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1  Introduction
Passive intrusion detection technique has become one of the current research hotspots 
due to its characteristic of detecting entities without carrying any device. The charac-
teristic means that the objects are not required to take any device during the detec-
tion process. There are existing methods that can achieve intrusion detection. Savkin 
and Huang [1] proposed a method to camera surveillance for full coverage over uneven 
areas. It is a camera-based method. However, camera-based method needs the object to 
move within the visible range of the camera. Furthermore, its main issues include the 
potential privacy leakage and high false alarm rate. Compared with camera-based detec-
tion approach, WiFi-based method can detect moving entities whether the entities are 
visible. This is the most significant advantage of WiFi-based method over camera-based 
method. Among the WiFi-based methods, CSI-based method has drawn increasing 
attention on motion detection and target localization [2–5].

WiFi-based passive intrusion detection is a system using signals which can be easily 
affected by human motion [6]: received signal strength (RSS) and channel state informa-
tion (CSI). Received signal strength (RSS) [7] is widely used as the source signal in early 
passive detection due to its accessibility. Since RSS signal is susceptible to environmental 
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interference and less sensitive to different motions of human body [8], passive detection 
of moving humans with dynamic speed (PADS) [9] and phase mode (PM) [10] use finer-
grained CSI in passive intrusion detection. In contrast, CSI is stable to static environ-
ments and sensitive to dynamic environments, so it is a better detection signal.

Previous passive detection algorithms extract features such as mean and variance 
[11, 12] from RSS and CSI data to accomplish the function. Their core is to determine 
whether there is a moving human in the monitoring area or not. Although the algo-
rithms work effectively and accurately [10], they usually detect human motion that 
occurs on line-of-sight (LOS). Therefore, those algorithms require the AP to be placed 
near the doorway or other places where human motion will directly influence CSI near 
LOS path. This makes the effectiveness of the whole system compromised when the 
intruder does not pass through the LOS path.

To decrease the high requirement for AP deployment, we use CSI phase as the source 
signal, extract propagation components on independent paths as the detection signal, 
and design a CNN to construct IDSDL. Then the performance of this system is veri-
fied on commodity WiFi devices. The result demonstrates that IDSDL is able to detect 
human motion on non-line-of-sight (NLOS) path effectively.

The rest of this paper is organized as follows. We review related work in Sect. 2. Pre-
liminaries about CSI and convolutional neuron network (CNN) are mentioned in Sect. 3. 
We introduce the methodology in detail in Sect. 4. Experiment settings and performance 
evaluation are elaborated in Sect. 5. Conclusions are drawn in Sect. 6.

2 � Related work
The idea of passive intrusion detection is to judge the monitoring area is intruded or not 
by analyzing human’s impacts on wireless signal.

When the wireless signal passes through human body, received signal strength (RSS) 
undergoes certain changes and fluctuations so that it could be used in passive detec-
tion. Youssef and Moussa [6, 13] introduced the concept of device-free detection and 
proposed a maximum likelihood estimation-based algorithm (MLE) to improve the 
performance of device-free passive (DfP) system in real-world environments. The most 
well-known RSS-based motion detection, Radio Tomography Imaging (RTI) [11], which 
deployed a wireless sensor network in the target area to measure RSS to obtain an 
image of the moving people was proposed. On the foundation of RTI, variance-based 
radio tomography imaging (VRTI) [12] used the changes in RSS variance caused by peo-
ple motion for motion detection. RASID [14] system used RSS standard deviation to 
improve detection accuracy. Since RSS is too sensitive to tiny changes in the environ-
ment, a device-free localization (DfL) [15] algorithm based on differential RSS, was pro-
posed to overcome RSS’s negative impact on environment.

Due to the coarse granularity and limited precision of RSS, people have cast their 
sights on fine-grained CSI. CSI was firstly applied in location technology. Pilot [16] 
tried device-free localization, using CSI and time correlation to detect anomalies in the 
channel and then locate the object. Apart from the location technology, CSI start to be 
utilized in motion detection. Fine-grained Device-free Motion Detection (FIMD) [17] 
achieved the accurate detection of sudden motion by using the time stability of CSI in 
static environment. Since most studies only make effective use of CSI amplitude, PADS 
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[9] used a method that sanitizes CSI phase, then uses both CSI amplitude and phase 
in detection. PM [10] utilized a method based on PADS to extract the phase difference 
between adjacent antenna pairs as the detection signal for passive intrusion detection.

Previous researches extract certain numerical features from CSI signals for passive 
detection and require the AP to be arranged in proper places. Therefore, when human 
motion occurs on NLOS paths, their effectiveness would be reduced. As a result, if there 
is a person intrude from the door and the APs are placed away from the door, detection 
effect is not satisfactory. To overcome this disadvantage, we propose IDSDL, an algo-
rithm that is able to sensitively detect human motion on NLOS.

3 � Preliminaries
In this section, we briefly introduce necessary information about CSI and analyze the 
impact of multi-path effect on CSI.

3.1 � Channel state information

In the wireless communication system, CSI describes the channel properties of the com-
munication link in the subcarrier level and represents what a signal undergoes while 
passing through the subcarriers. In the orthogonal frequency-division multiplexing 
(OFDM) system, after passing through the multi-path channel, the received signal can 
be represented as:

X and Y  are signal vectors of the transmitting terminal and the receiving terminal, 
respectively, N  represents additive Gaussian white noise in the channel and H repre-
sents a channel matrix. H is shown as follows:

where 
−→
H (fn), n ∈ [1,N ] is the channel frequency response (CFR) in the frequency 

domain on each subcarrier and N  is the total number of subcarriers.
The channel frequency response can also be expressed as

where ai and θi + 2π f τi are the CSI amplitude and phase on the i th subcarrier, respec-
tively, f  is frequency, N  is the total number of subcarriers and τ is the delay.

3.2 � Difference between human motion on LOS and NLOS

The received CSI is a multipath [18] synthesized signal, and the CSI will undergo differ-
ent changes when the signals on different paths are interfered. Assuming that the wire-
less signal propagation path in space is shown in Fig. 1, the intrusion from the door will 
only affect a small number of CSI signals on NLOS paths, while the LOS path is not 
affected.

Numerical features used in previous researches such as mean, variance and covariance 
would be large when human motion happens on LOS. But these values would not be that 

(1)Y = HX + N .

(2)H = [
−→
H (f1),

−→
H (f2), . . . ,

−→
H (fN )].

(3)H(f ) =

N−1
∑

i=0

aie
−j(θi+2π f τi).
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obvious when human motion happens on NLOS, especially on paths far away from LOS. 
Therefore, simple numeral features would not be effective. As shown in Fig. 2, we calcu-
late the largest six eigenvalues of covariance matrix extracted from CSI phase, which is 
the feature utilized in detection in the literature [9]. It is obvious that the values obtained 
when human motion occurs on NLOS far from LOS are not much larger than those got 
when the monitoring area is clear, while the values of human motion on LOS is an order 
of magnitude larger. To solve this problem, we need a new kind of detection feature. We 
first use path decomposition to decompose the CSI signal to analyze the changes of the 
CSI signal on a certain independent path. The path-decomposed CSI signal can be used 
as a sensitive signal for intrusion detection because it can sensitively detect the change 
of the channel when the LOS signal does not change so much. Then we convert the sig-
nal into feature image instead of extracting numerical features because feature image 
retains not only the waveform characteristics of signals but also the timing characteris-
tics of signal changes if we convert the signals of multiple consecutive moments into one 
feature image. This allows CNN to judge the occurrence of intrusion behavior based on 
signal changes at multiple times.

3.3 � Convolutional neuron network

Deep learning is being used more and more in wireless communication networks, and it 
is commonly used to solve optimization problems in wireless communication networks. 
Chen et  al. [19] formulates the joint learning, wireless resource allocation, and user 
selection problem as an optimization problem whose goal is to minimize an federated 
learning (FL) loss function that captures the performance of the FL algorithm. Yang et al. 
[20] investigates the problem of energy efficient transmission and computation resource 
allocation for FL over wireless communication networks. Wang et  al. [21] studies the 
problem of optimizing the deployment of unmanned aerial vehicles (UAVs) equipped 
with visible light communication (VLC) capabilities.

In addition to optimization problem, deep learning is also used to solve classification 
problem. CNN is a neural network model that is useful for classifying images. CNN 
evolved from multi-layer perceptron (MLP) [22]. LeCun et  al. [23] combined the idea 

Fig. 1  Multipath effect of CSI
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of back-propagation algorithm and weight sharing to invent the CNN network and suc-
cessfully adapted it to the handwritten character detection system of the US Post Office 
for the first time.

The using process of CNN is as follows:

(1)	 Create a dataset consisting of annotated images, or use an existing dataset. Anno-
tations can be image categories (for classification problems), bounding boxes and 
classes (for object detection problems), or pixel-level segmentation for each object 

a Static state b Dynamic state with human motion on NLOS

c Dynamic state with human motion on LOS
Fig. 2  Largest eigenvalues of covariance matrix from CSI phase in three situations
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Fig. 3  System diagram



Page 6 of 20Hu et al. J Wireless Com Network         (2021) 2021:95 

of interest in the image (for instance segmentation problems). In our manuscript, 
the annotation is image category because we consider the intrusion detection as a 
classification problem.

(2)	 Features related to the current task are extracted from each image. This is the key 
point of modeling. For example, the features used to identify human faces are sig-
nificantly different from those used to identify tourist attractions. Fortunately, the 
feature selection and extraction are learned automatically during the training pro-
cess.

(3)	 Train a CNN model. Training means providing many images to a CNN model, 
which will help CNN model learn how to solve the task at hand by using the fea-
tures extracted from training images.

(4)	 Evaluate the model by utilizing images not used during the training phase. By doing 
so, we test the effectiveness of the trained model.

Due to its characteristics of local connection and weight sharing, CNN is more suita-
ble for processing image data. Weight sharing enables information to be shared between 
neurons and reduces the number of parameters significantly. Local connection is dif-
ferent from full connection. Local connection is that the neurons in layer n-1 only have 
connections with some neurons in layer n, instead of all of them, which reduces the 
probability of overfitting.

CNN consists of convolutional layers, pooling layers, and fully connected (dense) 
layers. Each convolutional layer contains multiple feature maps. Each feature map is 
a “plane” composed of multiple neurons, which extracts features of the input through 
a convolution filter. The sampling layer is also called the pooling layer, and its role is 
to perform subsampling based on the principle of local correlation, so as to reduce the 
amount of data while retaining useful information. By applying the convolutional layers 
and the sampling layers, CNN maps the original image into a feature vector and finally 
completes the recognition task in fully connected layers and the output layer. CNN’s 
construction method of multi-hidden layer stacking, that makes each layer of CNN pro-
cesses the output of the previous layer, can be regarded as that CNN processes the input 
signal layer by layer. The initial input representation that is not closely related to the out-
put target is changed into a representation that is more closely related to the output tar-
get, making it possible to perform tasks that were difficult to complete based only on the 
last layer of output mapping previously.

CNN is widely used for feature extraction of pictures due to its special network con-
struction and excellent performance. It can not only automatically extract features, but 
also have strong generalization capabilities.

4 � Methodology
IDSDL mainly includes four parts: data preprocessing, path decomposition of CSI signal, 
CNN classification and motion detection, shown as Fig. 3. The system monitors CSI in 
the WiFi wireless network space, uses path components to reflect CSI changes sensi-
tively and classifies the data by utilizing CNN to carry out motion detection. The system 
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contains offline training and online detection. The CNN classifier is trained in the offline 
phase and new CSI data is detected in the online phase.

4.1 � Data preprocessing

(1)	Phase sanitization

Due to the excessive offset error [24, 25] included in CSI phase, phase sanitization is 
required to effectively utilize CSI phase [9]. The measured phase Pci can be linearly trans-
formed to obtain raw phase Pzi:

Compared with Pci , Pzi eliminates the random phase offset and has effective features nec-
essary for intrusion detection in true phase simultaneously.

(2)	Outlier removal

Due to the influence of random noise, outliers appear in the measured CSI data. In order 
not to affect the performance of the system, filter is used to remove outliers.

Hampel filter [26]: All the data that do not belong to the interval [ µ− γ σ ,µ+ γ σ ] are 
regarded as outliers supposed to be removed, where µ is the median, σ is the absolute 
deviation of the median data sequence, γ is a parameter usually set to 3.
Kalman filter [27]: Kalman filtering is a state equation of a linear system. Its basic idea 
is to use the input and output of the system to estimate the state of the entire linear 
system. Since the noise signal is doped in the measured data, the process of this optimal 
estimation is also regarded as a filtering process.

No matter which filtering method is adopted, outlier removal will improve system per-
formance by reducing some unexpected errors. Figure 4 shows the filter results obtained by 
using Hampel filter and Kalman filter.

(4)Pzi = Pci − aki − b = Pi −
Pn − P1

kn − k1
ki −

1

n

n
∑

j=1

Pj .

a Outlier removal with Hampel filter b Outlier removal with Kalman filter
Fig. 4  Outlier removal
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4.2 � Path decomposition of CSI phase

According to the analysis in Preliminary, human motions on LOS and NLOS cause differ-
ent changes in CSI. To extract a detection feature that is not overly affected by the LOS 
signal, we propose a path decomposition algorithm. The path decomposition is used to 
decompose the CSI signal for analyzing the changes of the CSI signal on a certain inde-
pendent path. The path-decomposed CSI signal can sensitively detect the change of the 
channel when the LOS signal does not change so much. Therefore, it can be used as a sensi-
tive signal for intrusion detection.

Let CSIk denote the CSI on k th subcarrier, CSI0 denote the CSI on the zeroth subcarrier, 
which is a virtual subcarrier whose frequency is f0 . For path l, we introduce two symbols Sl0 
and �l

k:

where αl is the amplitude of CSIk on path l, f0 is the frequency of CSI0 , k�f  is the fre-
quency difference between f0 and fk , and τl is the delay of CSI on the path l . Then, CSIk 
can be expressed as:

In the 802.11n standard, when BW = 40 MHz and Ng = 4 (Grouping), the index of the 
sampled subcarriers ranges from − 58 to 58 where the interval of subcarrier index is 4. For 
convenience of presentation, suppose that there are five paths, we can construct a Hankel 
matrix:

Combined with formula (5) and (6), X could be expressed as:

where

The problem of solving path components has turned into a mathematical problem. We 
define � = VS

′ , where

(5)
Sl0 = αle

−j2π f0τl .

�l
k = e−jk�f τl .

(6)CSIk =

L
∑

l=1

Sl0�
l
k .

(7)X =











CSI−58 CSI−54 CSI−50 CSI−46 CSI−42

CSI−54 CSI−50 CSI−46 CSI−42 CSI−38

CSI−50 CSI−46 CSI−42 CSI−38 CSI−34

CSI−46 CSI−42 CSI−38 CSI−34 CSI−30

CSI−42 CSI−38 CSI−34 CSI−30 CSI−26











.

(8)X = �S�T

(9)� =













�1
−29 �2

−29 �3
−29 �4
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(10)S = diag(S10 , S
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3
0 , S

4
0 , S
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then X can be expressed as:

since S′ =
(

S
′
)T , X is also presented as:

where

It is easy to prove:

Obviously, V is a Vandermonde matrix. Therefore, the problem transforms into a 
problem of finding a Vandermonde decomposition of X , of which the solution 
[

(

�1
4

)1 (

�2
4

)1 (

�3
4

)1 (

�4
4

)1 (

�5
4

)1
]

 is components of CSI phase on 5 paths. It is well 

known that the number of paths in multipath effects is actually very large. Here we 
only assume that there are five paths and solve the CSI phase components on each 
path. We summarize the overall in Algorithm 1.

Algorithm 1: IDSDL’s path decomposition algorithm

Input: CSI phase on each subcarrier
Output: Phase component on each of the five paths
1 Construct a Hankel matrix X with formula (7);
2 Construct a vector b as b =

[

CSI−38 CSI−34 CSI−30 CSI−26 CSI−22

]T ;
3 Obtain vector A =

[

a0 a1 a2 a3 a4

]T  by solving the equation XA = b;
4 Solve the equation f (x) = 0 , where f (x) = xm − am−1x

m−1 − · · · − a0x
0,m = 5;

We apply the algorithm on Pzi , and the path-decomposed CSI phase is shown in 
Fig. 5.

We convert the path-decomposed CSI signal into feature image as the input of CNN 
classifier by converting the data of the CSI matrix into gray pixels. Feature image retains 
not only the waveform characteristics of signals but also the timing characteristics of sig-
nal changes if we convert the signals of multiple consecutive moments into one feature 
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image. Using these image inputs helps CNN detect the occurrence of intrusion behavior 
based on signal changes at multiple times.

4.3 � CNN classifier

CNN is a classic deep learning model with good effect in the field of image process-
ing and computer vision [28–30], which works pretty well on image classification tasks. 
An advantage of CNN lies in feature extraction [31]. Because the feature detection layer 
of CNN learns features from training data directly, it avoids explicit feature extraction, 
thus reducing the time cost on finding suitable numerical features. Using this CNN-
based method and feature image improves the detection system. On the one hand, the 
feature image converted from the path-decomposed CSI signal retains the waveform 
characteristics of signals and the timing characteristics of signal changes. On the other 
hand, CNN effectively solves the problem that suitable numerical features for sensitively 
detecting human motion on NLOS are laborious to construct due to its ability to learn 
features from training data directly.

A CNN is designed as Fig.  6. The network uses three layers of convolution layer to 
extract the features of the input image, two max-pooling layers to scale down the size of 
feature maps and three dense layers to make classification.

The function of convolution operation is to determine a feature in the image, condense 
original image pixels of the convolution kernel size into one pixel, and extract features 
in the image after convolution operation. Large-sized convolution kernels can provide a 
larger receptive field, but meanwhile the amount of parameters is also larger, leading to 

a Path-decomposed CSI phase in static state b Path-decomposed CSI phase in dynamic state
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more calculations. So multiple smaller convolution kernels are used in the second and 
third convolutional layers to ensure large receptive field while reducing the number of 
parameters. The max-pooling operation highlights the largest feature of 2× 2 pixels, 
which is able to provide strong robustness and reduce the number of parameters. The 
softmax function is used in the third dense layer. The softmax function is a gradient log-
arithm normalization of a finite item discrete probability distribution which is suitable 
for multi-classification tasks.

In detail, the first convolutional layer has sixteen 5× 5 convolution kernels with con-
volution step of 1, and due to zero padding, it outputs L× 30× 16 feature map. The 
second convolutional layer owns 32 3× 3 convolution kernels, and convolution step is 
also 1. The parameters of the third convolutional layer are consistent with those of the 
second one. Two max-pooling layers are after the second convolutional layer and the 
third convolutional layer, respectively. At this point, a flatten layer is performed to flat-
ten 2-dimensional feature maps into 1-dimensional ones, connecting the convolutional 
layers and the dense layers. After three dense layers, the output is the prediction result 
we need.

Because CNN has a more complicated learning mechanism than conventional learn-
ing methods, our method does not have much advantage in terms of time complexity. 
For a single convolution layer, the time complexity is O(M2 × K 2 × Cin× Count) . 
Where M is the size of output feature map, K  is kernel size, Cin is number of input chan-
nels and Count is number of output channels. The time complexity of the entire neural 
network model is O

(

∑D
l=1M

2
l × K 2

l × Cl−1 × Cl

)

 . D is the number of convolutional 

layers of the neural network. l represents the lth convolutional layer. Cl indicates the 
number of output channels of this layer. Cl−1 represents the number of output channels 
of the previous layer, that is, the number of input channels of this layer.

We have to train the CNN in the offline phase to make the model learn to identify 
different samples of static state and dynamic state. After CNN training, the network 
obtains the ability to classify CSI data correctly. We use the trained CNN to predict new 
data in the online phase.

4.4 � Motion detection

Since the input of CNN is generally images and feature extraction is not required, we 
directly convert path-decomposed CSI phase data into images, which are also known as 
feature maps. At this point, after preparing a classifier and its input, the structure of our 
system is complete. We use the CNN to classify the input into data of static state and 
data of dynamic state. In motion detection, sample selection would make an affect on 
the performance of the trained network. To eliminate the contingency of sample selec-
tion, fivefold cross-validation is necessarily implemented in motion detection. Firstly 
all the feature maps are divided into five parts; secondly, one of them is selected as the 
validation set each time, while the other four are used as training set; thirdly, we con-
duct experiments with different validation set five times. After doing so, the five results 
are averaged to obtain one final experimental result. Take scenario 1 as an example, the 
five results are shown in Fig. 7 and specific detection accuracies are shown in Table 1. 
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The average TN rate with no human and TP rate with human walking are 97.18% and 
97.79%, respectively.

5 � Experiment and evaluation
5.1 � Experimental scenario

To evaluate the performance of IDSDL, experiments are conducted on commodity 
WiFi devices. Specifically, we use a TP-LINK TL-WR886N router as the transmitting 
terminal, as well as a computer equipped with the Intel WiFi Link 5300 NIC [32, 33] 
and CSITool as the receiving terminal. Both the router and the receiving antenna are 
set at 1.2 m high. We collect CSI data in a laboratory with multiple propagation paths, 
in which a variety of electronic devices and multiple sets of tables and chairs are placed. 
In the experiments, CSI data of dynamic state is collected with an adult intruding from 
the door in the single participant scenario, and three adults intruding and moving in 
the area in the multiple participants scenario. The data of static state is collected with 
human being absent in the area.

To verify our system possesses good effect on detecting both human motion on LOS 
and NLOS, experiments of four different RX-TX position scenarios are implemented. 

Fig. 7  Fivefold cross-validation detection accuracy

Table 1  Fivefold cross-validation and average detection accuracies

TN rate (%) TP rate (%)

#1 97.66 97.89

#2 98.44 97.89

#3 95.79 97.40

#4 98.44 98.95

#5 95.57 96.84

Average 97.18 97.79
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Each scenario is shown in Fig. 8. The main moving area of experiment participants is 
around the conference table. Table 2 presents the parameters of experiment.

5.2 � Performance evaluation

5.2.1 � Evaluation metrics

We mainly use the two metrics for evaluating the performance of IDSDL.
① True negative rate (TNR) the probability that no human presence is correctly 

identified.
② True positive rate (TPR) the probability that a moving human presence is correctly 

classified.
③ Detection accuracy the probability of identifying the environmental changes in dif-

ferent scenarios.

Fig. 8  Plan of experimental areas

Table 2  Parameters of experiment

Parameters Laboratory

Size 7.2 m × 7.8 m

Person present 1 and 3 according 
to different 
scenes
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5.2.2 � Overall performance

Firstly, we conduct our experiments in different scenarios to examine the overall perfor-
mance of our system. Figures 9 and 10 show the performance of motion detection with 
four RX-TX positions, where Fig. 9 is the detection results of one participant participat-
ing in the experiment, as well as Fig. 10 shows the detection results of multiple partici-
pants participating in the experiment. From these two figures, we can see that the TN 
rate and TP rate of scenario 2 and scenario 4 are higher because their RX-TX positions 

Fig. 9  TN rate and TP rate in four experimental scenarios with one participant

Fig. 10  TN rate and TP rate in four experimental scenarios with multiple participants
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make the intrusion happen on paths that are close to LOS. TN rate and TP rate are a lit-
tle lower because intrusion occurs on NLOS paths which are pretty far away from LOS 
in scenario 1 and scenario 3. Another conclusion we can draw from the detection results 
is that motion detection is more accurate when multiple participants appear in the 
experiments than when there is only one participant. The reason is that compared with 
single person participating, human motion of multiple participants will have a greater 
impact on CSI by affecting CSI on multiple paths simultaneously.

The detection results obtained by using PADS and IDSDL in four experimental sce-
narios are shown in Fig. 11. The results indicate that IDSDL is more sensitive than PADS 
in scenarios in which human motion occurs on NLOS paths.

Fig. 11  Detection accuracies in four scenarios with PADS and IDSDL

Fig. 12  Detection accuracies in four scenarios by using CNN, SVM, RF, NB and KNN



Page 16 of 20Hu et al. J Wireless Com Network         (2021) 2021:95 

The detection accuracy results obtained by using CNN, support vector machine 
(SVM), random forest (RF), naive Bayes (NB), and k nearest neighbor (KNN) in four 
experimental scenarios are shown in Fig.  12. Detection with conventional learn-
ing methods works when human motion occurs near LOS but cannot achieve good 
detection effects when human motion occurs on NLOS paths. However, the results 
indicate that intrusion detection with the CNN-based method is more sensitive 
when human motion occurs on NLOS paths that are far away from LOS path.

In summary, IDSDL can not only obtain good detection effect when human 
motion occurs on LOS path, but also works well when human motion occurs on 
NLOS paths. Thus, IDSDL is a sensitive intrusion detection system.

5.2.3 � Impact of sliding window size

Intuitively, in terms of normal walking speed, an intrusion process lasts 5–6 s from 
the time the door is opened. When the size of sliding window is large enough to con-
tain a complete intrusion process, the detection accuracy is better. Experiments are 
carried out by setting the window size to 5, 10, 20, 30, 40, and 50. Figure 13 shows the 
change of TN rate and TP rate with different window sizes. The detection accuracy is 
improved with the sliding window size getting larger because the CSI data intercepted 
by larger sliding window contains more CSI changing features. However, it is not a 
panacea. When the size increases to a certain threshold, the rising detection accuracy 
tend is stalled.

5.2.4 � Impact of window sliding step

Window sliding step affects the number of times the image features repeated on the 
image samples, and indirectly affects system performance. This impact is mainly 

Fig. 13  Detection TN rate and TP rate with different window sizes
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reflected in the offline training process of the system. The result is shown in Fig. 14. 
Since the sliding step is short, the same CSI sequence data can generate more feature 
map samples, which leads to more comprehensive acceptable features, so that the 
highest TP rate and TN rate reach 99.51% and 99.43%, respectively. However, from 
Table 3 we realize that a larger number of samples leads to a larger training time con-
sumption as well as increases the maximum detection accuracy. So we can be certain 
that if computer performance is good enough and time is not limited, short sliding 
steps are better choices, and if it is to consume shorter time while pursuing good 
detection performance, the sliding step of 5 is better. Taking the time consumption 
with the sliding step of 5 as an example, the total average time consumption during 
training phase is about 2.5  s per sample, while the processing time for a single test 
sample is about 10 ms, which is a short response time.

5.2.5 � Impact of intrusion distance

We define some intrusion distances to verify the sensitivity of the system to human 
motion on the NLOS path. In the experiment, intrusion distance of 0.2, 0.4, 0.6, 0.8, 
and 1.0 m are set. An adult opens the door and enters for those preset distances. The 

Fig. 14  Detection TN rate and TP rate with different window sliding steps

Table 3  Training time cost and detection accuracy with different window sliding steps

Step Number of training 
rounds

Time cost per round (s) Accuracy (%) Total training 
time cost (s)

1 300 6.013 99.51 1803.9

2 600 3.013 98.44 1807.8

3 900 2.012 98.33 1810.8

4 1200 1.013 98.15 1215.6

5 1200 1.012 97.71 1214.4
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experimental result is presented in Fig. 15. We can see from the figure that our sys-
tem is sensitive to this kind of human motion far away from the LOS path. Since we 
use propagation components of CSI phase as detection signal and our algorithm can 
only obtain components on five paths, detection accuracy is not getting higher as the 
intrusion distance is larger.

6 � Results and discussion
In this paper, we design and implement a WiFi sensing system for detecting intrusion by 
using CSI in the physical layer of WiFi network as detection signal. In this paper, we utilize 
a path decomposition algorithm and CNN to improve the sensitivity of passive intrusion 
detection system. The path-decomposed CSI phase can more accurately reflect the human 
motion occurring on NLOS paths. The application of CNN improves the performance of 
the detection system as well as simplifies construction of feature engineering. The pro-
posed system solves the problem that human motion happens on NLOS paths is not well 
detected. Multiple experiments are conducted to verify the performance of IDSDL. The 
average detection accuracy in four different scenarios is 98.69% with single participant, 
and 98.91% with multiple participants. Compared with previous algorithms, IDSDL can 
sensitively detect human motion on NLOS paths and improve system reliability.
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