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1  Introduction
The distribution systems are unbalanced naturally. With the rapid development of the 
distributed generators and the wide use of electric vehicles, the unbalanced condition 
of distribution systems are getting worse by those single-phase power supply and loads 
increasingly [1, 2]. In this case, it is great need to promote the research and analysis of 
the unbalanced distribution systems. But for the unbalanced distribution systems, this 
unbalanced nature makes it difficult to generate the decoupled (1–2–0) networks for 
analysis. Consequently, it is direct and convenient to employ phase (a–b–c) coordinates 
for the analysis and solution of the unbalanced distribution system [3]. There are many 
connections and different neutral point states for the three-phase transformers. In mod-
ern distribution system analysis, models of the transformers play an important role in 
power-flow analysis and short-circuit studies. Therefore, it is necessary to study a new 
approach modeling three-phase transformer connections by phase-coordinates in uni-
fied matrix analysis.

There are several representative approaches for modeling the three-phase distribu-
tion transformer connections in the admittance matrix form by phase-coordinates 
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proposed in [4–10]. Reference [4] developed an approach from the KCL and KVL, 
which was able to generate the 6 × 6 matrix in different transformer connections 
according to single-phase transformer symmetrical lattice equivalent circuits as the 
units grouping up. In the paper, the authors described the transformer in model 
relationship between the phase-coordinates and component coordinates as well. 
However, the interphase coupling did not be considered in this approach. Later, the 
improved models proposed in [5–7] derived from this approach of assembling single-
phase transformer equivalent circuits by different connections. Another representa-
tive approach generated a primitive matrix by the six coins equivalent circuit of the 
transformer in (YN, yn0) connection [8, 9].The main characteristic of this approach 
was that the models were obtained from product relations between the primitive 
matrix and the incidence matrix in different connections, while it was not accurate 
description that the left incidence matrix and the right one were same. Reference [10] 
accounted for a method of handling matrix singularity in the use of the transformer 
power-flow models. And the modified augmented nodal analysis (MANA) [11] was 
proposed, which enriched the model application of transformers.

There were several flaws in the previous approaches for modeling the three-phase 
transformers by phase-coordinates. For one thing, the phase self-impedances and 
mutual-impedances come from the transformer positive impedances directly, though 
the phase impedances are much closed to the positive impedances. For another, 
the most of models described the parameters of 6 coins by 6 × 6 dimension to 7 × 7 
dimension matrix in the models for transformer, only consider the injection currents 
at a–b–c phase between the primary and the secondary sides, but not all the currents. 
In this case, the models did not enable to cover the use of both in power-flow and 
short circuit calculations under the asymmetric magnetic circuits.

The three-phase AC transmission theory used to be generated from the single-phase 
models of the system equipment by the AC circuit theory based on the symmetrical 
characteristics of the three-phase voltages and currents, which the three-phase symme-
try is the characteristic of traditional power system analysis. And the unavoidable asym-
metry conditions of the transformers are even more serious than the lines. The purpose 
of this paper is to model the three-phase transformers in different connections by phase-
coordinates by matrix operation method. The main work for studying is show as follows:

•	 Generated the primitive admittance matrix from the coupling windings by decou-
pling method.

•	 Modeling the transformers in different connections by matrix operation method 
based on the asymmetric magnetic circuits.

•	 Method for obtaining phase-coordinate modified parameters for the models of the 
transformers.

2 � Methods/experimental
The aim of this paper is to solve the problem for winding connections modeling of 
three-phase transformer by phase-coordinates based on matrix operation method.
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Firstly, we introduced the steps to obtain transformer admittance matrix by matrix 
operation method. Then we analyzed the modeling for the connections of three-phase 
distribution transformer, and also we analyzed the differences of the impedance parame-
ters between phase-coordinates and sequence-coordinates. Finally, we verified the effec-
tiveness of the modeling methods by simulation.

3 � Modeling methodology
In this section, the modeling approach for a transformer is described by the matrix oper-
ation method from the 12 × 12 dimension primitive admittance matrix. The complex 
variables and the values of parameters are given in per-unit system. Firstly, the coupling 
configuration used prefers to describe and analyze the coupling phenomenon by com-
paring with the two circuit topologies for a single-phase double-winding transformer. 
And then the phase-coordinates construction methodology for the three-phase model is 
described by the following steps.

•	 Definition of the transformer primitive admittance matrix YP.
•	 Definition of the transformer admittance matrix YT by the matrix operation method 

in different connections.

Figure 1 shows the main steps of the conceptual scheme of the construction method-
ology [12]. Firstly, the primitive matrix is generated from the coupling windings shown 
as the inner blue frame. And then, according to the boundary conditions of the connec-
tions at the windings, the transformers are modeled by the matrix operation method.
Nomenclature
Subscripts

Fig. 1  Conceptual scheme of the construction; In red box, the model of the transformer is showed. Besides 
three-phase coins connections in Primary side and secondary side, there are self-inductance and mutual 
inductance in transformer windings (green box and small black box showed)
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i or 1	� Bus i or Bus 1 (Transformer primary side)
j or 2	� Bus j or Bus 2 (Transformer secondary side)
A, B, C or ABC (ia, ib, ic or iabc)	� Transformer primary phases
a, b, c or abc (ja, jb, jc or jabc)	� Transformer secondary phases

Variables

V	� Voltage complex vector.
I	� Current complex vector.

Matrices

[Z], Z	� Impedance matrix, element of impedance matrix.
[Y] or Y, y	� Admittance matrix, element of admittance matrix.

3.1 � Primitive admittance matrix YP
The two kinds of single-phase equivalent circuits are shown in Fig. 2. Figure 2a is the T-con-
figuration, and Fig.  2b is the coupled configuration. In Fig.  2, “A”, “X” are the two buses 
at the primary side, “a”, “x” are the two buses at the secondary side respectively. I1, I2 (IA, 
Ia) are the Injection currents, and V1, V2 (VA, Va) stand for the node voltages at the wind-
ings. In Fig. 2a, Z1, Z2 are the windings self-impedances, and jwM is the mutual-impedance 
between windings. w is the angular acceleration. In Fig. 2b, RA, Ra, LA, La are the resistances 
and self-inductances at the windings. M is the mutual-inductance. And g0 + jb0 is the no-
load admittance. The circuit relationship in Fig. 2a (in p.u system) can be given by

(1)
{

Z1 = R1 + jw(L1 −M)

Z2 = R2 + jw(L2 −M)

a

b
Fig. 2  Single-phase equivalent circuits of the double-winding transformer; a is the model of T-configuration, 
Z1 and Z2 are connected together, and The mutual impedance is connected between them. They form 
a T-shaped connection. b Model of Coupling configuration, which mutual impedance is generated by 
coupling
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There is potential difference between Bus “X” and “x” in transformer testing experi-
ment. The T-configuration fails to express the electrical characteristics of the trans-
former, although the calculation enables to equipotential potential. When running in 
symmetrical operation, the two buses (X, x) are the same at "zero" potential point, so 
they can be connected in the form of equipotential. Generally, the two buses are not 
the same at the zero potential point when they run in three-phase asymmetric opera-
tion. In order to reflect the potential offset phenomenon of neutral point and con-
sider the various connections of transformers, three-phase transformers for modeling 
should adopt the form of Fig. 2b.

Consequently, there is no electrical connection between Bus X and Bus x in Fig. 2b, 
which can indicate the potential difference between the two buses. The floating phe-
nomenon without buses grounding and the different connections of the transformer 
enable to explain as well. While the T-configuration equivalent circuit of transformer 
in Fig.  2a utilizes the equipotential characteristics at the symmetrical operation, 
which is not suitable for asymmetrical operation analysis.

The application of Fig. 2b at Fig. 1, the three-phase transformer contains 6 coins and 
12 buses (A–B–C buses and X–Y–Z buses at the primary side; a–b–c buses and x–y–z 
buses at the secondary side) shown as Fig. 3, and the generalized primitive model can 
be given by a 12 × 12 matrix using the decoupling methodology. The branch current 
equation can be given as

where [ZPrim]6×6 =















ZAA ZAB ZAC ZAa ZAb ZAc

ZBA ZBB ZBC ZBa ZBb ZBb

ZCA ZCB ZCC ZCa ZCb ZCc

ZaA ZaB ZaC Zaa Zab Zac

ZbA ZbB ZbC Zba Zbb Zbc

ZcA ZcB ZcC Zca Zcb Zcc















6×6

 , which presents the impedance 

relationship of the transformer, and its admittance is yprim = Z−1
prim.

The node voltage equation of the transformer can be shown as

(2)
[

ViABC − ViXYZ

Vjabc − Vjxyz

]

6×1

= [ZPrim]6×6

[

IiABC
Ijabc

]

6×1

Fig. 3  A three-phase transformer; It describes the arrangement of 12 coins of a three-phase transformer
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where 
[

yprim −yprim
−yprim yprim

]

12×12

= YP , which is the full primitive model of the transformer 

in Y-bus form.

3.2 � Transformer admittance matrix YT
According to different connections, we obtain the admittance models based on the 
matrix operation method from the derivation of the initial admittance matrix YP.

Figure 4 is used to describe the (YN, d11) connection of transformer. According to 
potential relations, we obtains

The Eq.  (4) presents the boundary conditions of the transformer in YN,d11 con-
nection. The admittance matrix can be calculated by the matrix operation method 
according to the connected relationship of the transformer in YN,d11 connection.

Steps to obtain transformer admittance matrix by matrix operation method can be 
shown as follows:

(1)	 YN connection of primary side: Bus X, Y and Z are grounding, and the rows and 
columns of them are retained in the primitive admittance matrix YP.

(2)	 d11 connection of secondary side:
(3)	 Block 1: Unchanged (the changes of secondary winding connection do not affect 

the array of the primary side at YP);
(4)	 Block 2: For the ja column in YT, sum with the elements of the j.jy column, 

(i.e. j.ja = j.ja+ j.jy ) in YP;

(3)







IiABC
Ijabc
IiXYZ
Ijxyz






=

�

yprim −yprim
−yprim yprim

�

12×12







ViABC

Vjabc

ViXYZ

Vjxyz







(4)
{

ViX = ViY = ViZ

Vja = Vjy,Vjb = Vjz ,Vjc = Vjx

Fig. 4  YN, d11 connection of the transformer; In the left side, YN, d11 connection of the transformer is 
showed.In the middle, it shows the vector relationship between voltage and terminal in the Y side. And the 
right side of the figure it shows the vector relationship between voltage and terminal in the D side of the 
transformer



Page 7 of 23Zhang et al. J Wireless Com Network         (2021) 2021:66 	

(5)	 Block 3: For ja rows in YT, sum with the jy row element jy.j, (i.e. ja.j = ja.j + jy.j ) in 
YP;

(6)	 Block 4

Non-diagonal elements in YP:
a–y: column element: YP * (jb,jy) → YTΔ(jb,ja),row element: YP * (jy,jb) → YTΔ(ja,jb);
b–z: column element: YP * ( jc,jz) → YTΔ(jc,jb),row element: YP * (jz,jc) → YTΔ(jb,jc);
c–x: column element: YP * (ja,jx) → YTΔ(ja,jc),row element: YP *(jx,ja) → YTΔ(jc,ja);
Diagonal elements:
(in YT): yja,ja = −

∑

k �=ja Yja,k  (in YP) (Ring network without grounding branch);
Preserve three-phase voltage variables, and delete Buses (X, Y, Z, x, y, z) by needed, 

which can be obtained a 6 × 6 standard matrix (shown as Fig. 5) to a 7 × 7 matrix by 
retention of neutral buses.

Based on matrix operation method instead of scanning the branch, the models of 
the transformer are derived from the relationship of the connections, which directly 
forms the nodal admittance matrix. The analysis method can be used to three-wind-
ing transformers as well.

In accordance with the above rules, we can obtain two incidence matrixes (CY and 
Cd11). The Y-bus model relationship (containing neutral voltage variable) of the trans-
former in YN,d11 connection between (CY,Cd11) and YP can be given by

where

(5)[YT ]7×7 = Cd11CYYPC
T
Y C

T
d11

Fig. 5  Blocks of the transformer admittance matrix YT; the blocks of YT are showed. The self-impedance and 
mutual-impedance are reflected in Block 1 on the primary side. And self-impedance and mutual-impedance 
are reflected in Block 4 on the secondary side. Mutual-impedance are reflected in Block 2, 3 on the primary 
and secondary side
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The model in the Eq. (5) is the complete full transformer admittance model. Generally, 
we need to retain the related parameters of the three-phase voltage variables. Repeat 
Step 3, we can enable to obtain a 6 × 6 matrix.

4 � Modeling of three‑phase transformers
In this section, the generalized modeling methodology is applied to represent the three-
phase constructions of transformers. The aim is to demonstrate the matrices of the mod-
els in derivation process. All the three-phase two winding transformers are defined in 
magnetic circuits of asymmetry configurations in this paper, and symmetric configura-
tion is a special kind of asymmetric configurations.

There are the magnetic circuits connecting closely of the transformer in three-phase 
three-limb core, besides the magnetic coupling of the primary and secondary windings 
of each phase, as well as the magnetic circuits coupling of the different phase windings 
as shown Fig. 6. The effects of the coupling of the inter-phase windings are obvious when 
the transformer runs asymmetrically.

Considering mutual inductance between the windings, the branch current equation 
for conveniently analyzing mutual inductance is

Bus X and x, Bus Y and y, Bus Z and z are checked in unequal potentials, and those 
buses do not connect together. The self-impedance of each winding is nearly equal in 
no-load test, and the relationship of the self-impedance can be given as

According to the nodal voltage Eqs.  (6) and (7), the nodal admittance matrix can be 
shown by 12 × 12 dimensions as 

CY =





























1

1

1

1

1

1

1 1 1

1

1

1





























10×12

,

Cd11 =



















1

1

1

1 1

1 1

1 1

1



















7×10

.

(6)















VA − VX

VB − VY

VC − VZ

Va − Vx

Vb − Vy

Vc − Vz















=















ZAA ZAB ZAC ZAa ZAb ZAc

ZBA ZBB ZBC ZBa ZBb ZBb

ZCA ZCB ZCC ZCa ZCb ZCc

ZaA ZaB ZaC Zaa Zab Zac

ZbA ZbB ZbC Zba Zbb Zbc

ZcA ZcB ZcC Zca Zcb Zcc





























IA
IB
IC
−Ia
−Ib
−Ic















(7)

zAA = zBB = zCC = zaa = zbb = zcc = zs
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where y′m is the mutual admittance between the primary and secondary sides of wind-
ings on the same iron-core. ẏm is the mutual admittance among different phases primary 
(secondary) sides of windings on the different iron-cores.ÿm is the mutual admittance 
among different phases from the primary sides to secondary sides of windings on differ-
ent iron-cores. ys is the self-admittance on the primary sides or the secondary sides of 
windings.

The Bus X, Y, Z and Bus x, y, z of transformer can be connected according to the 
connection of transformer to express the corresponding voltages in neutral points, 
based on the method of Sect. 2.

(1)	YN,yn0 connection

The network topology of the transformer in YN,yn0 connection can be shown as 
Fig. 7. And its 6 × 6 Y-bus matrix can be given by the matrix operation method as

11

1

s mab mac m mab mac s mab mac m mab mac

mba s mbc

iA iB iC ja jb jc iX iY iZ jx jy jz
y y y y y y y y y y y yiA
y y y yiB

iC
ja
jb
jc
iX
iY
iZ
jx
iy
jz

′′ − − − − − −& & && && & & && &&

& & && 1

11

22

2

mba m mbc mba s mbc mba m mbc

mca mcb s mca mcb m mca mcb s mca mcb m

m mab mac s mab mac m mab mac s mab mac

mba m mbc mba s mbc

y y y y y y y y
y y y y y y y y y y y y
y y y y y y y y y y y y
y y y y y y

′′ − − − − − −
′′ − − − − − −

′′ − − − − − −
′ −

&& & & && &&

& & && && & & && &&

&& && & & && && & &

&& && & & & 2

22

11

11

mba m mbc mba s mbc

mca mcb m mca mcb s mca mcb m mca mcb s

s mab mac m mab mac s mab mac m mab mac

mba s mbc mba m mbc mba s

y y y y y y
y y y y y y y y y y y y
y y y y y y y y y y y y
y y y y y y y y y

′− − − − −
′′ − − − − − −

′′− − − − − −
′− − − − − −

& && & &

&& && & & && && & &

& & && && & & && &&

& & && && & &

11

22

22

mbc mba m mbc

mca mcb s mca mcb m mca mcb s mca mcb m

m mab mac s mab mac m mab mac s mab mac

mba m mbc mba s mbc mba m mbc mba s

y y y
y y y y y y y y y y y y
y y y y y y y y y y y y
y y y y y y y y y y y

′
′′− − − − − −

′′− − − − − −
′′− − − − − −

&& &&

& & && && & & && &&

&& && & & && && & &

&& && & & && && & &

22

mbc

mca mcb m mca mcb s mca mcb m mca mcb s

y
y y y y y y y y y y y y


















 ′′− − − − − −  && && & & && && & &

(8)

Fig. 6  Three-phase two winding transformer in magnetic circuit asymmetry configuration; Three-phase two 
winding transformer in magnetic circuit asymmetry configuration shows that there are coupling in windings, 
as well as the coupling between phases
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Ignoring mutual-inductances among the three phases ( ̇y = 0, ÿ = 0, y′m = ym ), the 
6 × 6 admittance matrix can be given by 

1

1

1

2

2

2

s mab mac m mab mac

mba s mbc mba m mbc

mca mcb s mca mcb m

m mab mac s mab mac

mba m mbc mba s mbc

mca mcb m mca mcb s

y y y y y yiA
y y y y y yiB
y y y y y yiC
y y y y y yja
y y y y y yjb
y y y y y yjc

′ 
 ′ 
 ′
 ′ 
 ′


′  

& & && &&

& & && &&

& & && &&

&& && & &

&& && & &

&& && & &

(9)

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

ms

ms

ms

sm

sm

sm

iA iB iC ja jb jc
y yiA

y yiB
y yiC

y yja
y yjb

y yjc










 

L

L

L

L

M M MM

L

L

L

(10)

Fig. 7  Topology of the three-phase three-limb core transformer; the three-phase three-limb core transformer 
has asymmetric magnetic circuits. The topology shows the relationship between equivalent reactance and 
connection of the transformer
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The network topology of the transformer in the Eq. (10) can be shown as Fig. 8.

(2)	YN,d11 connection

In Fig. 9, the connected topology of the transformer in YN,d11 connection is presented. 
For the transformer in the asymmetric magnetic circuits (such as the transformer in three-
phase three-limb cores), the node admittance matrix is full because of the coupling among 
the windings.

The boundary condition is given by the Eq. (4). And the Buses X, Y, Z are grounded. We 
enable to obtain the 6 × 6 Y-bus matrix by the matrix operation method retaining the three-
phase variables, shown  as

Fig. 8  Topology of the transformer by ignoring mutual-inductances; Ignoring mutual-inductances (When 
the magnetic circuits is balanced), Topology of the transformer is showed like this

Fig. 9  YN,d11 Connection of the transformer; YN,d11 Connection of the transformer in the coins is showed 
like this. In primary side, Coin X, Y, Z are connected; and (Coin a & z), (Coin b & x) and (Coin c & y) are 
connected together in secondary side



Page 12 of 23Zhang et al. J Wireless Com Network         (2021) 2021:66 

 where

According to different magnetic circuits, the Y-bus model can be given from analyzing 
the Eq. (11):

(1)	 Ignoring mutual-inductances among the three phases, the model is able to be seen 
as the connection by three single-phase transformers assembling. The 6 × 6 admit-
tance matrix can be given as

	

The network topology of the transformer in the Eq. (12) can be shown as Fig. 10.

(2)	 Same iron-core magnetic circuit: y′m = ÿm = ẏm = ym ; and the admittance matrix 
can be given by

(3)	 Plane magnetic circuit layout: ẏmab = ẏmbc =
2
3
y′m, ẏmac =

1
3
y′m , 

ÿmab = ÿmbc =
2
3
y′m, ÿmac =

1
3
y′m ; the admittance matrix can be given by

1

1

s mab mac m mab mab mac mac m

mba s mbc mba m m mbc mbc mba
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(4)	 Three dimensional split magnetic circuit: ẏmab = ẏmbc = ẏmac = 0.5y′m , 
ÿmab = ÿmbc = ÿmac = 0.5y′m , and the admittance matrix can be given by

5 � Method obtaining the admittances by phase‑coordinates
References in this paper attempt to convert directly the parameters of symmetry test 
into phase-coordinate parameters. In principle, unsymmetrical static three-phase 
equipment fails to form decoupled 1–2–0 sequence circuits. As a result, the phase-
coordinate parameters converted by the decoupled 1–2–0 parameters are approxi-
mate values. Compensation method enables to reduce the errors, but it cannot be 
equivalent. In order to distinguish between nominal values in this section, variables 
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Fig. 10  Topology network of the transformer by ignoring mutual-inductances; Topology network of the 
transformer by ignoring mutual-inductances is showed in the connection of YN,d11 transformer
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and symbols representing per-unit values are marked “*” in the subscript. In this sec-
tion, the admittance matrix in the Eq. (6) needs to analyze and calculate.

5.1 � Impedances obtained in the symmetry

Considering the symmetry of structural parameters for three-phase Transformer, the 
relationship of the Eq. (6) in per-unit system enables to be expressed by

where
ZP∗ is the self-admittance on the primary winding;
Zs∗ is the self-admittance on the secondary winding;
Zm∗ is the mutual-admittance between the primary and the secondary windings at 

the same iron-core;
Z′
m∗ is the mutual-admittance between the primary windings.

Z′′
m∗ is the mutual-admittance between the primary and the secondary windings at 

the different iron-cores.
Z′′′
m∗ is the mutual-admittance between the secondary windings.

(1)	No-load test: The test enables to obtain the two groups of data, and they are no-load 
current I0 and no-load loss P0.The relationships of parameters in no-load state can be 
given by

where
y0* is the no-load admittance; z0* is no-load impedance;
g0* is the no-load conductance;
b0* is the no-load susceptance;
STN is the transformer’s rated capacity.
The no-load impedance can be expressed by

(2)	Short circuit test: The test enables to obtain the two groups of data, they are the per-
centage of short-circuit voltage Vs% and short circuit power loss Pk. The relationships 
of parameters at short-circuit state can be given by

(16)
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where
RT* is the transformer winding resistance; |zT∗| is the leakage reactance; xT* is the 

winding reactance. And the impedance in short-circuit state can be given by

The Eqs.  (10)–(20) deduced under the condition of the symmetrical currents or 
voltages, the above parameters stand for the positive sequence parameters. The steps 
for extrapolating the phase-coordinate parameters can be shown as follows:

Considering the same values of leakage reactance on the primary side and second-
ary side, the relationship (in value system) can be shown by

where
Zσ1,Zσ2 are the leakage reactances on the primary and secondary sides as Fig.  2b 

shown. The basic parameters in the symmetry in no load test can be given by

The reluctances of transformer’s magnetic circuit are mainly from the air gap 
between iron cores. According to the principle of magnetic circuit of phase separa-
tion test method, there is the relationship shown as follows:

The leakage fluxes run in the air different from those run in the iron-cores. The 
three-phase symmetrical currents have the effect of magnetization. Similar to three-
phase transmission lines, they have the basic relationships of positive sequence 
impedance and zero sequence impedance. The relationship between positive sequence 
leakage reactance and phase separation leakage reactance of transformer obtained 
from short circuit test is as follows:

where
xσ s is self-inductance leakage flux;
xσm is mutual-inductance leakage flux.

(19)
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The self-impedance and mutual impedance of the leakage reactance from the short 
current test can be given by

By substituting the Eqs. (14)–(25), the relationship of the impedance matrix by phase-
coordinates in YN,yn0 connection can be given by the modified equation in per-unit sys-
tem shown as

Figure 11 presents the relationships of the vectors in the parametric systems. The rela-
tionships for the parameters in References are shown in Fig. 11a. While the relationships 
for our modified parameters are shown in Fig. 11b, which enable to explain the work in 
this section intuitively.

5.2 � Impedances and admittances obtained in the asymmetry

The magnetic circuits of the three-phase three-limb core transformer can be shown 
in Fig.  12. The branch Eq.  (6) enables to express the relationships of the transformer 
conveniently.

Considering the relations of the linear circuits without magnetic saturation, the 
impedance parameters in the Eq. (6) can be obtained by the open circuit test. Figure 13 
shows the coupling relations between the primary side and the secondary side.
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Fig. 11  Vector relations in parametric systems; Unmodified parametric system is used to describe vector 
relations by sequence-coordinates, which only the coupling relationship among windings is considered 
in (a).While Modified parametric system is used to describe vector relations by phase-coordinates, which 
coupling relationship among windings is considered containing the tree-phase coupling relations in (b)
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(1)	At wye side for the open circuit test, when the voltage VAX = VN(where VN stand for 
the rated voltage) is applied at the winding “AX”, and the rest windings in opening. 
We enable to obtain test data for the Eq. (6) shown as

where
V 0
AX ,V

0
BY ,V

0
CZ ,V

0
ax,V

0
by,V

0
cz are the testing voltages;

I0A0 is the testing current.
We can obtain the impedances by per-unit system from the Eq. (20) expressed as
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Fig. 12  Magnetic circuits of the three-phase three-limb core transformer; Magnetic circuits of the 
three-phase three-limb core transformer is showed when The current IA0 is bring to bear on A-phase winding 
in primary side

Fig. 13  Coupling relations between the primary side and the secondary side by phase-coordinates; Vector 
graph of the relationship between voltage and coupling is used to describe the Coupling relations between 
the primary side and the secondary side by phase-coordinates
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The rest impedances can be obtained by repeating the test two more again.

(2)	At delta side for the open circuit test, when the voltage Vax = VNII (where VNII stands 
for the rated voltage at the delta side) is applied at the winding “ax”, and the rest 
windings in opening. We enable to obtain test data for the Eq. (6) shown as

where
Vd0
AX ,V

d0
BY ,V

d0
CZ ,V

d0
ax ,V

d0
by ,V

d0
cz  are the testing voltages;

Id0a0  is the testing current. And the impedances in per-unit system from the Eq. (22) 
can be expressed as

The rest impedances can be obtained by repeating the test two more again. Con-
sequently, the impedance matrix by phase-coordinates (in per-unit system) in the 
Fig. 13 can be given as

6 � Results and discussion
6.1 � Results

(1)	Test by experiment
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There are the transformers given as (Type I: Capacity: 60 k VA, Ratio: 400 V/110 V; 
Type II: Capacity: 1000 k VA, Ratio: 6300 V/400 V). In the Table 1, the mutual induct-
ance coefficient is inversely proportional to the length of magnetic circuit. Ignore meas-
urement errors, the mutual inductance (reactance) coefficients can be approximated as: 
a-phase [1 0.66 0.33]; b-phase [0.5 1 0.5]; c-phase [0.33 0.66 1] (shown as Fig. 12).

(2)	Simulation calculation

The IEEE 4 node feeder test system network is shown in the Fig. 14. The parameters of 
the test system are as follows: transformer ratio is 12.47(kV):24.9 (kV), and the parame-
ters of transformer and line present in [13]. The tolerance for calculation is 10−5 for test-
ing. The unbalanced loads in bus 4 of the test system are 1250 kW, 1800 kW, 2375 kW, 
and the power factors are − 0.85, − 0.9 and − 0.95 respectively (Complex power of load 
marked as S1).

There are 6 types and parameters of the transformers for testing by power flow calcula-
tions. Table 2 presents the types and the parameters of the transformers. In Table 2, The 
admittance matrix in No. 1 and No. 2 groups of the transformers employ the method 
in [8] and [12]. And the rest of the transformers use the method in this paper. Table 3 
lists the results of power flow calculation for the transformers in D,yn1 connection. And 

Table 1  Tests in some three-phase three-limb transformers

Input voltage/p.u Output voltage/p.u

Type I

AX BY CZ ax by cz

1.000 0.671 0.320 1.002 0.663 0.323

Input voltage
V

Output voltage
V/(p.u)

Type II

ax by cz

210 144/(0.687) 72/(0.343)

220 150/(0.681) 77/(0.350)

by ax cz

210 103/(0.490) 101/(0.481)

220 109/(0.495) 107/(0.486)

cz ax by

210 72/(0.343) 142/(0.676)

220 107/(0.345) 148/(0.673)

Fig. 14  IEEE 4 feeder test system; IEEE 4 feeder test system consists of four nodes, a generator, a transformer, 
two lines and a load
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Table  4 presents the results of power flow calculation for the transformers in YN,yn0 
connection. Table  5 lists the power flow results for the different power supply in the 
transformer in YN,yn0 connection.

6.2 � Discussion

The calculated results of No. 1 groups at Tables 3 and 4 are the same as [13].Comparing 
with the results in No. 1 groups of Tables 3 and 4, The results of No. 2 groups are merely 
smaller, but less errors considering no-load parameters. While both the admittance 

Table 2  Magnetic circuit types and the parameters of the transformers

No Type of the transformer Parameters of the transformer

1 The symmetry of magnetic circuits
(common transformer)

R% = 1.0, X% = 6, STN = 6000 k·VA

2 The symmetry of magnetic circuits
(common transformer)

R% = 1.0, X% = 6, STN = 6000 k·VA
No-load loss: �P0 = 7.05 kW

No-load current: I0% = 1.2

3 The symmetry of magnetic circuits
(common transformer)

R% = 1.0, X% = 6, STN = 6000 k·VA

4 The symmetry of magnetic circuits
(common transformer))

R% = 1.0, X% = 6, STN = 6000 k·VA
No-load loss: �P0 = 7.05 kW

No-load current: I0% = 1.2

5 Same iron-core magnetic circuit R% = 1.0, X% = 6, STN = 6000 k·VA
No-load loss: �P0 = 7.05 kW

No-load current: I0% = 1.2

6 Plane magnetic circuit layout
(transformer in three-phase three-limb core)

R% = 1.0, X% = 6, STN = 6000 k·VA
No-load loss: �P0 = 7.05 kW

No-load current: I0% = 1.2

Table 3  Results of power flow calculations for the transformer in D, yn1 connection

No Results

Bus 2 (Voltage/V & angle/°) Bus 3 (Voltage/V & angle/°)

1 A 12,364/29.8 A 13,792/27.7

B 12,391/ − 90.5 B 13,733/ − 93.5

C 12,333/149.6 C 13,641/145.4

2 A 12,363/29.78 A 13,792/27.71

B 12,391/ − 90.5 B 13,732/ − 93.50

C 12,332/149.56 C 13,640/145.43

3 A 12,289/30.52 A 13,164/27.7

B 12,284/ − 89.56 B 13,208/ − 94.21

C 12,220/150.30 C 12,939/145.04

4 A 12,287/30.52 A 13,162/27.49

B 12,282/ − 89.56 B 13,206/ − 94.21

C 12,218/150.31 C 12,937/145.04

5 A 12,343/29.8 A 13,782/27.7

B 12,376/ − 90.5 B 13,723/ − 93.5

C 12,314/149.6 C 13,631/145.4

6 A 12,296/30.02 A 13,385/27.52

B 12,341/ − 90.23 B 13,498/ − 94.02

C 12,254/149.87 C 13,153/145.16



Page 21 of 23Zhang et al. J Wireless Com Network         (2021) 2021:66 	

matrix parameters in the two groups of transformers are calculated by the method in [8] 
and [12], which the parameters essentially are the positive sequence ones. The method 
employed in Sect. 5 of this paper is used to calculate the three-phase admittance matrix 
parameters, and the experiments also show the differences in the test. Comparing with 

Table 4  Results of power flow calculations for the transformer in YN, yn 0 connection

No Results

Bus 2 (Voltage/V and angle/°) Bus 3 (Voltage/V and angle/°)

1 A 7161/ − 0.1 A 13,839/ − 2.1

B 7120/ − 120.3 B 13,663/ − 123.51

C 7128/119.3 C 13,655/115.1

2 A 7160/ − 0.008 A 13,838/ − 2.1

B 7119/ − 120.26 B 13,662/ − 123.29

C 7127/119.25 C 13,654/115.14

3 A 7162/ − 0.08 A 14,110/ − 1.43

B 7121/ − 120.27 B 13,650/ − 122.39

C 7129/119.26 C 13,799/115.23

4 A 7161/ − 0.08 A 14,108/ − 1.42

B 7120/ − 120.27 B 13,648/ − 122.40

C 7128/119.26 C 13,797/115.23

5 A 7160/ − 0.008 A 13,828/ − 2.1

B 7119/ − 120.26 B 13,652/ − 123.29

C 7127/119.25 C 13,644/115.14

6 A 7160/ − 0.008 A 13,911/ − 1.63

B 7120/ − 120.26 B 13,673/ − 122.79

C 7128/119.26 C 13,782/115.21

Table 5  Results for power flow calculations for the transformers (YN, yn 0 connection) in different 
loads

No Load Bus2 (V./Angle) Bus3 (V./Angle.)

1 1.2S1 A 7153/ − 0.10 A 13,725/ − 2.59

B 7103/ − 120.3 B 13,504/ − 124.0

C 7110/119.1 C 13,484/114.1

1.4S1 A 7145/ − 0.12 A 13,607/ − 2.59

B 7086/ − 120.3 B 13,338/ − 124.7

C 7090/119.0 C 13,301/113.0

1.6 S1 A 7137/ − 0.12 A 13,486/ − 3.54

B 7067/ − 120.4 B 13,164/ − 125.5

C 7069/118.8 C 13,104/111.9

6 1.2S1 A 7152/ − 0.11 A 13,814/ − 1.98

B 7104/ − 120.3 B 13,520/ − 123.4

C 7111/119.1 C 13,641/115.2

1.4S1 A 7144/ − 0.12 A 13,715/ − 2.33

B 7086/ − 120.4 B 13,363/ − 124.0

C 7091/119.0 C 13,489/113.1

1.6S1 A 7136/ − 0.15 A 13,615/ − 3.54

B 7069/ − 120.4 B 13,199/ − 125.5

C 7072/118.8 C 13,328/112.1



Page 22 of 23Zhang et al. J Wireless Com Network         (2021) 2021:66 

the previously results, the results in No. 3 group and No. 4 group at Tables 3 and 4 are a 
little smaller and closer in the same condition. Analysis from the physical definition, the 
true phase admittances are different from the positive sequence ones due to the demag-
netization by three-phase symmetrical currents. And the results of different magnetic 
circuits are given in Tables 3 and 4 as well. Those results also are different from each 
other.

In Table 5, comparing with the No. 1 group, c-phase voltages are increasing gradually 
by the changes of loads in No. 6 group, due to the increased unbalances of loads’ cur-
rents. Comparing with symmetric component parameters, the effect of node voltages is 
more different by the phase-coordinates parameters.

Consequently, the three-phase symmetrical currents have the demagnetization, which 
make the phase-impedances slightly smaller than the synthetic impedances (posi-
tive sequence impedance). In addition, the mutual-impedances effect significantly by 
asymmetry.

7 � Conclusions
In this paper, the authors propose the phase-coordinate modeling method by a 12 × 12 
primitive full admittance matrix to structure the 6 × 6 admittance matrix (7 × 7 matrix 
by retention of 1 neutral point) for three-phase transformers in different connections 
from asymmetric magnetic circuits by the matrix operation method. The phase-coordi-
nate impedances have been corrected by considering the magnetization of three-phase 
symmetrical currents. There are the advantages shown as follows:

•	 Modeling the transformers in different connections and asymmetric magnetic cir-
cuits;

•	 Real phase-coordinates parameters, which enable calculations accurately.

Finally, the matrix operation method also enables to use for modeling three-phase 
three-winding transformers usefully, besides the three-phase double-winding trans-
formers. And the method applies to model the non-standard transformers as well.
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