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1  Introduction
The internet of things (IoT) connects various independent devices into a network and 
provides a possibility to interact with different machines at any time and anywhere, 
which brings tremendous convenience to our lives. With the increasing use of IoT tech-
nology, new security risks have emerged: criminals can attack the network by connecting 
illegal devices with malicious programs. Therefore, identifying IoT accessing devices and 
preventing intrusion is an imperative issue currently facing IoT networks [1, 2].

Traditional wireless systems primarily rely on high-level-based authentication infor-
mation in terminal devices such as service set identifiers (SSID) [3], universal subscriber 
identity module (USIM) [4], and internet protocol (IP) or message authentication code 
(MAC) addresses [5]. However, some authentication information, such as SSID, MAC 
address, are not highly reliable since they can be easily forged. Besides, we can authen-
ticate the identity of accessing devices via cryptography-based algorithms, such as 
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one-way hash functions-based schemes [6] or elliptic curve cryptography (ECC)-based 
authentication methods [7]. However, these algorithms mainly rely on complex proto-
cols and mathematical calculations, which require high-cost in terminals. IoT devices are 
generally designed with low-cost consideration for which they are not suitable for high-
complexity security algorithms or additional security modules such as USIM. Therefore, 
a kind of secure and terminal cost-free authentication method is required to ensure 
the security of the IoT systems. It is worth noting that most devices connect to the IoT 
through wireless channels. The radio frequency (RF) waveform contains unique features 
due to the manufacturing deviations of these devices. This kind of feature is called RF 
fingerprint or RF distinct and native attributes (DNA). RF fingerprint is an inherent fea-
ture of wireless devices in the physical layer which can hardly be forged. Moreover, the 
identity authentication system based on RF fingerprint, whose computational complex-
ity is mainly borne by the receiving device at the base station, is not limited by the com-
puting power and the battery capacity of the devices. Therefore, RF fingerprint-based 
identification technology has become a new solution to identify wireless devices [8–10].

In an RF fingerprint identification system, the legitimate device should initially com-
municate with the receiver so that the receiver can register the RF features, then the 
receiver will be able to verify the authenticity of the accessing device with the declared 
identity. Therefore, the process of rogue device identification using RF fingerprint can be 
divided into two steps: feature extraction and fingerprint identification.

1.1 � Related works

Features such as relative carrier frequency offset [11], sampling offset, and constella-
tion deviation [12] are named as modulation features, which can be used for RF finger-
print identifications. Danev et  al. [13] used Fourier transform and linear discriminant 
analysis (LDA) to extract turn-on transient features as RF fingerprints. Polak et al. [14] 
proposed to use imperfections embedded in the digital-to-analog converter (DAC) and 
nonlinearity of power amplifier as RF fingerprints. Reising et al. [15] collected discrete 
Gabor transform features from WiFi and World Interoperability for Microwave Access 
(WiMAX) signals and used dimensional reduction analysis (DRA) to remove less-rele-
vant features. Li et al. [16] used the time series composed of signal strength as finger-
prints to distinguish wireless devices by calculating the similarity between time series. 
Besides, Bertoncini et  al. [17] used dynamic wavelet fingerprint (DWFP) and higher-
order statistics as a significant basis for device identifications.

However, these methods have certain shortcomings. The transient signal-based RF 
fingerprint can seriously be affected by the position of the devices and the polarization 
direction of the antennas. Also, to capture slight variations in the transient part, the 
receiver requires high sensitivity, linearity, and over-sampling rate, thereby increasing 
the cost of RF fingerprint identifications [13]. Furthermore, the extraction of modulation 
features requires detailed information about the transmitted signal, including transmis-
sion frequency and synchronization information [18].

In the fingerprint identification process, the receiver will compare the extracted feature 
to that previously registered. It is worth noting that most of the existing RF fingerprint 
identification works deal with the classification problem, which is a goal of finding the 
minimal feature distance to the specified class. However, the rogue device identification 
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requires to exclusively confirm the identity of the accessing device with an unknown dis-
tance, which should be an unsupervised learning process with a different goal.

In existing RF fingerprint classification systems, traditional classification methods, 
e.g., multiple discriminant analysis (MDA) [19] and support vector machines (SVM) [20] 
are commonly used. Tian et al. [21] used K-nearest neighbor classifier (KNN) to clas-
sify the RF fingerprint extracted through principal component analysis (PCA) preproc-
essing. Kroon et al. used SVM to identify mobile phones accessed to the cellular base 
station. They compared the performance of one-class classifiers (OCC) and customized 
ensemble classifiers. However, the true negative rate and the true positive rate can not 
simultaneously reach a high level [22].

With the help of the rapid development of deep learning technologies, deep learning-
based methods have been widely used in the field of wireless communication, such as 
channel estimations, waveform angle estimations, and modulation type identifica-
tions [23]. Many studies have used them for RF fingerprint-based device classification 
problems [24–30]. In our previous work, a DCTF-based convolutional neural network 
(CNN) system was designed to classify 54 Zigbee devices [30]. Schmidt et al. [25] classi-
fied wireless devices by assigning frequency channels and types of wireless technologies 
using CNN. Merchant et al. [26] operated on the time-domain complex baseband error 
signal by CNN to classify different devices without the need to manually select relevant 
features. Li et  al. [27] authenticated the amplitude of quotient (AoQ) of WiFi signals 
using Euclidean distance and deep neural network (DNN) to classify different devices. 
Kose et al. [28] used probabilistic neural network (PNN) to classify the RF fingerprints 
extracted from transient signals of WiFi devices. Pan et al. [29] used deep residual net-
works to train the Hilbert spectrum images of received signals to classify specific emit-
ters. Yu et al. [31, 32] used Multi-Sampling convolutional neural network (MSCNN) to 
identify ZigBee. Al-Shawabka et  al. [33] used CNN to identify WiFi signal fragments, 
and Shen et al. [34] used spectrogram and CNN to identify Lora system. Reising et al. 
used generalized relevance learning vector quantization-improved (GRLVQI) method to 
identify WiMAX device features after dimensional reduction.

1.2 � Method used in our work

In this paper, a differential constellation trace figure (DCTF)-based RF fingerprint 
extraction method is employed for rogue device identification. The DCTF extraction 
does not require time and frequency synchronization, which can be directly obtained in 
RF baseband [35]. The DCTF process converts time-domain variant I/Q sequences into 
a stable figure with a fixed size, which can be used as an effective basis for identifying 
different target devices. Besides, the baseband-based DCTF generation requires moder-
ate equipment accuracy and therefore does not need the support of high-cost receivers. 
Experiments show that the accuracy of classifying 54 ZigBee devices using DCTF-based 
CNN in 30dB environment can reach more than 98%. This accuracy is 91.4% using I/Q 
samples-based CNN, 81.4% using bispectrum-based CNN and 41.7% using Hilbert–
Huang transform (HHT)-based CNN in the same experiment condition [30].

Most of the mentioned fingerprint identification measures perform well in classifying 
different devices. However, there exists a limitation when using them to identify rogue 
devices, that is, CNN is a kind of supervised learning algorithm that requires labeled 
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samples with prior information for training. In reality, it is impossible to obtain the 
rogue device RF fingerprint in advance. Therefore, CNN-based algorithms can only clas-
sify recognized devices, but have difficulty in identifying unknown devices.

To solve this problem, we propose a novel generative adversarial network (GAN)-
based rogue device identification method. GAN is a recent emerging unsupervised deep 
learning algorithm, which has received extensive attentions [36–40]. It is characterized 
by identifying the authenticity of data without the need for negative samples. Therefore, 
GAN is more practical than traditional CNN in identifying rogue devices. Ferdowsi et al. 
[41] utilized a distributed GAN-based intrusion detection system (IDS) to detect the 
data collected by IoT devices to prevent the invasion of abnormal data sent from cyber 
attackers. Our method used GAN to identify the RF fingerprint collected from accessing 
devices to prevent rogue devices accessed by attackers.

The device identification method proposed in this paper is mainly based on GANom-
aly, which is an improved GAN model proposed by Akcay et al. [37]. This is a kind of 
semi-supervised learning algorithm. We improve the updating algorithm of GANomaly, 
making it a completely unsupervised learning algorithm that is suitable for the field of 
unknown device identification. We train GANomaly using the features extracted from 
DCTF to obtain discriminators that can effectively identify the rogue devices. By this 
method, we can distinguish them from legitimate devices without obtaining any prior 
information of rogue devices.

1.3 � Contributions

In the IoT system, the attacker uses a rogue device similar to a legitimate one to imper-
sonate it and access the network. The rogue device has the same type as the legitimate 
one and can forge RF information such as MAC and SSID, which makes it difficult 
for traditional identification methods to identify them. The rogue device can perform 
attacks such as information theft and illegal data injection after accessing, thereby 
endangering the security of the IoT system. In this paper, we propose a GAN-based 
rogue device identification method to solve this problem. The main contributions of this 
work are shown as follows:

•	 A DCTF-based rogue device identification method is firstly proposed in this work. 
We demonstrate that the 2D DCTF is a promising feature for unknown device iden-
tification with low complexity and high precision.

•	 The existing applications of DCTF [30, 35, 42, 43] are for the classification of known 
devices, while this paper solves the problem of rogue device identification. This prob-
lem is more challenging since we cannot obtain any prior information about rogue 
devices.

•	 We introduce the GAN for rogue device identification and improve the GANomaly 
to a completely unsupervised model. With the help of the proposed DCTF-GAN 
method, we can identify rogue devices with only the fingerprint characteristics of 
legitimate devices.

•	 We used a much larger number of devices and conducted more experiments than 
any other relevant study of this kind. There has been no research on the true negative 
rate and true positive rate of such a large number of devices identification.



Page 5 of 27Chen et al. J Wireless Com Network         (2021) 2021:72 	

•	 We design a novel threshold selection algorithm and rogue device identification strat-
egy to ensure the accuracy of distinguishing rogue devices from legitimate devices. The 
accuracy of identifying rogue devices can exceed 90% and 95%, respectively, in 20 dB 
and 30 dB signal-to-noise ratio (SNR) environments through our method.

The devices used in our experiments include the following categories:

•	 Recognized devices, which are known devices used to train the discriminator.
•	 Accessing devices, which are unknown devices to be identified, including legitimate 

devices and rogue devices.
•	 Legitimate devices, that is legal devices that should be allowed to access.
•	 Rogue devices, that is, invading devices disguised as legitimate ones. Our main purpose 

is to distinguish the accessing devices into legitimate ones and rogue ones.

This paper consists of the following sections: Section 2 introduces the principles of DCTF 
and its extraction methods. Section 3 describes the GAN model structure and the method 
of device identification. Section 4 provides an overview of the experimental design. Sec-
tion 5 gives the experimental results and analysis. Section 6 summarizes the paper.

2 � DCTF‑based RF fingerprint extraction
DCTF is the fingerprint we use in this paper. Researches have shown that DCTF can achieve 
very high accuracy in the classification of devices with different protocols. Peng et al. [30] 
used DCTF for the classification of ZigBee. Wang et al. [44] used DCTF for the classifica-
tion of Global System for Mobile Communications (GSM) devices, and Jiang et al. [45] used 
it for the classification of Lora devices. In these experiments, the accuracy of wireless device 
classification using DCTF can reach more than 95%. According to the IEEE 802.15.4 pro-
tocol, the ZigBee signal uses offset quadrature phase-shift keying (OQPSK), half sinusoidal 
pulse shaping, direct sequence spread spectrum (DSSS) modulation, with a data rate of 250 
kbps and operates in the 2.4 GHz band. The transmitted signal is represented by the follow-
ing equation considering only the I/Q channel offset without the nonlinear characteristics:

where XI (t) and XQ(t) represent real and imaginary parts of the OQPSK signal X(t), 
namely the I-channel part and the Q-channel part, respectively. α , β are I/Q signal gains, 
DI and DQ are direct current (DC) offsets of the I/Q signals, respectively. ϕ is the nor-
malized I/Q phase mismatch factor. These coefficients are related to hardware charac-
teristics that vary with different devices, hence they can be used to identify different 
devices. With oversampling, this feature could be reflected in a constellation trace figure 
(CTF). fcTx is the carrier frequency of the transmitter. Assuming the transmission chan-
nel is ideal, the received signal will be equal to the transmitted signal, i.e.:

The demodulated signal can be expressed as:

(1)T (t) = ((αXI (t)+ DI )+ (βXQ(t + ϕ)+ DQ)j)e
−j2π fcTxt

(2)R(t) = T (t)
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where fcRx is the receiver carrier frequency. In real systems, fcRx can hardly be equal to 
fcTx . Therefore, θ = fcRx − fcTx represents the frequency difference between the transmit-
ter and the receiver. Ψ  is the phase difference between the transmitter and the receiver. 
When θ  = 0 , the baseband signal at the receiver will have a phase rotation factor ej2πθ t 
compared to the transmitter, resulting in a rotation of the CTF without synchronization. 
To further enhance the fingerprint characteristics, we differentially process the receiver 
signal. This procedure can be formulated as follows:

That is, the I/Q channel signal at a certain time is conjugate-multiplied with the I/Q 
channel signal at the next time. Where YI (t) and YQ(t) are the real and imaginary parts of 
the I/Q channel of received signal Y(t), respectively. � is the differential time interval, and 
ϕ is phase mismatch distortion. Since frequency and phase offset are useful for device 
identification, We directly plot d(t) on the I/Q graph without synchronization to obtain 
a DCTF.

The carrier frequency and time synchronization will be required if we process directly 
on complex numbers, otherwise, the disturbance of frequency offset will make it difficult 
to identify the data. Conjugation will change the disturbance of the frequency offset into 
a fixed phase selection which forms a feature in the image and is easier to identify [30]. 
Therefore, we use DCTF as the input to complex neural networks instead of the complex 
numbers.

DCTF does not require any prior synchronization information about the receiver, 
which makes it a kind of stable transmitter feature that can be extracted at the receiver. 
Besides, The research in [42] verified that DCTF is a stable RF fingerprint through 
experimental measurements for 18 months, which will not vary significantly over time. 
Moreover, this method is also effective for signals modulated in other ways. A detailed 
explanation of RF fingerprint representation in DCTF is shown in [35].

3 � GAN model construction
3.1 � Advantages and basic structure of GAN model

Traditional methods can effectively solve the problem of device classification. The work 
in [43] uses CNN and Long Short-Term Memory (LSTM) network to classify unknown 
devices. The experiment based on LSTM used I/Q sampling data for classification. How-
ever, it is found through experimental comparison that the classification accuracy of 
LSTM is not as good as image-based CNN after the statistical features of I/Q data have 
been obtained.

In classification, all of the samples are known and trained in advance. The classifier 
only needs to find the boundary between each device. The identification, by contrast, 
is more challenging. This is because that receivers only know information from a few 
devices and most of the devices are unknown. What’s more, the boundary of each 

(3)
Y (t) = R(t)−j2π fcRxt+Ψ

= (((αXI (t)+ DI )

+ (βXQ(t + ϕ)+ DQ)j))e
−j2πθ t+Ψ

(4)d(t) = (YI (t)+ Yt+ϕ j) · (YI (t + �)+ YQ(t + �+ ϕ))∗
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recognized device suffers from noise variations, which leads to a trade-off between 
the accuracy of rogue device detection and legitimate device acceptance.

In actual situations, attacks of rogue devices are sudden and contingent, most of 
which cannot be sampled in advance. Recently, traditional methods such as LDA, 
SVM and K-means clustering have been used to identify rogue ZigBee devices. The 
work in [35] used K-means clustering to identify 10 recognized devices and 6 rogue 
devices, and both the true positive rate and true negative rate can reach nearly 100% 
under 10dB.

The limitation of these traditional methods is that sophisticated design need to be 
carried out when identifying a large number of input samples. The distribution of the 
samples should be converted into a Gaussian distribution through preprocessing in 
order to obtain better identification accuracy [46]. GAN can solve the problem of 
unknown device identification better for it is an unsupervised machine learning algo-
rithm that was first proposed by Goodfellow et al. [36]. There have been many studies 
using this algorithm to generate images, while we use it to accomplish an identifi-
cation task. Compared to other deep learning algorithms or fingerprint identifica-
tion techniques, the advantage of GAN is that we do not need to obtain fingerprint 
samples of rogue devices in advance. This method trains the fingerprint samples of 
the recognized devices to enable the discriminators to learn the data distribution of 
legitimate devices’ fingerprints, thereby identifying the accessing devices whose fin-
gerprint does not match the legitimate devices as illegal ones.

The basic idea of GAN model is to train two neural networks at the same time: The 
first one is the generator network G which can capture input data distribution and 
generating forged data following this distribution; the second one is the discriminator 
network D which can be used to estimate the probability of a certain sample from raw 
data rather than generated by the generator G.

Deep convolution generative adversarial network (DCGAN) is one of the most 
influential GAN structures proposed by Radford et al. [38] in 2016, which solved the 
problem of training instability that occurred in the original GAN. The GAN scheme 
adopted in this paper is the GANomaly model that further improved by Akcay 
et al. [37] based on DCGAN, which was first proposed in 2018. The primary goal of 
GANomaly is to generate fake images by learning the features of real images. The 
advantage of this model is that the training results will not be affected when a few 
abnormal images are mixed in the training set. Therefore, this model greatly reduces 
the interference of abnormal input data. The model consists of three sub-networks, 
whose structure is shown in Fig. 1. The GANomaly model consists of the following 
sub-networks:

•	 Bow-tie automatic encoder G This network is the generator part of the entire 
model, spliced with an encoder network that maps from a high-dimensional ten-
sor x to a low-dimensional tensor z, and a decoder network that remaps z to a 
high-dimensional tensor x′ . This generator learns the distribution of the input 
data and reconstructs them through the networks.

•	 Encoder E The role of this part is to downsample the reconstructed image x′ into a 
low-dimensional tensor z′ , whose dimension is consistent with z. It learns to mini-
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mize the distance between z and z′ by parameterization. This distance, as a part of 
the total loss, serves as feedback to the entire learning process, which is utilized to 
calculate the model loss.

•	 Discriminator D This network receives the original data x from the input and the 
forged data x′ from the generator and distinguishes them. The structure of this part is 
the same as the previously mentioned decoder network with an extra softmax layer 
added at the end.

3.2 � Model improvement

Our goal of using GANomaly is different from that of the original work of Akcay’s. The 
main goal of the original work is to generate fake images using the trained generator, 
while our goal is to judge whether an unknown image sent to the trained discriminator is 
legitimate or not. For this purpose, we need to make some improvements to GANomaly.

The original GANomaly is a kind of semi-supervised machine learning scheme in 
which the networks are tested by calculating the area under the curve (AUC) of the 
receiver operating characteristic (ROC) of each current network using the data from the 
test set after each epoch of training, where ROC is a function of true positive rate (TPR) 
on the false positive rate (FPR) [37]. The weights of the network are saved only when 
the current AUC is higher than the best-AUC. The data in the test set used to obtain 
AUC, however, is labeled with “normal” or “abnormal”. That is to say, although the train-
ing process is unsupervised, the test and weights preservation process are supervised, 
for which it is called a semi-supervised scheme. The flow chart of the network update 
scheme is shown in Fig. 2.

In the context of our work, due to the unavailability of accessing device RF finger-
print acquisition in advance, our approach needs to be completely unsupervised. There-
fore, we save the current latest network weights after each epoch of training and the 

Fig. 1  GANomaly structure diagram. This figure shows the structure of GANomaly model
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discriminator obtained after the last epoch of training. Our simplified network update 
scheme is shown in Fig. 3.

3.3 � Threshold selection

We need to determine a threshold γ for the discriminator to determine whether a DCTF 
image is from a legitimate device or a rogue device. The discriminant result of an image 
x obtained from the discriminator is D(x), where D(x) ∈ [0, 1] . A larger D(x) indicates 
that the DCTF is more likely to come from a legitimate device. We judge that the DCTF 
image is from a legitimate device when D(x) ≥ γ . In most of the existing systems, a spe-
cific threshold is always selected as a fixed value. Experiments have shown that discrimi-
nators trained by the same set of DCTF from a recognized device will give different D(x) 
to an unknown DCTF image because of the randomness of network training. It is unrea-
sonable to set a fixed value threshold for determining whether the device is legal.

Fig. 2  Network update scheme of original GANomaly. This figure shows the flowchart of the network update 
scheme

Fig. 3  Network update scheme of our model. This figure shows our simplified network update scheme
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In practical systems, we are unable to achieve any prior information on the rogue 
device in advance. Therefore we can only determine γ based on the information of rec-
ognized devices. After we obtain the discriminator, a batch of DCTFs from recognized 
devices are sent to it and γ is determined according to D(x) of this batch of DCTF. The 
distribution of D(x) of some devices is shown in Fig. 4. The blue bar in each sub-figure 
represents a recognized device and the red bar represents a rogue device for compari-
son. The abscissa indicates the value of D(x) and the ordinate indicates the frequency of 
occurrence of each value. The data is collected in a 30dB environment and the discrimi-
nator is trained for 5 epochs. The recognized and rogue devices were randomly selected 
from 54 devices.

An intuitive approach to distinguish rogue devices is to compare the mean value of 
D(x) of the accessing device and the recognized device. However, this approach will eas-
ily cause an accessed legitimate device to be judged as a rogue one. It is difficult to deter-
mine γ according to statistical parameters such as the mean or the standard deviation 
for D(x) have no obvious distribution, as can be seen from Fig. 4. Therefore, we take the 
minimum value of D(x) of the recognized device as γ.

Another confronting problem is that D(x) of a legitimate device sometimes overlaps 
that of a rogue one, as shown in Fig. 4. Given this situation, we define another threshold 
δ and stipulate that when the proportion of DCTF that satisfies D(x) ≥ γ exceeds δ in all 
DCTF images of an accessing device, this accessing device is considered to be legitimate.

The larger δ is, the higher the accuracy of rogue device detection (i.e., true negative 
rate) is. Otherwise, the accuracy of legitimate device acceptance (i.e., true positive rate) 
is higher. We need a reasonable δ to make a trade-off between the true negative rate and 

Fig. 4  D(x) of some pairs of recognized devices (blue bars) and rogue devices (red bars). The distribution of 
D(x) of some devices is shown in this figure. The blue bar in each sub-figure represents a recognized device 
and the red bar represents a rogue device for comparison. The abscissa indicates the value of D(x) and the 
ordinate indicates the frequency of occurrence of each value. The data is collected in a 30dB environment 
and the discriminator is trained for 5 epochs. The recognized and rogue devices were randomly selected from 
54 devices
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the true positive rate. To find the best δ , we take an interval of 0.1 within the scope of 
(0, 1] for testing, and the two kinds of accuracy reach equilibrium when δ = 0.7 . This 
experiment is performed in a 30dB environment and the discriminator is trained for 5 
epochs.

In general, our threshold selection scheme is as follows:
We take a portion from the DCTF images set obtained from the recognized device 

denoted as xr and send them to the trained discriminator to obtain γ . The discriminant 
result denoted as D(xr) and the minimum value of D(xr) is recorded as γ . The acquisi-
tion of γ can be formulated as:

The DCTF images set obtained from the accessing device is denoted as xa and the basis 
for judging whether the jth image in xa comes from a legitimate device can be formu-
lated as:

The device is considered as legal when xa meet the following conditions:

4 � Experimental design
In our experiment, we use 54 TI CC2530 ZigBee modules as transmitters and a USRP 
N210 software radios platform as the RF signal receiver. The ZigBee transmitters and 
USRP receiver are shown in Fig.  5. We collect the RF signals transmitted by ZigBee 
devices and plot their DCTFs, which are used as fingerprints of different devices. We use 
GAN to identify rogue devices. The steps of this scheme are shown as follows.

4.1 � Data extraction and plotting DCTF

We use USRP N210 to collect OQPSK signals from the ZigBee modules. ZigBee mod-
ules work at 2505 MHz with 1 MS chip rate. The USRP N210 sampling rate is 10 Mbps 

(5)γ = min
i

D
(

xr,i
)

(6)Tj =

{

1, D(xa,j) ≥ γ , Legitimate device

0, D(xa,j) < γ , Rogue device

(7)
J

∑

i=1

Tj ≥ δJ = 0.7J

Fig. 5  Experiment equipment. The ZigBee transmitters and USRP receiver are shown in these figures
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and a total of about 400-k samples are captured from each device for feature extrac-
tion. The transmitted power is 21dBm, which is the maximum transmit power that 
the cc2530 can reach. The experiment is carried out in a real open environment with 
line-of-sight (LOS) transmission. We record the time domain signals in complex form 
and process them by MATLAB. We divide each set of data into several segments and 
normalize them with average absolute values. Some fragments of the pre-processed 
signal waveform extracted from three devices are depicted in Fig.  6. The abscissa 
represents the sampling point, and the ordinate represents the normalized signal 
amplitude corresponding to each sampling point. The time interval between adjacent 
sampling points is 10−7 s.

To compare the results of the proposed scheme in different SNR scenarios, additive 
white Gaussian noise (AWGN) is added with the SNR at 15 dB, 20 dB, 25 dB, and 30 dB, 
respectively. These signals are processed and then plotted onto complex planes to obtain 
the DCTF, which are 65× 65 pixel greyscale images, where 20 k samples of a signal from 
one device are used in each image. The DCTF images in different SNR scenarios are 
shown in Fig. 7.

Fig. 6  The pre-processed signal waveform of device 1–3. Some fragments of the preprocessed signal 
waveform extracted from three devices are depicted in these figures. The abscissa represents the sampling 
point, and the ordinate represents the normalized signal amplitude corresponding to each sampling point. 
The time interval between adjacent sampling points is 10−7 s

Fig. 7  DCTF extracted under different SNR environments. The DCTF images in different SNR scenarios are 
shown in these figures
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As can be seen from Fig. 7, although we cannot get any RF features directly from the 
original IQ waveform shown in Fig. 6, the DCTF plotted by them has distinct charac-
teristics. Each DCTF has two gathering centers, respectively on the left and right sides 
of the image, each of which has a certain deviation and dispersion. These characteristics 
reflect the phase mismatch distortion and DC offset of the transmitted signals. Besides, 
the positions of gathering centers have certain rotation angles instead of locating in the 
exact right and left positions of the images, which reflects the differences in carrier fre-
quency between transmitters and receivers. It can be seen that these features of different 
devices are subtly different, which can be used as characters for distinguishing devices.

4.2 � Discriminator training

We build a GAN model using PyTorch to identify rogue devices and use a computer 
with four GeForce RTX 2080 Ti graphics processing units (GPU) to train the model. The 
GAN construction consists of two parts:

•	 NetG It generates forged images and then downsamples it into a low-dimensional 
tensor. It consists of the bow-tie automatic encoder G and the encoder E, which are 
two sub-networks of GANomaly mentioned above.

•	 NetD It determines whether an input image is a real one. It corresponds to the dis-
criminator D in GANomaly mentioned above.

The network architectures of NetG and NetD are listed in Tables 1 and 2, respectively. 
Two points need to be explained:

•	 Since the input image dimension of GANomaly must be an integer multiple of 16, we 
crop the 65× 65 pixel images to 64 × 64 pixels.

•	 Unlike CNN, fully connected layers and pooling layers are not used in DCGAN and 
GANomaly which is developed based on DCGAN.

In NetG, Input—x is DCTF from a recognized device, which is called a “real image”. 
Output—x′ is the “forged image” generated by the generator. The similarity of Output—
z and Output—z′ reflect the similarity of Input—x and Output—x′ . In NetD, Input is 
DCTF from an accessing device and Output is a scalar that reflects the probability that 
the input DCTF came from a legitimate device.

After the network is built, we send the DCTF of different devices into GAN for train-
ing. The generator learns its distribution based on the characteristics of input data and 
produces forged images. Here we use Adam optimization algorithm for training. Start-
ing from 0.00005, we gradually increase the initial learning rate for testing and finally set 
it to 0.0002, when the model can converge quickly. A larger learning rate may cause the 
model to fail to converge. 180 DCTFs are prepared for each device to form a training set 
and the batch size is set to 90. During the identification phase, 45 DCTFs from an access-
ing device are sent to the discriminator to determine whether this device is legitimate.
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The weights of the latest NetG and NetD are saved after each epoch of training. 
During the 20 epochs of training with 30 dB SNR, the generated DCTFs are shown in 
Fig. 8. It can be seen that when the quantity of training epochs reaches a certain num-
ber, the position of gathering centers can be clearly distinguished although there is 
still a certain gap between the forged images and the real ones. In other words, the RF 
fingerprint characteristics of different devices have been adequately reflected in these 

Table 1  The network architectures of NetG 

Layer Output channels Output dimension Kernel, 
stride, 
padding

Parameters Activation

Input—x 1 [64,64] – – –

Convolution-2D 64 [32,32] [4,4], 2, 1 1024 LeakyReLU

Convolution-2D 128 [16,16] [4,4], 2, 1 131,072 –

BatchNorm-2D 128 [16,16] – 256 LeakyReLU

Convolution-2D 256 [8,8] [4,4], 2, 1 524,288 -

BatchNorm-2D 256 [8,8] – 512 LeakyReLU

Convolution-2D 100 [5,5] [4,4], 1, 0 409,600 Sigmoid

Output—z 100 [5,5] – – –

Convolution transpose-2D 256 [8,8] [4,4], 1, 0 409,600 –

BatchNorm-2D 256 [8,8] – 512 ReLU

Convolution transpose-2D 128 [16,16] [4,4], 2, 1 524,288 –

BatchNorm-2D 128 [16,16] – 256 ReLU

Convolution transpose-2D 64 [32,32] [4,4], 2, 1 131,072 –

BatchNorm-2D 64 [32,32] – 128 ReLU

Convolution transpose-2D 1 [64,64] [4,4], 2, 1 1024 Tanh

Output—x
′ 1 [64,64] – – –

Convolution-2D 64 [32,32] [4,4], 2, 1 1024 LeakyReLU

Convolution-2D 128 [16,16] [4,4], 2, 1 131,072 –

BatchNorm-2D 128 [16,16] – 256 LeakyReLU

Convolution-2D 256 [8,8] [4,4], 2, 1 524,288 –

BatchNorm-2D 256 [8,8] – 512 LeakyReLU

Convolution-2D 100 [5,5] [4,4], 1, 0 409,600 –

Output—z
′ 100 [5,5] – – –

Table 2  The network architectures of NetD 

Layer Output channels Output dimension Kernel, stride, 
padding

Parameters Activation

Input 1 [64,64] – – –

Convolution-2D 64 [32,32] [4,4], 2, 1 1024 LeakyReLU

Convolution-2D 128 [16,16] [4,4], 2, 1 131,072 –

BatchNorm-2D 128 [16,16] – 256 LeakyReLU

Convolution-2D 256 [8,8] [4,4], 2, 1 524,288 –

BatchNorm-2D 256 [8,8] – 512 LeakyReLU

Convolution-2D 1 [5,5] [4,4], 1, 0 4,096 Sigmoid

Output 1 1 – – –
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images. Correspondingly, the current discriminators should theoretically be able to 
distinguish DCTF generated by different devices.

The similarity of these generated forged images represents the performance of the gen-
erator, while in the identification scheme proposed in this paper, the discriminator por-
tion is mainly used.

In the experiment, we extract M devices as recognized ones and N devices as access-
ing ones. The DCTFs of one legitimate device are divided into two groups: the training 
set and the test set, while the DCTFs of a rogue device are only used in the test set. We 
only use the legal DCTFs to train the generators and the discriminators. After several 
epochs of training, the legal and illegal DCTFs in the test set are sent into the obtained 
discriminators for identification. It defines a real score for the input images according 
to the credibility of them. When the real score of an image exceeds the threshold, it is 
determined to come from a legitimate device.

4.3 � Device identification

We first study the case when M = 1 and N = 1 since GAN is generally used to solve 
a two-class problem. In practical applications, this case assumes that in each time, 
only one accessing unknown device will imitate the legitimate device. This access-
ing unknown device will be sent to the GAN and the authenticity of its identity will be 
judged. Therefore, it is essentially a one-to-one identification issue. In this case, when 
M = 1 legitimate device is selected, the residual 54 −M devices are considered as rogue 
devices. In each identification, the target device N = 1 and we evaluate the rogue device 
identification performance via 54 −M times one-to-one identification.

We further extend the scheme to the case where M > 1 , N > 1 . We select M 
( M > 1 ) devices from 54 ZigBee modules as recognized devices, extracting their 
DCTF that are then sent to GAN for training. After training, we save the obtained 

Fig. 8  DCTF generated by GAN after epochs of training. These figures show the generated DCTFs during the 
20 epochs of training with 30 dB SNR
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discriminators as fingerprints. Then we select N ( N > 1 ) ones as unknown devices. 
We send their DCTF to the discriminators in the fingerprint database in turn for 
identifying. If all the discriminators of one recognized device consider that an access-
ing device is legal, it is treated as a legitimate device. Our ultimate identification 
scheme is shown in Fig. 9 and can be described as follows:

•	 Train DCTFs of each recognized device to a discriminator as the fingerprint of 
each device, which are stored in the white list fingerprint database;

•	 The DCTFs of each accessing device are sent to the discriminator in the finger-
print database for identification. When one recognized device is considered as 
legitimate, it is allowed to access.

Fig. 9  Schematic diagram of the identification scheme. This figure shows our ultimate identification scheme

Fig. 10  The flowchart of accessing devices verification system. This figure shows the flow chart of the entire 
identification system
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The flowchart of the entire identification system is shown in Fig. 10. As shown in the 
figure, the entire identification is consists of four main parts:

•	 Recognized devices RF information collection Extract the signal from recognized 
devices and perform pre-processing such as segmentation and normalization. Then 
differentially process it and plot DCTF.

•	 Discriminator training The DCTF from recognized devices are sent to GAN and 
training for multiple times to obtain multiple discriminators. These discriminators 
are stored in a database to discriminate DCTF from accessing devices.

•	 Recognized devices RF information collection Collect the signal from accessing 
devices and plot DCTF. This process is the same as plotting DCTF of recognized 
devices.

•	 Accessing devices identification The DCTF from accessing devices are sent to mul-
tiple trained discriminators for discrimination. An accessing device is allowed to 
access only if all the discriminators believe that it is legitimate. Otherwise, it is con-
sidered rogue.

5 � Experimental results and analysis
We change the training times for each pair of devices and the number of epochs per 
training in the same experimental environment to test the identification accuracy under 
different SNR conditions. The experiment is divided into two parts to test the accuracy 
of the proposed scheme to identify rogue and legitimate devices, respectively. The spe-
cific implementation of the two-part experiment is as follows:

•	 Identification of rogue devices From the 54 devices used in the experiment, one of 
them is selected as a recognized device whose DCTFs are used to train the discrimi-
nator. The remaining 53 are considered as rogue devices whose DCTFs are sent to 
the discriminator for identification in turn. In the following rogue device identifica-
tion experiment, we conducted a round of aforesaid one-to-one experiments, that is, 
a total of 54 × 53 = 2862 experiments under each condition to obtain the true nega-
tive rate of device identification under different conditions.

•	 Identification of legitimate devices From the 54 devices used in the experiment, the 
DCTF of one of the selected devices are divided into two sets. One training is used 
for training the discriminator, and one test set which is sent to the discriminator for 
testing. Since we only have 54 devices, the experimental results will lack universality 
if only one round of legitimate device identification experiments is carried out under 
each condition. Therefore, we conducted 10 rounds of repeated experiments, that is, 
a total of 54 × 10 = 540 experiments under each condition to obtain the true posi-
tive rate under different conditions.

5.1 � Identification accuracy analysis

We set the initial learning rate to 0.0002. The accessing device will be considered 
legal if 70% of the DCTF image set is judged to be from a recognized device. In the 
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environment with an SNR of 30 dB, the relationship between identification accuracy 
of the discriminators and training epochs are shown in Figs. 11 and 12, which are for 
rogue devices and legitimate devices, respectively.

As can be found in the figure, however, when the accuracy for rogue devices 
exceeds 70%, it will hardly continue to rise as the number of training epochs rises. For 
legitimate devices, the identification accuracy is not visibly affected by the number 
of training epochs and can always above 96%. This is because the discriminators are 
more inclined to think that different DCTF sets come from the same device caused by 
the strong similarities of different DCTF.

It is found through many experiments that one discrimination may misjudge the 
rogue device as a legitimate one, however, the probability of error in multiple dis-
crimination is quite low. That is to say, we can train multiple times and get multi-
ple discriminators for each device. Only when all discriminators of one certain device 
consider an accessing device to be legitimate, it is allowed to access.

Fig. 11  The relationship between accuracy and training epochs for rogue devices (True Negative Rate). This 
figure shows the relationship between identification accuracy of the discriminators and training epochs for 
rogue devices in the environment with an SNR of 30 dB

Fig. 12  The relationship between accuracy and training epochs for legitimate devices (True Positive Rate). 
This figure shows the relationship between identification accuracy of the discriminators and training epochs 
for legitimate devices in the environment with an SNR of 30 dB
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The difference between the meanings of multiple training epochs and multiple 
training times can be described as follow:

•	 Multiple training epochs refer to sending data to a neural network and the network 
parameters are updated during each epoch of training. After several epochs of train-
ing, we obtain the discriminator network we need. Its block diagram is shown in 
Fig. 13.

•	 Multiple training times refer to sending data into the neural network multiple times, 
performing several epochs of training each time, and obtaining multiple discrimina-
tor networks. Its block diagram is shown in Fig. 14.

Another advantage of performing multiple training compared to performing one 
training for many epochs is that multiple training can be performed simultaneously 
and the number of epochs for each training is small, thereby effectively reducing the 
time cost. The flowchart of this improved discrimination strategy is shown in Fig. 15.

Fig. 13  The meaning of multiple training epochs. Multiple training epochs refer to sending data to a neural 
network and the network parameters are updated during each epoch of training. After several epochs of 
training, we obtain the discriminator network we need

Fig. 14  The meaning of multiple training times. Multiple training times refer to sending data into the 
neural network multiple times, performing several epochs of training each time, and obtaining multiple 
discriminator networks

Fig. 15  The flowchart of the discrimination strategy when training for multiple time. This figure shows the 
flowchart of this improved discrimination strategy
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5.2 � Trade‑off between rogue device detection and legitimate device acceptance

We increase the number of training times with the other conditions remaining constant. 
The relationship between accuracy and the number of training times for rogue devices is 
depicted in Fig. 16 with different training epochs. It can be seen from the figure that the 
accuracy of identifying rogue devices can reach a degree of more than 90% when train-
ing 2 times and more than 95% when training 5 times at an SNR of 30dB.

The relationship between accuracy and the number of training times for legitimate 
devices under the same conditions is depicted in Fig. 17. It can be seen that the accu-
racy of legitimate devices decreases with the increase of training times. This is because a 
DCTF set is judged to be from a legitimate device only when it is deemed to be legal for 
every time of training.

The proposed discrimination strategy causes a trade-off between rogue device detec-
tion and legitimate device acceptance. The increase of training time will enhance the 
accuracy of rogue device detection while also resulting in a decrease in the accuracy of 

Fig. 16  Relationship between accuracy and training times (True Negative Rate). The relationship between 
accuracy and the number of training times for rogue devices is depicted in this figure with different training 
epochs

Fig. 17  Relationship between accuracy and training times (True Positive Rate). The relationship between 
accuracy and the number of training times for legitimate devices is depicted in this figure with different 
training epochs
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legitimate device acceptance. We should adjust the number of training to balance the 
true positive rate and true negative rate according to different needs.

Figures 18 and 19 depict the relationship between time costs and the number of train-
ing times under different numbers of training epochs. It can be seen that the time costs 
of training discriminator are proportional to the product of the number of training times 
and the number of epochs, and the time costs of discriminating the DCTF are propor-
tional to the number of training times.

5.3 � Misjudged devices distribution

The number of identification errors for device 1 to device 54 under the conditions of 
training for 5 times and 4 epochs per time in a 30dB SNR environment are shown in 
Figs. 20 and 21. Figure 20 shows the number of errors that occurred when one device 
is selected as legal and the remaining 53 ones are selected as rogue devices in turn. Fig-
ure 21 shows the number of errors in 50 repeated experiments for each device in turn. 

Fig. 18  The time cost of training discriminator. This figure depict the relationship between time costs of 
training discriminator and the number of training times under different numbers of training epochs

Fig. 19  The time cost of discriminating the DCTF. This figure depict the relationship between time costs of 
discriminating the DCTF and the number of training times under different numbers of training epochs
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In these experiments, the training images set and test images set are extracted from the 
same device.

As can be seen from the figures, the distribution of the number of errors of each device 
is very uneven, especially in the experiments of legitimate devices identification. Some 
devices with insignificant characteristics, such as device 1 and device 27, the discrim-
ination results are almost completely wrong. However, most of the testing device can 
be successfully recognized with our proposed method. For rogue devices identification, 
96.3% of the devices can reach an accuracy of 80% and 92.6% of the devices can reach an 
accuracy of 90%. For legitimate devices identification, 88.9% of the devices can reach an 
accuracy of 80% and 85.2% of the devices can reach an accuracy of 90%.

5.4 � Influence of SNR on accuracy

Then we test the performance of our proposed scheme in low SNR scenarios. The rela-
tionships between identification accuracy and SNR are shown in Figs. 22 and 23 when 
training 5 times for rogue and legitimate devices respectively. The rogue devices can 
hardly be identified when the SNR is relatively low, while the accuracy of legitimate 
devices reaches 100% as can be seen from the figures. This is because the obtained 
DCTF is so blurry when serious noise is added. In this case, the discriminator can hardly 
distinguish rogue and legitimate DCTFs and judge them all from the same device.

To trade-off the accuracy for legitimate devices and rogue devices, the number of 
training times can be appropriately increased in a low SNR environment to increase the 
accuracy of rogue devices detection. Experiments show that when the training times 
exceed 20, the identification accuracy can reach 90% under the 15dB environment. How-
ever, the accuracy of legitimate devices will decrease in a high SNR environment. There-
fore, to ensure the accuracy of both legitimate and rogue devices, the training times 

Fig. 20  The number of errors for rogue devices. The figure shows the number of errors that occurred when 
one device is selected as legal and the remaining 53 ones are selected as rogue devices in turn

Fig. 21  The number of errors for legitimate devices. The figure shows the number of errors in 50 repeated 
experiments for each device in turn
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should be decreased with the increase of SNR. It is because that the discriminator is 
more likely to recognize the difference between fingerprints when the SNR is high, thus 
helping to identify rogue devices. In contrast, the discriminator can not easily identify 
the difference between fingerprints when the SNR is low, so the misdiagnosis rate for 
rogue devices is increased. The improvement of training times makes the conditions 
of legitimate devices identification more stringent, thus counteracting the effect of low 
SNR.

5.5 � Accuracy analysis on multiple devices

We further evaluate the accuracy when M,N > 1 , where M, N are the numbers of rec-
ognized devices and accessing devices, respectively. The value of M ranges from 1 to 5 
and N ranges from 2 to 5. We take 500 experiments for each pair of M and N and the 
experiments are taken under the conditions of training for 5 times and 4 epochs per time 
in a 30dB SNR environment.

In multiple device analysis, we randomly select M devices from 54 experimen-
tal devices as recognized devices. After that, we randomly select N devices from 54 

Fig. 22  Relationship between the accuracy of rogue devices and SNR (True Negative Rate). The relationships 
between identification accuracy and SNR are shown in this figure when training five times for rogue devices

Fig. 23  Relationship between the accuracy of legitimate devices and SNR (True Positive Rate). The 
relationships between identification accuracy and SNR are shown in this figure when training 5 times for 
legitimate devices
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devices as accessing devices, which includes legitimate devices and rogue devices. For 
each experiment, the selection of M and N devices is also random. In this experiment, 
a device may appear in both the set of M recognized devices and N accessing devices. 
However, the DCTF images sets for training are different from that for testing though 
they may come from the same device. The evaluation has been taken by comparing the 
DCTF of the recognized devices and accessing devices one by one. Due to the reason 
that recognized devices have no prior information about accessing devices, if one of the 
recognized devices determines that the accessing device is legal, it will be permitted to 
access. The experimental result is depicted in Fig. 24.

In the situation of M = 1 , it is reasonable that when N increases, the accuracy 
decreases and be proportional to the power of N. The accuracy of M = 1 could be 
roughly PN

1  , where P1 is the accuracy with M = 1 , N = 1 . This means that although we 
can obtain near 95% successful chance to detect the attack when one device is used to 
access the network. The chance of successful detection will continuously decrease when 
more accessing devices are used. In addition, it is also reasonable that when recognized 
device number M increases, the accuracy dramatically decreases. The relationship of 
accuracy deterioration and recognized devices number N increase is even worse than 
the power of M. Although in our RF-based identification problem (not classification 
problem), 54 targets are employed for the experiment, which is the largest device num-
ber as we know. The evaluated result indicates that when more legitimate devices are 
employed in the system, the challenge of RF fingerprint-based accessing control will be 
more serious then we expected.

6 � Conclusion and future work
6.1 � Conclusion

This paper proposes an rogue device identification scheme for IoT system based on 
DCTF-GAN. In this scheme, we employ the obtained DCTF from accessing devices as 
the RF fingerprint feature. A completely unsupervised GANomaly model is designed 
to distinguish rogue devices only from legal DCTFs. To ensure the identification accu-
racy, a novel threshold selection algorithm and rogue device identification strategy are 

Fig. 24  Accuracy of the scheme with multiple devices. We take 500 experiments for mutiple recognized 
devices and accessing devices. The experiments are taken under the conditions of training for 5 times and 4 
epochs per time in a 30dB SNR environment. The experimental result is depicted in this figure
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also designed in our DCTF-GAN scheme. An experimental verification system is built 
with a total of 54 ZigBee devices regarded as M recognized devices and N accessing 
devices. We initially study the elemental one-to-one identification case with M = 1 and 
N = 1 and get an accuracy of over 95% for identifying accessing devices under a 30dB 
SNR environment. Moreover, the accuracy of rogue devices detection decreases, while 
the accuracy of legitimate devices identification increases in the low SNR scenario. In 
this situation, we find that classifiers can slightly adjust the number of training times 
to achieve a trade-off between legitimate and rogue devices detection rates. We further 
extend experiments to the case when M > 1 , N > 1 by comparing each pair of recog-
nized devices and accessing devices in turn. Experimental results show that when M > 1 
in our 54 devices identification problem, the accuracy of the DCTF-GAN dramatically 
decreases with the increased number of recognized devices.

6.2 � Future work

The future work will focus on the study of design DCTF-GAN in M > 1 situations. In 
addition, the fading of the wireless channel is negligible which does not have a special 
impact on the experimental results in the current experimental environment. We will 
further study the effect of fading on the identification accuracy in future work. Besides, 
an attacker may be able to design counterfeit fingerprint features after collecting DCTF 
fingerprints of legitimate devices. The method to resist this kind of attack will be our 
future research direction.
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