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1  Introduction
In recent years, with the development of 6G and Internet of Things (IoTs) technology 
[1–7], the integration of UAVs and cellular system has become a new network develop-
ment trend. At present, UAVs are showing a vigorous development momentum in many 
industrial applications. It is expected that UAVs will bring significant economic benefits 
in many fields such as smart city construction, power and oil pipeline inspections, emer-
gency communications, agriculture, forestry and plant protection, mineral exploration 
and disaster assessment and have broad application prospects. In a word, 6G UAV net-
work could better satisfy various IoT applications and create more innovative services.

In the UAV cellular converged network, the UAV can act as an aerial base station or 
access node (AP) to collect information from a large number of IoT nodes distributed 
in a certain range and realize the connection with the 6G network. UAVs can also be 
equipped with IoT devices such as cameras and communication equipment to form a 
UAV IoT network. In many IoT applications, the collaborative work of multiple UAVs 
will be a common requirement. UAVs can not only communicate with ground cellular 
base stations, but also form a self-organizing cluster network through remote intelli-
gent control platform. Multiple UAVs equipped with different IoT devices collect IoT 
data at different locations at the same time and transmit them directly to nearby ground 
base stations or communicate with ground base stations through a leader UAV with AP 
capability.
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However, UAV flight and IoT devices are highly dependent on power supply, and they 
are all energy limited, which will seriously affect the promotion and popularization of 
UAV-based IoT applications. Moreover, under 6G millimeter wave communication, the 
system requires sophisticated radio frequency transceiver units and complex signal pro-
cessing to achieve high-performance communication, which requires the system having 
sufficient energy. The cooperative work of multiple UAVs is also an important challenge 
to the use of radio spectrum resources. Therefore, it is necessary to carry out innovative 
research on spectrum use and energy-saving technology under the premise of low hard-
ware cost.

If IoT nodes can still perceive the world without being bound by batteries, the pas-
sive IoT without batteries is no longer a dream [8]. Backscatter technology brings hope 
for the IoTs to get rid of the battery shackles. When the node backscatters the incident 
signal, it can encode and modulate the sensed data by modifying the three parameters of 
the signal’s amplitude, phase and frequency. Therefore, the backscattering system uses 
the incident electromagnetic waves to load the data that IoT nodes need to transmit in a 
free-riding manner to the scattered signal, and then transmits it to the receiver.

The backscatter system ’cuts’ the power-consuming RF circuit part and obtains energy 
from the incident signal. IoT devices can transmit data with extremely low power con-
sumption and cost, and the energy consumption can be reduced to microwatts, which is 
an important feature of backscatter technology. At present, backscatter is mainly used in 
radar systems to measure the distance and azimuth of the target by using this reflected 
wave.

However, a fatal disadvantage of backscattering technology is that the reflective node 
obtains weak energy from the surrounding environment, resulting in a too short dis-
tance between the reflective node and the receiver, and it is difficult for the receiver to 
distinguish extreme weak reflection signals from the original signal and other noises. 
Intelligent reflective surface (IRS) [9, 10] uses beamforming technology to directionally 
gather signal energy, which may become an effective means for backscattering systems 
to increase the communication distance.

IRS is a surface that reflects incident signals in beam form. It consists of a large number 
of low-cost, reconfigurable passive components, each of which can be phase modulated 
independently to reflect the incident signal [11]. By cleverly adjusting the phase shift of 
all IRS passive devices, the incident signal received by the IRS can be beamformed and 
reflected to the receiving end, so that three-dimensional (3D) passive beamforming can 
be achieved without any transmission radio. Through beamforming, IRS enhances the 
energy of the reflectable signal, thereby improving the distance and performance of the 
backscatter communication system [11–13].

IRS has no transmitter but reflects the received signal in the form of a passive array, 
so there is no transmission power consumption [14]. In the view of an implementation, 
IRS has low implementation cost, strong adaptability and very convenient deployment. 
Although IRS has been used in radar systems, remote sensing and satellite communica-
tions, it is rarely used in mobile wireless communications.

Combining unmanned aerial vehicles (UAVs) with 6G, Internet of Things (IoT) and 
other emerging communication technologies could better satisfy various IoT applica-
tions and create more innovative services. This paper develops a novel hierarchical 6G 
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IoT network with UAVs in the sky and intelligent reflective surface (IRS) equipped. The 
system employs backscattering communication (BackCom) to transmit data in a free-
ride manner. Through beamforming, IRS enhances the energy of the reflectable signal, 
thereby improving the distance and performance of the BackCom.

The reminder of this paper is organized as follows. Sections 2 and 3 present the gen-
eral system model and improved MIMO IRS model, respectively. Section  4 develops 
A-LSTM-based trajectory prediction scheme, in a bid to handle the high speed mobility 
of UAVs. Section 5 gives numerical results to justify the performance of our proposed 
system, followed by Sect. 6 to conclude the paper.

2 � System model
2.1 � System architecture

In the face of the future 6G Internet of Things demanding for ultra-high coverage, 
expanding communication coverage has become an inevitable trend in the develop-
ment of smart cities. Due to the high cost and time-consuming of adding additional base 
stations, drones are currently one of the most effective solutions to improve communi-
cation coverage. There are two main differences between UAV communication and tra-
ditional ground wireless communication. First of all, because UAVs usually have a strong 
line of sight connection with ground nodes, they provide better channel conditions than 
ground fading channels and can even predict the channel state information (CSI) of dif-
ferent UAVs in 3D positions based on the location information of ground nodes and 
communication performance. Secondly, UAV has fully controllable maneuverability 3D. 
The UAV can be used to adjust its height and horizontal position at any time to optimize 
its communication performance with ground nodes.

As shown in Fig. 1, the use of a cylindrical antenna array can effectively enhance the 
robustness of the communication link. To ensure the communication efficiency between 

Fig. 1  BackCom communications between leader UAV and member UAVs
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the UAV and the base station, the base station needs to perform accurate beamforming 
and capture the specific position of the UAV. Using the traditional cylindrical antenna 
array DOA estimation algorithm, the current position information of the UAV may not 
be obtained. Because the UAV moves too fast, accompanied by a certain time delay, the 
traditional DOA estimation method to estimate the current position of the UAV is not 
enough to meet the needs of the entire system. Therefore, an angle predictor is needed 
to predict the position of the UAV at the next moment.

In order to accurately grasp the status information of the UAV, as shown in Fig. 1, a 
new backscatter communication scenario for drone communication is considered, 
which consists of a backscatter device (BD), a receiver and a UVA. It is assumed that 
the drone can freely adjust its heading movement at a fixed height H , and the limited 
flying time of drone is T  . In order to make the problem easier to deal with, we divide 
the period T  into N  periods of duration δ = T

N  . Therefore, the horizontal position of the 
recording UAV at time n is qn, n ∈ {1, . . . ,N } . The horizontal coordinates of the BD and 
the receiver are fixed at wb and wr , respectively. In this paper, we consider offline opti-
mization, assuming that the UAV fully knows the location of the receiver and the chan-
nel propagation environment (channel parameters) to facilitate joint maneuvering and 
power control design. In the case of partial/incomplete understanding of location and 
channel information, this provides key insights and upper performance limits for actual 
design. However, the problem with these backscatter communication devices is the lim-
ited battery life. Therefore, if the battery runs out, most effective wireless communica-
tion protocols will not work. In the following, we consider the energy constraints of the 
UAV backscatter communication system.

2.2 � Ambient BackCom: a solution to limited battery‑life

The demand for high data rate and high-frequency spectrum of UVA communication 
network, as well as the goal of uninterrupted internet connection from drone to drone 
and drone to receiver, prompt us to explore the use of battery-free equipment in emerg-
ing wireless communications [1]. Battery-free devices can use the same bandwidth for 
continuous communication. The advantage of using passive devices in wireless commu-
nication lies in the uninterrupted exchange of information. In addition, achieving reli-
able communication with limited battery life is an important research area. In order to 
solve the problem of limited battery life, various measures have been taken, including 
the use of millimeter waves and energy harvesting in mobile networks, to design highly 
energy-efficient network architectures. We will first discuss power issues in cellular, 
D2D and the IoTs, and then we will review various attempts to solve energy constraints.

Figure 1 shows the ambient backscatter communication (AmBC) system, the source S 
is a UAV, the receiver R is equipped with an M antenna, the antenna form is a uniform 
linear array (ULA), and the single antenna is a passive tag G . R not only directly receives 
the signal from S , but also collects the backscattered signal from G . G first obtains energy 
from the drone signal. By deliberately changing the load impedance, G carries its infor-
mation on the UAV carrier to disperse or absorb the received signal.

Let s(n) be the signals of the UAV source with power Ps and B(n) ∈ {0, 1} be the modu-
lated signal at the tag which keeps unchanged during N consecutive UAV signals. Define 
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paths S − R and G − R, respectively. Denote channel gains of S − R, S − G and G − R as 
hsr, hsg and hgr, respectively. The attenuation factor inside the tag is denoted as η ∈ (0, 1].

Let s(n) be the signals from the UAV source with power PS , and B(n) ∈ {0, 1} is the 
modulated signal at G , and G remains unchanged during N  consecutive UAV signals. 
Define θ0 ∈
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 as the signal azimuth or direction of arrival of 
the paths S − R and G − R , respectively. Denote the channel gains of S − R , S − G and 
G − R as hsr , hsg , hgr , respectively. The attenuation factor inside G is denoted as η ∈ (0, 1] . 
The signal of the reader is

where the environmental backscatter communication channel is

Hsr = hsr

[

1, ej2πd sin
θ0
� . . . ej2πd(M−1) sin

θ0
�

]

T

,Hgr = hgr

[

1, ej2πd sin
θ1
� . . . ej2πd(M−1) sin

θ1
�

]

T  , w(n) ∼ CN (0, σ2I) is circularly symmet-

ric complex Gaussian noise vector distributed. d is the distance between two adjacent 
antennas, and � is the wave length of the UAV signal. Compared with the first antenna, 
the delay distance at the mth antenna is assumed as (M − 1)d sin θi , i ∈ {0, 1} . The equiv-
alent channel at the mth antenna is

where h0 = hsr and h1 = ηhsghgr.

Remark 1  Since hm is a function of modulating bits at G and channels hsr , hsg , hgr , it 
may be different from traditional point-to-point wireless communication systems. How-
ever, when G modulates the bit ’0,’ the effective channel degenerates to a traditional com-
munication channel.

2.3 � Reconfigurable reflectarray

The reflectarray antenna is a directional antenna that behaves a bit like a parabolic 
reflector. Instead of relying on the physical shape of the antenna to determine the reflec-
tion characteristics, the reflected light is composed of many reflective elements. Since 
the components on the antenna can provide phase compensation, the antenna reflects 
the incident wave of the electromagnetic radiation source and finally forms the main 
beam in a specific direction. In this way, the reflected wave is beamformed, and the 
reflectarray antenna receives the input signal wave and reflects it to a predetermined 
spatial direction, as shown in Fig. 2. The reflectarray antenna is composed of an array 
of reflectarray elements and a power supply. It collimates the radiation wave from the 
power supply by adjusting the reflection phase of each reflecting light element. In the 

(1)
y(n) = Hsrs(n)+Hgrηhsg s(n)B(n)+ w(n)

= Hs(n)+ w(n)

(2)H = Hsr + ηhsgHgrB(n)

(3)
hm = hsre

j 2πd
�

(m−1) sin θ0 + ηhsghgrB(n)e
j 2πd

�
(m−1) sin θ1

= h0e
j 2πd

�
(m−1) sin θ0 + h1B(n)e

j 2πd
�

(m−1) sin θ1
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design of the reflected wave antenna, the key issue is how to change the reflection phase 
of the reflected wave element.

The reflectarray antenna usually works at a single frequency and has a fixed main 
beam. A reconfigurable technology, reconfigurable reflector antenna (RRA), is a combi-
nation of a parabolic antenna and a phased array antenna. It adopts plane structure and 
is easy to process. In addition, RRA is more flexible than traditional mirrors and realizes 
beam scanning through mechanical scanning. The feeding network is simple, the trans-
mission loss is reduced, and the radiation efficiency is greatly improved. The component 
design is flexible, and different resonant components can be designed to achieve multi-
beam and beam scanning functions [9].

The topology of the novel slot-coupled digitally reconfigurable reflective array ele-
ment is shown in Fig. 2a. The DC bias circuit controls the switch of the PIN diode on 
the phase delay line, thereby changing the propagation path of the electromagnetic wave, 
and finally achieving a phase difference of 180° degrees for beam scanning.

The reconfigurable reflectarrays can change the delay of each element and direct the 
reflected light in different directions at different time. These elements are represented 
by dots in Fig. 2. The elements of the reflective surface are called subatomic or reflec-
tive elements. In short, we can think of elements as antennas, who captures the radio 
signal, keeps it inside for a short time and then sends the signal. The reflectarrays can be 
regarded as a passive MIMO array.

From a conceptual point of view, the establishment of future networks is indeed an 
exciting prospect. However, researches on this topic is still in its infancy. The most 
important thing is to demonstrate practically important use cases of the reconfigurable 
reflectarrays.

3 � Improved MIMO IRS system model
We considered IRS-assisted downlink communication in a single-cell network, where 
IRS is deployed to assist communication from multi-antenna APs to K single-antenna 
users on a given frequency band. The number of transmitting antennas at the AP and 
the number of reflecting units at the IRS are denoted by M and N, respectively. IRS is 
equipped with a controller to coordinate its switching between two working modes, 

Fig. 2  Reflectarray antennas (also called metasurfaces and smart reflecting surfaces) receive incident waves 
and reflect them in a specific direction (or to a point in space) in the form of beams
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namely the receiving mode for channel estimation and the reflection mode for data 
transmission [10]. Due to the high path loss, it is assumed that the power of the signal 
reflected twice or more by the IRS is negligible and therefore can be ignored. In order to 
characterize the theoretical performance gain brought by IRS, we assume that the AP 
fully understands the channel state information (CSI) of all involved channels. In addi-
tion, all channels use a quasi-static flat fading model. Since IRS is a passive reflection 
device, we consider time division duplex (TDD) protocol for uplink and downlink trans-
mission and assume channel reciprocity for CSI acquisition in downlink based on uplink 
training.

We consider IRS-assisted downlink communication in a single-cell network, where 
IRS assists communication from multi-antenna APs to K  single-antenna users on a 
given frequency band. The number of transmitting antennas at the AP and the num-
ber of reflecting units at the IRS are denoted as M and N  , respectively. IRS is equipped 
with a controller to coordinate its switching between two operating modes, namely the 
receiving mode for channel estimation and the reflection mode for data transmission 
[10]. Due to the higher path loss, it is assumed that the power of the signal reflected by 
the IRS two or more times is ignored. The AP is assumed to fully understand all CSI 
information. In addition, all channels use a quasi-static flat fading model. Since IRS is a 
passive reflection device, time division duplex (TDD) protocol for uplink and downlink 
transmission is adapted.

We consider performing linear transmission precoding on the AP. Therefore, the complex 
baseband transmission signal at the AP can be expressed as xk =

∑K
j=1 wjsj , where sj is the 

jth user transmission data and wj ∈ C
M+1 is the corresponding beamforming vector. It is 

supposed as an independent random variable, whose mean and variance are zero and 1, 
respectively. The system model of a single user in MIMO IRS is

where the baseband channels from AP to IRS, IRS to user k and AP to user k are 
denoted as G ∈ C

N×M , hHr,k ∈ C
1×N and hHd,k ∈ C

1×M , respectively, k = 1, . . . ,K  and 
nk ∼ CN (0, σ 2

k ) denotes the additive white Gaussian noise (AWGN).
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And � represent the reflection coefficient matrix of the IRS, where θn ∈ [0, 2π) and 
βn ∈ [0, 1][0, 1] , respectively, represent the phase shift and amplitude reflection coefficient 
of the nth element of the IRS. Therefore, the composite APIRS-user channel is modeled as 
a series connection of three components, namely the AP-IRS link, the IRS reflection with 
phase shift, and the IRS-user link.

Accordingly, the system model MIMO IRS is

where H
H
r

(KN)

=

















h
H
r,1
...

h
H
r,k
...

h
H
r,K

















 , H
H
r

(KM)

=



















h
H
d,1
...

h
H
d,k
...

h
H
d,K



















 , N =

















n1
...
nk
...
nK

















 , and 

W
(MK )

= [w1 . . .wk . . .wK ] =







w1,1 . . . wK ,1

...
. . .

...
w1,M · · · wK ,M






.

The SINRk of the single user and the SINR of the system are, respectively

Please refer to the ANNEX chapter for the detailed formula description of the system 
model.

4 � Method of trajectory prediction
4.1 � Detailed explanation of A‑LSTM

The structure of A-LSTM model is similar to that of encoder-decoder model. A-LSTM 
model composed of LSTM model and attention mechanism is widely used in time series 
prediction [15, 16], including machine translation, document extraction, question and 
answer system, etc.
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LSTM, as a more complex recurrent neural network (RNN), is expert in time informa-
tion processing and solves the problems such as the long-term dependence, gradient dis-
appearance and gradient explosion in backpropagation through time (BPTT) through the 
truncated gradient and regularization of guided information flow [17]. Figure 3a shows the 
LSTM cell structure at time t. As shown in Fig. 3a, xt stands for the input vector, ct repre-
sents the cell, and ht represents the hidden state at the current time. There are three gated 
units in the figure, including forget gate f, input gate i and output gate O. The forget gate 
controls that cell state information is to forget or pass useful information down. The inter-
section of new information and cell state are controlled by input gate. How much the cur-
rent cell state will be treated as an output value will be judged by output gate.

Specifically, the mapping relationship between an input vector sequence x = (x1,x2,…,xT) 
to an output sequence h = (h1,h2,…,hT) is precisely specified by:

(10)ft = σ(Wftxt +Wfhht−1 + bf )

(11)it = σ(Wixxt +Wihht−1 + bi)

(12)ot = σ(Woxxt +Wohht−1 + bo)

a

b
Fig. 3  Structure of LSTM
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where ft, it o and ct represent the forget gate, input gate, output gate and cell state vectors, 
respectively, at the current time, and σ stands for the logistic function mapping between 
0 and 1. W* and b* represent the weight matrixes and bias vectors, respectively [18, 19].

The A-LSTM model [20] mainly deals with the problem of ’Seq-to-Seq.’ We have drawn 
the details of A-LSTM model shown in Fig. 3b. The expressions of encoding, storage and 
decoding in graphs are sequence data xj, relational vector Ci and sequence output yi, respec-
tively. As shown in Fig. 3b, xj and hj represent the input sequence data and hidden state in 
the encoder. yi and Si represent the output sequence data and hidden state in the decoder. eij 
represents the correlation between encoding hidden state information and decoding state. 
aij explains the weight vector of eij and the higher the value of aij, the greater the influence 
of xj to yi.

where f and g explain the activation function, xj represents the input vector, j = 1,…,Tx, 
and yi is the output data, i = 1,…,Ty.

In terms of automatic information generation, the part of encoder is adopted LSTM. 
As shown in Fig. 3b, each xj represents the input vector of each time node. As time goes 
by, hj of the LSTM is updated with the gradual input of xj. We also defined the decoder 
as an LSTM that outputs sequence data yi. The relational vector Ci, which is calcu-
late through a series of function transformations of encoding input vector xj and out-
put sequence hidden state Si−1, indicates the only correlation between the encoder and 
decoder. According to assigning weight to hj by the function of softmax, vector Ci shows 
different concerns about hj. The relational vector Ci including the total useful informa-
tion of input sequence vector xj has guiding significance for the output of the decoder. 
The results show that it is necessary to obtain useful sequence information in the train-
ing to effectually increase the precision of decoding prediction [21].

Through the above description, it mainly introduces LSTM and A-LSTM that is the 
combination of LSTM and attention mechanism. Meanwhile, in the training process of 
A-LSTM model, the network parameters can be continuously updated by loss function, 
so as to realize the prediction of time series.

(13)ct = ft ct−1 + it tanh(Wcxxt +Wchht−1 + bc)

(14)ht = ot tanh(ct)

(15)eij = tan(Si−1, hj)

(16)aij =
exp(eij)

∑Tx

k=1 exp(eik)

(17)Ci =
∑Tx

j=1
aijhj

(18)Si = f (Si−1, yi−1,Ci)

(19)yi = g(yi−1, Si,Ci)
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4.2 � A‑LSTM location prediction model

In Sect. 3, it will pay attention to A-LSTM model prediction process structure in Fig. 3b. 
Since UAV moves fast and is susceptible to some external factors, it is necessary to 
obtain location of UAV by using the A-LSTM location model at next time. First, accord-
ing to the spatial spectrum of URA’s DoA, the current UAV communication location 
information can be obtained, which includes Azimuth information θ and φ, respectively. 
Afterwards, we will adopt preprocessing system to implement angle data preprocessing 
to get the redefinition angle information including θ* and φ*. Ultimately, the redefinition 
information as the input layer will be mapped to next time data through the A-LSTM 
model. As the epoch of training increases, best A-LSTM model parameters will be kept 
to predict pitch and horizontal angles.

4.2.1 � Acquisition of A‑LSTM training samples

For A-LSTM model, the acquisition of the training samples is crucial. Consequently, we 
also have researched DOA estimation. After the discussion above, the covariance matrix 
of x(t) can be defined as:

where Rx expresses the source covariance matrix, σ2 is the common variance and I 
denotes an MN*MN identity matrix.

In addition, the standard subspace method can be applied to convert the covariance 
matrix of x(t) to

where λ1 ≥ λ2 ≥ ··· ≥ λP > λP+1 = ··· = λMN are the eigenvalue of Rx and e1,e2,…,eMN are the 
associated eigenvectors of them. Es represents the eigenvectors of P largest eigenvalue, 
and En stands for eigenvectors of MN-P smallest eigenvalue. In addition, the number of 
sources P will be evaluated using the principle of minimum description length.

Further, the signal subspace of a(θ1, φ1),…, a(θp, φp) is the same as the Es signal sub-
space and orthogonal to the noise subspace En. Thus, we have

where ||·|| explains the Kronecker product. So, the DoA estimate of URA will be 
obtained, and the spatial spectrum can be defined due to the multiple signal classifica-
tion to define [22].

According to Eq. (23), two maximum value of spectrum search can be obtained, which 
corresponds to signal source incidence angles included pitch angle and horizontal angle 
of, respectively.

(20)Rx = E
{

x(t)xH (t)
}

= ARsA
H + σ 2I

(21)Rx =

P
∑

i=1

�ieie
H
i +

MN
∑

i=P+1

�ieie
H
i = Es�sE

H
s + σ 2EnE

H
n

(22)
∥

∥EH
n a(θi,φi)

∥

∥ = 0, i = 1, 2, . . . ,P

(23)P(θ ,φ) =
1

∥

∥EH
n a(θ ,φ)

∥

∥

2
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Meanwhile, the A-LSTM location predictive model which consists of parameters and 
structure in this paper is considered as a mapping function. Once URA receive the sig-
nal of BS, BS can get the feedback of URA about the relevant received signal vector x(t). 
Afterwards, these two peak values of the spatial spectrum achieve the current location 
pitch angle and horizontal angle of UAV, which means that we can continuously obtain 
2D DoA angle information. Consequently, it is possible to continuously acquire the 
received signals during the air communication of UAV, thereby continuously acquiring 
the 2D arrival angles at different moments, which helps us to obtain training samples.

4.2.2 � A‑LSTM prediction system

For further enhancing the feasibility and stability of A-LSTM prediction effect, a series 
of complex preprocessing is introduced for the acquired dataset. Data cleaning aims at 
detecting errors and inconsistencies in data, eliminating or correcting them to improve 
data quality, so that the uniformity of location information data can be achieved. There-
fore, we first clean the angle data in the preprocessing system (Fig. 4).

Besides, the constancy of training set directly affects the error of entire training result 
of proposed A-LSTM location predictive model. Therefore, augmented Dickey–Fuller 
test (ADF) is carried out after data cleaning. The critical value of ADF statistics and ADF 
statistics is full of guiding significance for stability of the system. Suppose that the ADF 
result is smaller than threshold level, the assumption that there is a unit root is rejected. 
Meanwhile, raw dataset shows stable. Therefore, it is assumed that there exits the unit 
root in the zero hypothesis of ADF, and the criterion is that test statistic value prefer-
ably is no more than 1%; the invalid hypothesis can be significantly negated, thereby 
determining the dataset stability. The detection result of ADF is shown in Table 1. As we 
can see from the table, the test statistic value is far less than 1% of the critical statistic, 

Fig. 4  Data processing

Table 1  The detection result of ADF

Detection Value

Test statistic value − 17.378

P value 0

Critical value (1%) − 3.43057

Critical value (5%) 2.86164

Critical value (10%) − 2.56682
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which is obviously less than 5% and 10% of the critical value. At the same time, the prob-
ability value (P value) of the detection is close to zero. Hence, we can conclude that the 
obtained angel data is stationary.

Since the position of UAV is various at different moments, some specific angle data 
at different moments will be generated. Therefore, data integration method is used to 
gather pitch angle θ and the horizontal angle φ of different time nodes, thus constituting 
the training angle database. Assuming that the pitch angle is regarded as X axis and the 
horizontal angle as Y axis, a coordinate system about angle is formed. In this way, the 
information from two unrelated perspectives can be transformed and given new mean-
ing. In addition, data normalization can help us to solve the impact of single attribute in 
multi-attribute sample data and ensure that the speed and accuracy of finding the opti-
mal solution are accelerated when the gradient descends. Finally, data reconstruction is 
realized to adapt the data to the input data structure of A-LSTM model.

For further enhancing the performance of A-LSTM location predictive param-
eter model, we adopt the sliding window to guarantee the real-time prediction of the 
A-LSTM model. If the length of sliding window is n, n + 1th data will be automatically 
predicted by A-LSTM model. When UAV and BS communicate continuously, we will 
get the latest UAV azimuth information at every moment. Over time, we also import the 
latest data into the data structure to be predicted, while automatically deleting outdated 
data.

After the above processing, the training data of a specific structure are input into 
the structure of A-LSTM. After training, the structure and parameters of the A-LSTM 
model can guarantee the accuracy of prediction, so as to achieve azimuth prediction. By 
predicting the location of the next moment of the UAV, helping the BS to achieve accu-
rate beamforming can improve the communication quality within the coverage of UAV. 
At the same time, we will also use the following experiments to express the reliability 
and stability of A-LSTM the accuracy of the prediction.

The results verify that A-LSTM model is suitable for trajectory prediction and per-
forms well, which shows that A-LSTM model pays more attention to the trajectory angle 
of UAV.

5 � Results and discussion
The simulation scenario is shown in Fig. 1: Black dots represent base stations (BS); the 
red dot represents massive unmanned aerial vehicle (Muav); the blue dot represents 
small IoT unmanned aerial vehicle (Iuav); the hexagon represents the service area cov-
ered by the base station, which is composed of three sectors, and each sector corre-
sponds to a phased array antenna. In this part, we discussed two types of links in the 
simulation: the first type of link is Iuav → Muav; the second type of link is BS → Muav.

For Iuav → Muav, Iuav is an IoT terminal. In order to ensure the power continuity of 
Iuav, Iuav uses the backscattering mode to transmit to Muav. Iuav environmental elec-
tromagnetic wave source comes from BS. The BS points to Iuav through beamforming to 
ensure that Iuav can receive enough energy for reflection. The direction of beamforming 
needs to be predicted with LSTM to ensure the accuracy of BS beamforming. Iuav is 
equipped with an intelligent reflective surface (IRS), which only reflects signals and does 
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not emit signals. After LSTM prediction and calibration, the IRS beamforming points 
to Muav to ensure the strength of the backscattering link. For BS → Muav, Muav is the 
main unmanned aerial vehicle (UAV), and it is equipped with a phased array antenna, 
which has strong capabilities and belongs to the air center node. The BS → Muav link 
is an important backhaul fronthaul path and is the gateway between the ground net-
work and the air network. Normally, only ray1 exists on the BS → Muav link. For this, 
the BS needs beamforming to point to Muav. Prior to this, the position of Muav was 
also predicted with LSTM to ensure the accuracy of beamforming. However, due to the 
existence of the first type of link (Iuav → Muav), Muav not only has the receiving path of 
ray1, but also has the receiving path of ray2 based on artificial reflection. Muav’s signal 
receiving path is shown in Fig. 1. Therefore, full use of ray2 energy (precoding technol-
ogy precoding) can increase the strength of the BS → Muav link.

The two links are compared, as shown in Fig. 5. The first type of link, Iuav → Muav, 
uses backscattering technology, IRS and LSTM to save resources (including energy, 
spectrum, and computing power) on Iuav and complete the transmission of the IoT. The 
second type of link, BS → Muav, uses beamforming, precoding and LSTM to increase 
the strength of the link. LSTM has the function of predicting the beam forming direc-
tion and increasing the antenna gain, as shown in Fig. 6.

In the simulation, the main configuration parameters of the system are shown in 
Table 2. We set: the number of base stations is 7, the radius of the cell is 450 m, the angle 
of each sector is 120°, the number of Muav in each sector is 1, the number of Iuav in each 
sector is 3, and the number of LSTM trainings is 250.

The simulation results are shown in Fig. 7. Link2 capacity (ray1): Under the condition 
of only ray1, the reception of link2 is CDF (lower), and SINR corresponds to C (upper). 
The capacity of Link2 (ray1 + ray2): The presence of ray1 and ray2 at the same time 
makes the received energy rise, so the curve is higher than the capacity of Link2 (ray1). 

Fig. 5  Key technologies included in the two links
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Link2 capacity (ray1 + ray2 + backscatter): The addition of backscatter essentially adds 
noise to ray2 of link2, which will cause some performance loss. Therefore, this curve is 
between the capacity curve of Link2 (ray1) and the capacity curve of Link2 (ray1 + ray2). 
Link1 capacity (backscatter): The capacity generated by backscatter is essentially stolen 
from the capacity generated by link2-ray2. The dotted line part: The imperfect LSTM 
prediction makes the beamforming of the entire system inaccurate and causes partial 
loss of antenna gain. Therefore, the dotted line will be a little worse than the solid line. 
Here, multiple sets of dotted lines can be added to correspond to different RNN algo-
rithms and parameter configurations.

Fig. 6  LSTM algorithm

Table 2  Configuration

Parameter Value

Muav number 1

Muav antenna 8*8

Muav flying height (m) 50

Muav antenna down angle 90°

Iuav number 3

Iuav antenna 8*8

Iuav flying height (m) 30

Iuav antenna down angle 0°

Power (dBm) 50

Antenna 8*8

Frequency (GHz) 3.5

Antenna down angle 10°

BS height (m) 30

Sector width 120°
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6 � Conclusions
Driven by the market, UAV industries start pushing the digital transformation of their 
products and services. We are entering the era of ubiquitous IoT with all kinds of things 
equipped with computing and communication capabilities. This paper, in particular, 
develops a novel hierarchical 6G IoT network of UAVs equipped with BackCom IRS. We 
focus on deep learning-based BackCom multiple beamforming, in a bid to improve the 
energy of the reflective signal. Simulation results justify that our approach can not only 
save the precious spectrum but also promote the concept of green communication by 
cutting off the energy consumption.
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