 04
8.44E− 03 1.68E− 03 1.08E− 02 5.98E− 03 1.20E− 04
- - - -

f7 6.65E− 13 1.96E− 25 1.29E− 15 1.21E− 15 0
5.57E− 13 1.93E− 25 1.28E− 16 1.47E− 16 0
- - - -
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Table 3 Comparison results, D = 30 (Continued)

F PSO DE ABC GABC ABCIS

f8 1.11E− 07 3.32E− 43 5.49E− 16 3.99E− 16 0
4.84E− 07 7.69E− 43 1.24E− 16 7.13E− 17 0
- - - -

f9 3.63E+ 00 9.28E+ 00 2.19E+ 00 2.45E− 01 5.79E− 02
1.07E+ 00 6.66E+ 00 6.04E− 01 5.08E− 02 7.29E− 02
- - - -

f10 2.84E+ 01 1.05E+ 02 0 0 0
8.06E+ 00 3.19E+ 01 0 0 0
- - = =

f11 1 1 1 1 1
3.43E− 16 2.22E− 16 2.12E− 16 1.25E− 16 2.60E− 16

f12 8.46E− 01 9.03E− 01 6.22E− 14 3.09E− 14 6.57E− 15
1.36E− 01 1.72E− 01 1.66E− 14 3.73E− 15 2.55E− 15
- - - -

f13 3.63E− 02 1.58E− 32 5.08E− 16 3.61E− 16 1.57E− 32
6.78E− 02 2.81E− 34 7.96E− 17 7.89E− 17 2.81E− 48
- - - -

f14 2.30E+ 02 1.17E+ 02 6.12E− 16 3.80E− 16 1.35E− 32
1.76E+ 02 1.11E+ 02 9.83E− 17 8.65E− 17 2.81E− 48
- - - -

f1 2.45E− 16 4.11E− 20 1.87E− 09 1.61E− 45 0
2.38E− 16 1.81E− 19 8.34E− 09 5.27E− 45 0
- - - -

f2 7.23E+ 03 4.40E+ 03 7.96E+ 03 4.68E+ 03 7.24E− 03
1.58E+ 03 1.46E+ 03 1.50E+ 03 1.14E+ 03 1.16E− 02
- - - -

f3 1.47E− 17 2.85E− 19 4.94E− 11 4.00E− 44 0
1.93E− 17 1.27E− 18 2.21E− 10 9.56E− 44 0
- - - -

f4 6.38E− 16 2.29E− 24 1.55E− 66 1.40E− 43 0
2.09E− 16 1.00E− 23 6.89E− 66 5.59E− 43 0
- - - -

f5 0 0 0 0 0
0 0 0 0 0
= = = =

f6 3.35E− 02 5.35E− 03 8.50E− 02 4.47E− 02 2.76E− 04
1.49E− 02 1.64E− 03 2.68E− 02 1.28E− 02 1.20E− 04
- - - -

f7 9.15E− 16 2.66E− 16 1.33E− 07 1.29E− 25 0
4.59E− 16 1.17E− 15 5.93E− 07 1.79E− 25 0
- - - -

f8 2.68E− 16 3.49E− 22 2.81E− 12 6.15E− 44 0
2.63E− 16 1.55E− 21 1.26E− 11 1.76E− 43 0
- - - -

f9 2.97E− 01 8.38E+ 00 1.08E+ 01 2.49E+ 00 5.79E− 02
1.65E− 01 4.57E+ 00 3.65E+ 00 5.71E− 01 7.29E− 02
- - - -

f10 0 1.60E− 01 4.12E− 01 0 0
0 3.63E− 01 1.84E+ 00 0 0
= - - =

f11 1 1 1 1 1
5.11E− 16 1.55E− 16 1.23E− 14 5.27E− 16 2.60E− 16
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Table 3 Comparison results, D = 30 (Continued)

F PSO DE ABC GABC ABCIS

f12 2.03E− 14 8.14E− 02 6.69E− 03 4.21E− 14 6.57E− 15
8.27E− 15 4.00E− 02 2.99E− 02 5.27E− 15 2.55E− 15
- - - -

f13 1.28E− 17 1.88E− 07 1.66E− 32 1.57E− 32 1.57E− 32
1.01E− 17 8.40E− 07 4.04E− 33 2.81E− 48 2.81E− 48
- - - =

f14 2.23E− 17 7.39E− 21 2.96E− 04 1.35E− 32 1.35E− 32
1.77E− 17 2.53E− 20 1.33E− 03 2.81E− 48 2.81E− 48
- - - =

Table 4 Comparison results, D = 50

F PSO DE ABC GABC ABCIS

f1 4.01E− 13 1.82E− 48 9.88E− 16 7.09E− 16 0
4.99E− 13 3.67E− 48 1.32E− 16 9.76E− 17 0
- - - -

f2 5.69E+ 03 3.86E+ 02 2.16E+ 04 2.40E+ 04 1.46E+ 00
2.08E+ 03 1.59E+ 02 4.20E+ 03 4.04E+ 03 2.04E+ 00
- - - -

f3 1.70E− 12 3.58E− 48 9.27E− 16 7.63E− 16 0
5.45E− 12 5.09E− 48 1.03E− 16 9.59E− 17 0
- - - -

f4 9.38E− 12 2.22E− 47 1.03E− 15 7.21E− 16 0
1.63E− 11 3.82E− 47 1.40E− 16 1.19E− 16 0
- - - -

f5 0 0 0 0 0
0 0 0 0 0
= = = =

f6 7.25E− 02 1.16E− 02 7.82E− 02 3.81E− 02 3.85E− 04
1.88E− 02 6.88E− 03 1.30E− 02 8.42E− 03 2.00E− 04
- - - -

f7 5.39E− 10 5.19E− 27 2.26E− 15 2.12E− 15 0
8.23E− 10 7.09E− 27 2.19E− 16 2.77E− 16 0
- - - -

f8 45276.2962 5.69E− 45 1.04E− 15 7.62E− 16 0
65913.5423 1.70E− 44 1.33E− 16 1.02E− 16 0
- - - -

f9 2.16E+ 01 2.12E+ 01 1.06E+ 01 2.71E+ 00 2.98E+ 00
4.03E+ 00 6.63E+ 00 2.09E+ 00 2.88E− 01 4.80E+ 00
- - - -

f10 7.15E+ 01 1.39E+ 02 0 0 0
1.21E+ 01 4.66E+ 01 0 0 0
- - = =

f11 1 1 1 1 1
1.48E− 14 1.99E− 16 3.95E− 16 2.70E− 16 7.20E− 17
- - - -

f12 1.15E+ 00 7.96E− 01 1.21E− 13 2.07E− 13 7.11E− 15
1.51E− 01 2.56E− 01 2.76E− 14 6.57E− 13 3.02E− 15
- - - -

f13 4.37E− 02 3.11E− 02 9.42E− 16 6.61E− 16 1.57E− 32
6.78E− 02 9.33E− 02 1.36E− 16 9.46E− 17 2.81E− 48
- - - -

f14 1.48E+ 03 7.83E+ 02 9.95E− 16 7.11E− 16 1.35E− 32
3.55E+ 02 3.19E+ 02 1.16E− 16 9.30E− 17 2.81E− 48
- - - -
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Table 4 Comparison results, D = 50 (Continued)

F PSO DE ABC GABC ABCIS

f1 6.22E− 11 1.22E− 06 2.73E− 11 4.20E− 42 0
2.78E− 10 5.45E− 06 8.50E− 11 1.77E− 41 0
- - - -

f2 2.22E+ 04 2.16E+ 04 2.64E+ 04 1.79E+ 04 1.46E+ 00
4.12E+ 03 6.28E+ 03 3.90E+ 03 2.72E+ 03 2.04E+ 00
- - - -

f3 1.86E− 10 2.33E− 12 1.43E− 11 3.15E− 41 0
8.30E− 10 1.04E− 11 6.38E− 11 1.21E− 40 0
- - - -

f4 1.19E− 15 1.51E− 09 1.04E− 09 5.10E− 40 0
4.25E− 16 6.45E− 09 4.67E− 09 2.05E− 39 0
- - - -

f5 0 0 0 0 0
0 0 0 0 0
= = = =

f6 7.21E− 02 6.36E− 03 2.29E− 01 7.56E− 02 3.85E− 04
2.76E− 02 1.73E− 03 3.99E− 02 1.33E− 02 2.00E− 04
- - - -

f7 2.06E− 15 4.58E− 04 1.52E− 34 5.22E− 23 0
7.46E− 16 2.05E− 03 2.59E− 34 1.17E− 22 0
- - - -

f8 5.38E− 16 0.09975354 8.72E− 65 3.86E− 41 0
3.46E− 16 0.36790203 2.18E− 64 1.19E− 40 0
- - - -

f9 3.31E+ 00 2.73E+ 01 2.25E+ 01 1.05E+ 01 2.98E+ 00
1.25E+ 00 5.43E+ 00 6.35E+ 00 2.14E+ 00 4.80E+ 00
- - - -

f10 0 1.09E+ 00 8.88E− 17 0 0
0 1.08E+ 00 3.97E− 16 0 0
= - = -

f11 1 1.00000002 1 1 1
1.20E− 15 1.03E− 07 4.47E− 16 3.60E− 16 7.20E− 17
- - - -

f12 4.37E− 14 6.81E− 02 7.83E− 14 8.08E− 14 7.11E− 15
1.65E− 14 4.00E− 02 1.18E− 14 9.51E− 15 3.02E− 15
- - - -

f13 6.16E− 11 5.43E− 04 5.15E− 07 1.57E− 32 1.57E− 32
2.75E− 10 2.43E− 03 2.31E− 06 2.81E− 48 2.81E− 48
- - - =

f14 5.49E− 17 6.95E− 08 1.32E− 03 1.35E− 32 1.35E− 32
7.37E− 17 2.85E− 07 5.90E− 03 2.81E− 48 2.81E− 48
- - - =

the special division for the best one. Thus, this subsec-
tion demonstrates these two aspects’ effectiveness first.
With this purpose, two comparison algorithms, ABCIS-
sd (ABCIS with single dimension) and ABCIS-wd (ABCIS
without special division for the best bee) , are constructed.
ABCIS-sd is a variant of ABCIS where bees update food
sources only on one randomly selected dimension in both
Eqs. (5) and (8), and ABCIS-wd is an ABCIS variant where
all the bees using Eq. (5) as the update equation to find
food sources.

Conclusion
In this paper, we studied the problem about the alloca-
tion of UAVs in UAV-aided wireless communications. We
have used the artificial bee colony algorithm to search
for the optimal UAV allocation scheme. To accelerate
artificial bee colony’s convergence speed and improve
solution accuracy, we first propose an intellective search
strategy for bees searching food sources and then intro-
duce a special division for the global best food sources
to compensate the intellective search strategy’s draw-
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Fig. 3 Convergence curves, D = 10
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Fig. 4 Convergence curves, D = 30
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Fig. 5 Convergence curves, D = 50

backs. Experimental results demonstrate that this pro-
posed ABCIS algorithm could achieve great improve-
ments on both unimodal and multimodal functions,
which improve its performance over UAV-aided wireless
communications.
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