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1  Introduction
VHO is the process that occurs when users switch among networks of different radio 
access technologies (RATs) in heterogeneous wireless networks. It is designed under the 
principles of improving QoS and system resource utilization. However, the complexity 
of heterogeneous network environments and the diversity of service requirements have 
increased the design difficulty of VHO algorithms. Therefore, the ability to design an 
efficient and accurate VHO algorithm that can guarantee user QoS and improve system 
resource utilization is of great interest to the academic community.

Some authors formulate the issue of VHO as a multi-attribute decision-making prob-
lem [1]. This type of algorithm has low complexity, can effectively reduce the number 
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of user switching occurrences, and improve user QoS. However, this type of algorithm 
usually fails to perceive the real-time dynamic changes of the network well, which may 
lead to a decrease in system resource utilization. Some authors have quantified the net-
work state by introducing the Markov chain model [2, 3] so that users can attain a good 
perception of the performance characteristics of BSs. However, this kind of algorithm 
does not acquire enough relevant information about users, which tends to lead to poor 
user QoS. In addition, some intelligent algorithms have been introduced to address the 
VHO process, such as artificial neural networks [4], fuzzy logic algorithms [5]. Such 
algorithms have strong data processing capability and can effectively reduce the ping-
pong effect and improve decision-making accuracy. However, the calculations involved 
are relatively complex and unsuitable for terminal equipment with limited computing 
capacity.

In this paper, we propose a VHO algorithm based on a multi-objective optimization 
model to solve the above problems. First, the state values of each network in different 
states are obtained through the Markov decision process. Then, a multi-objective opti-
mization model that maximizes the value of the network state and user’s data receiving 
rate is constructed. Finally, the multi-objective genetic algorithm NSGA-II is applied to 
solve the designed model and obtain the user’s optimal handoff strategy. Compared with 
the existing VHO strategies, the scheme can significantly improve the utilization of sys-
tem resources and reduce the blocking rate. The main contributions of this paper are 
summarized as follows. 

1.	 We calculate the status value of each BS among the handoff periods to ensure that 
the user can perceive the performance change characteristics of the BS in real time 
and can effectively monitor the load rate and remaining available resources of the BS.

2.	 We combine the changing characteristics of the BS status with the user’s QoS and 
fully consider the status information of the network side and the user side, which can 
maximize the resource utilization of the system while ensuring the user’s QoS.

3.	 We define the handoff strategies of all handoff users as a decision variable for multi-
objective optimization, which increases user coordination and ensures that more 
users can access the BSs, thereby further improving the resource utilization of the 
system.

The remainder of this paper is organized as follows. Section 2 presents related works. 
In Sect. 3, we derive and solve the function of a multi-objective optimization model. In 
Sect. 4, we simulate the performance of the handoff algorithm, and Sect. 5 summarizes 
this article.

2 � Related work
In recent years, many VHO algorithms have been proposed in the literature. In the 
early research studies, the authors used the received signal strength (RSS) as the deci-
sion parameter to propose the traditional RSS-based VHO algorithm [6] and improved 
the algorithm based on the RSS threshold [7]. While this type of algorithm is simple in 
design and low in its level of complexity, it has a tendency to lead to a ‘ping-pong’ effect. 
In addition, since the characteristics of different access networks have become greatly 
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varied in heterogeneous networks, executing handoff only based on RSS cannot guaran-
tee the user’s QoS.

To solve the problem that single-attribute algorithms cannot guarantee the user’s 
QoS, a large number of papers have focused on multi-attribute VHO algorithms, 
which are easy to implement. In [8], a self-selection multi-attribute algorithm based 
on a decision tree was proposed, and this algorithm can effectively improve the users’ 
QoS and reduce switching times. However, noise interference may cause switching 
errors. In [9], an improved vertical handover algorithm based on a decision tree was 
proposed. The algorithm derived the false alarm probability and missed alarm prob-
ability to reduce the probability of error handoff, obtained more accurate judgment 
attributes through the Kalman filtering algorithm, and improved the stability of the 
system. However, it is less able to consider the dynamic characteristics of the net-
work, and the network performance of the BSs cannot be effectively evaluated, which 
may easily cause a growing blocking rate of the BS.

In [10], the Markov decision process was applied to the VHO. The algorithm intro-
duced the total expected reward to characterize the performance of the network 
when the user accessed the BS, which can reflect the characteristics of the network 
to a certain extent, but the algorithm takes a long time to solve the expected total 
reward. In [11], the author formulated the VHO decision problem as a Markov deci-
sion process, with the objectives of maximizing the expected total reward and mini-
mizing the average number of handoffs. Then, the improved genetic algorithm with 
simulated annealing was introduced to obtain a set of optimal decisions, which can 
effectively reduce the calculation time and ensure user QoS, but it lacks consideration 
of the real-time dynamic characteristics of the network. In [12], a VHO algorithm 
based on multi-armed bandit was proposed to solve the problem of a lack of con-
sideration of the real-time dynamic characteristics of the network, which can ensure 
that users can access the network with a low blocking rate and a low delay. How-
ever, the algorithm does not take into account the changes of users’ own states (such 
as location) and thus cannot guarantee user QoS requirements. In [13], the authors 
introduced a deep Q-network to maximize the benefits of the system and used an 
evolution strategy algorithm to solve the initial parameters of the backpropagation 
network, which improved the convergence speed and accuracy of parameter learning, 
but it also increases the computational complexity.

In [14–17], the authors studied multi-attribute intelligent VHO algorithms based 
on fuzzy logic and artificial neural networks. In [14], the authors considered the accu-
racy of RSS and combined the Kalman filter with a fuzzy logic algorithm to propose an 
improved VHO algorithm. The Kalman filter can filter out part of the Gaussian noise in 
the RSS to obtain more precise parameters and improve the effectiveness of decision-
making, and the fuzzy logic algorithm can handle large amounts of fuzzy data. However, 
the scale of the fuzzy inference rules increases exponentially with the number of attrib-
utes, which greatly increases the complexity of the algorithm. Reference [15] proposed a 
neural network-based network selection algorithm that improves the algorithm’s ability 
to adapt to network variability, but it does not consider the user’s QoS and cannot reflect 
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user satisfaction well. In [16], the authors considered the quality of experience (QoE) in 
the vertical algorithm based on an artificial neural network to improve user satisfaction. 
The authors in [17] presented a Q-learning-based algorithm for VHO. That algorithm 
proposed a QoE evaluation mechanism based on an RNN, which further improves the 
QoE. However, the complicated calculations make them unsuitable for terminal devices 
with limited computing capabilities.

In [18], a novel VHO management scheme for a fifth-generation vehicular cloud 
computing system is proposed, in which the handoff trigger is initiated in the fog envi-
ronment using the vehicle’s current velocity and the network signal-to-noise-plus-inter-
ference ratio. The network selection is done by the cloud using the vehicles’ speed. After 
that, vehicles start the handoff process accordingly. This scheme uses pentagonal fuzzy 
interval values and the fuzzy analytic network process algorithm to predict the target 
network. In comparison with other handoff schemes, their work always chooses the 
best connection in terms of the number of handoffs performed and user satisfaction. In 
[19], a novel mobility management scheme for 5G systems is proposed with a scheme 
that considers the quality of service perceived by the mobile nodes as well as the energy 
level of mobile nodes, which can effectively ensure user requirements and reduce sys-
tem energy consumption. At the same time, in the execution phase, an improved FPMIP 
method is proposed to reduce signaling costs, packet delays, and losses, but it is less 
flexible.

In [20], the authors built a user-centered multi-objective handoff scheme that can 
improve the throughput of the system to a certain extent but still cannot reflect the true 
state of the BSs, and it lacks consideration of coordination among users in its design so 
that network resources cannot be fully utilized.

3 � Method
In this section, we construct a multi-objective optimization model for VHO to solve the 
problem inherent in existing VHO algorithms that did not comprehensively consider 
both of the impact of users QoS and the network performance during handoff process 
at the same time. There are two phases. In the first phase, we obtain the status value 
sequence of each BS by a Markov chain model. In the second phase, we build a multi-
objective optimization model to maximize the value of the network state and the user 
data receiving rate, and then the multi-objective genetic algorithm NSGA-II is used to 
solve the multi-objective optimization model to obtain the final handoff strategy. Table 1 
shows the variable notations used in this paper.

3.1 � Pre‑judgment stage

We assume there are M BSs in the heterogeneous networks, and a total of N(t) users are 
located under the coverage of the heterogeneous networks at time t. Next, we divide 
users into two classes: non-handoff users and handoff users. Non-handoff users will stay 
in the connections with their current BSs, while handoff users will transfer their network 
connections to new BSs. For each user j(j = 1, 2, . . . ,N (t)) , the RSS coming from each 
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BS can be calculated. We set the distance from user j to BS i(i = 1, 2 . . . ,M) at time t as 
lij(t) . Then, the RSS user j receives from BS i at time t can be calculated as follows:

where ρi is the transmission power of BS i, κi is the path loss factor of BS i, and ǫ2i  repre-
sents the Gaussian random variable that satisfies the Gaussian distribution (0, σ 2

1 ) . Fur-
ther, according to Shannon’s theorem, the data transmission rate qij(t) that user j obtains 
from BS i at time t can be calculated as follows:

where w′
i is the average bandwidth that each channel of the BS i can be allocated, ξ2i  

is the Gaussian white noise satisfying the Gaussian distribution (0, σ 2
2 ) , and Dj(t) is the 

interference signal strength of user j at time t.

(1)rssij
(

lij(t)
)

= ρi − κi lg
(

lij(t)
)

+ ǫ2i

(2)qij(t) = w′
i × log2

(

1+
rssij(t)

Dj(t)+ ξ2i

)

Table 1  Notations of variables

Notations

M The total number of BSs

N(t) The total users located under the coverage of the heterogeneous 
networks at time t

lij The distance from user j to BS i

rssij The RSS user j receives from BS i

ρi The transmission power of BS i

κi The path loss factor of BS i

ǫ2i The Gaussian random variable of RSS

qij The data transmission rate user j obtains from BS i

w′
i The average bandwidth that each channel of BS i can be allocated

Dj(t) The interference signal strength of user j at time t

ξ2i The Gaussian white noise of the interference signal strength

γ The basic bandwidth requirement of the user

u− is(t) The number of handoff users in heterogeneous networks

u− isi The number of handoff users in each BS

u−noni The number of non-handoff users in each BS

τ The user’s decision gap

�i The user arrival rate of BS i within the decision gap

si(t) The status of BS i in the heterogeneous network at time t

bmax The maximum bandwidth requirements for the connection

bmin The minimum bandwidth requirements for the connection

dmax The maximum delay required for connection

dmin The minimum delay required for connection

ci The number of users served in BS i

ηi The number of channels of each BS i

β The discount factor
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During the decision process, we need to determine the number of non-handoff users 
under each BS and the total number of handoff users in the heterogeneous networks to 
determine the network status of each BS more accurately. Here, we use the basic bandwidth 
requirement of the user to determine whether each user requires a handoff. For users who 
newly entered the coverage of the heterogeneous networks and those that have not con-
nected to the BS due to blockage during the last handoff, the current actual data transmis-
sion rate is 0, which means they are considered users who need to be handed over. For users 
who have connected to the BS, we should further consider whether they are handoff users. 
When user j is connected to BS i at time t, we can obtain qij(t) according to Eq. (2). The 
rules are that when qij(t) < γ ( γ is the basic bandwidth requirement of the user), j needs to 
be handed over; otherwise, user j would continue to be connected to BS i. In that way, the 
number of handoff users u−is(t) in the heterogeneous networks and the number of non-
handoff users in each BS u−noni(t) will be determined.

For the handoff user in heterogeneous networks, a pre-decision module is required 
to approximately determine the target BS that the user may access based on the user’s 
data transmission rate. It is assumed that Qj =

{

q1j , q2j , . . . , qMj

}

 is the data transmis-
sion rate set that can be obtained by user j from each BS at time t, and user j would select 
the BS with the highest data transmission rate as a target for pre-handoff. Then, we can 
obtain pre-target BSs for all users and count the number of users who pre-switched to 
each BS, set as u−isi(t)(i = 1, 2, . . . ,M) . We assume the user’s decision gap is τ ; then, the 
user arrival rate �i of BS i within the decision gap can be calculated as �i = u−isi(t)/τ . 
According to queuing theory [21], the probability that k users would reach each BS in 
unit time is:

When the service rate µi of each BS is known, the probability that k users would leave 
the BS in unit time can be obtained:

where ci is the number of users served in BS i, ci = u−noni(t) represents the number of 
non-handoff users in each BS.

The state of the BS changes as the number of users accessing the BS changes, 
such as the remaining available bandwidth and network delay of the BS. The sta-
tus of BSs in the heterogeneous network at time t is represented by set S(t); then, 
S(t) = {s1(t), s2(t), . . . , sM(t)} . At each decision time, the same user can only access one 
BS, and the status of the BS changes based on the Markov chain. To find the state value 
of each BS in different states, it is necessary to first obtain the instant rewards of differ-
ent states of each BS and the transition probability between states. The instant reward is 
determined by the network performance of each BS. The better the performance is, the 
greater the instant reward. Here, the remaining available bandwidth and network delay 

(3)pa(x = k) =
(�i)

k

k!
e−�i

(4)pb(x = k) =
(µi)

k

k!
e−ciµi
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of the BS are chosen as factors to calculate the instant reward of each state of the BS. The 
instant reward of BS i at time t is:

where rb(si(t), i) is a value function of the remaining available bandwidth of BS i 
in state si(t) , and rd(si(t), i) is a value function of the network delay of i in state si(t) . 
The remaining available bandwidth is a benefit parameter, and its value function is: 
rb(si(t), i) = (b(si(t), i)− bmin)/(bmax − bmin) , where bmax and bmin are the maxi-
mum and minimum bandwidth requirements for the connection, respectively, and 
b(si(t), i) is the actual remaining bandwidth of BS i in state si(t) . When b(si(t), i) < bmin , 
rb(si(t), i) = 0 , while when b(si(t), i) > bmax , rb(si(t), i) = 1 . The network delay is a loss 
parameter whose value function is: rd(si(t), i) = (dmax − d(si(t), i))/(dmax − dmin) , 
where dmax and dmin are maximum and minimum delay required for connection, respec-
tively. d(si(t), i) is the actual network delay of BS i in state si(t) . When d(si(t), i) < dmin , 
rd(si(t), i) = 1 , whereas when d(si(t), i) > dmax , rd(si(t), i) = 0 . wb and wd are the 
weights of the remaining available bandwidth and network delay, respectively.

The real-time reward reflects the network performance of the BS under the current 
state rather than the dynamic changes of the state. Therefore, the state value of the BS 
needs to be further determined according to the state transition probability. The state 
of the BS is related to the number of users connected to it, and thus the change in the 
number of users would lead to changes in the state of the BS. Let t be the time when the 
decision cycle starts and ci be the number of users being served in the corresponding BS. 
Then, the probability that a user changes from ci to cnext can be calculated by the follow-
ing when cnext < ci:

when cnext ≥ ci:

where p(ci, cnext) is the state transition probability of the BS. According to basic band-
width requirements, we are able to determine that the total number of users who need 
to make a handoff decision at time t is u−is(t) . Considering that all handoff users may 
access the same BS, it is necessary to calculate the u−is(t) state values corresponding 
to each BS. Because the number of accessing channels of each BS is limited, the num-
ber of users connected to each BS is limited as well. Suppose that the number of chan-
nels of each BS in a heterogeneous network is ηi ; then, according to Eqs. (5)–(7), when 
u−is(t) > ηi , we can calculate the state value of each state:

(5)R(si(t), i) = wbrb(si(t), i)+ wdrd(si(t), i)

(6)p(ci, cnext) =

ci
∑

n=cnext−ci

pa(x = n+ cnext − ci)pb(x = n)

(7)p(ci, cnext) =

ci
∑

n=0

pa(x = n+ cnext − ci)pb(x = n)
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when u−is(t) ≤ ηi:

In Eqs. (8) and (9), V π (si(t + 1)) represents the state at the next moment, which 
has multiple possibilities. The probability that the user would transit to each state is 
p(si(t), si(t + 1)) = p(ci, cnext) . β is the discount factor. State values of corresponding 
states of all BSs can be obtained by using a dynamic programming algorithm.

3.2 � Switching model design

According to Eqs. (8) and (9), we can obtain the state value corresponding to each state 
of the BS. According to the calculation method of Eq. (5) for the instant reward, at the 
same moment, it is known that the BS with the larger state value has better network per-
formance and users tend to access the BS with excellent performance in order to obtain 
higher bandwidth, lower delay, and reduce the blocking rate of the BS when performing 
a network handoff. However, the handoff solely based on the better state of the network 
cannot guarantee the QoS. We have to consider changes of the user’s status as well, such 
as the user’s maximum transmission rate, which is not only related to the average band-
width of the BS but also to the distance from the user to the BS inferred by Eq. (2). We 
select the user’s data transmission rate to reflect the user’s service quality. The greater 
the data transmission rate is, the higher the user’s service quality. When designing a 
handoff scheme, users would always choose a BS with high data transmission rate and 
high-status value.

In the same decision cycle, there may be multiple users performing network switch-
ing. If performing a handoff with a single-handoff user as the center under traditional 
handoff schemes, it would be less efficient to utilize the overall resources in a heteroge-
neous network system, and the network performance would not reach the optimal state 
as it lacks coordination between handoff users during handoffs. To improve the resource 
utilization efficiency and the network performance, when designing the handoff scheme, 
handoff users should be coordinated to carry out a unified design, and the single-user 
handoff should be converted into a multi-user coordinated handoff in turn. First, we set 
the connected BSs of all handoff users at time t as a matrix variable �(t):

(8)

V π (si(t)) =







0 si(t) =
�

ηi + 1,uis(t)
�

�

si(t+1) p(si(t), si(t + 1))

×(R(si(t + 1), i)+ β × (V π (si(t + 1)))) si(t) = {1, ηi}

(9)V π (si(t)) =
∑

si(t+1)

p(si(t), si(t + 1))
(

R(si(t + 1), i)+ β ∗
(

V π (si(t + 1))
))

(10)�(t) =

∣

∣

∣

∣

∣

∣

∣

∣

θ11 θ12 · · · θ1u−is(t)
θ21 θ22 · · · θ2u−is(t)
...

...
. . .

...
θM1 θM2 · · · θMu−is(t)

∣

∣

∣

∣

∣

∣

∣

∣
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The matrix �(t) reflects the network selection results of all handoff users at time t, M 
is the total number of BSs in the heterogeneous network, and u−is(t) is the number of 
handoff users at time t. Each element in the matrix can only take 1 or 0 rules as follows:

where i = 1, 2, . . . ,M and j = 1, 2, . . . ,u−is(t).
The i-th row of the matrix is represented as �(t)((i,:)) , which reflects the situation 

where the handoff user accesses BS i. The j-th column of the matrix is represented as 
�(t)((i,:)) , reflecting the network selection result of user j at time t. Similarly, the data 
transmission rate from each BS for all handoff users at decision time t can be calculated 
by Eqs. (1) and (2), and we can construct a data transmission rate matrix Q(t) . Its math-
ematical form is as follows:

After obtaining the data transmission rate matrix that reflects the user’s QoS, we also 
need to build a state value matrix that reflects the status of the BS so that we could bet-
ter ascertain the network performance of the BS and the user’s QoS and thus design a 
reasonable VHO scheme. The state value can be obtained according to Eqs. (8) and (9), 
and the state value sequence of each BS at time t has u−is(t) elements, which can also be 
expressed in matrix form:

Each row of the matrix V (t) is a state value sequence of a BS, and the state value 
sequence is arranged in descending order.

To maximize the resource utilization of the system and satisfy the basic requirements 
of the user’s QoS at the same time, we need to follow the principle that maximizes the 
sum of the state value and the system throughput when designing the VHO algorithm. 
Let matrix �(t) be a decision variable; considering Eqs. (12) and (13), then the following 
multi-objective optimization model can be obtained:

where Q((:,j))(t) represents the data transmission rate from all BSs to user 
j at time t, and ��((i,:))(t)�1 is the 1− norm of the vector �((i,:))(t) , which 

(11)θij(t) =

{

1 user j connects to BS i,
0 user j does not connect to BS i

(12)Q(t) =

∣

∣

∣

∣

∣

∣

∣

∣

q11 q12 · · · q1u−is(t)
q21 q22 · · · q2u−is(t)
...

...
. . .

...
qM1 qM2 · · · qMu−is(t)

∣

∣

∣

∣

∣

∣

∣

∣

(13)V (t) =

∣

∣

∣

∣

∣

∣

∣

∣

v11 v12 · · · v1u−is(t)
v21 v22 · · · v2u−is(t)
...

...
. . .

...
vM1 vM2 · · · vMu−is(t)

∣

∣

∣

∣

∣

∣

∣

∣

(14)

{

Maxmize
∑M

i=1

∑��(i,:)(t)�1
j=1 V ij(t)

Maxmize
∑u−is(t)

j=1 Q(:,j)(t) ∗�(:,j)(t)
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represents the total number of users connected to BS i at time t. The value of each 
element in � can only take 0 or 1. In mathematical form, it can be expressed as: 
θij(1− θij) = 0(i = 1, 2, . . . ,M, j = 1, 2, . . . ,u−is(t)) . The same user can only access at 
most one BS at the same time, so 

∑M
i=1 θij(t) ≤ 1 , and since the number of accessing 

channels of each BS is limited, the number of users connected to each BS is also limited. 
That is, 0 ≤ ��((i,:))�1 ≤ ηi(i = 1, 2, . . . ,M) . Equation (14) shows that the VHO decision 
problem has been transferred into a multi-objective optimization problem. The opti-
mization variable here is a matrix � . To solve this multi-objective optimization model 
with constraints, the multi-objective genetic algorithm NSGA-II [22] is applied. The 
algorithm steps are shown in Algorithm 1. First, we initialized the population accord-
ing to the constraints of the model and then set the iterative stop condition to perform 
fast non-dominated sorting, congestion allocation, tournament selection, and the elite 

Fig. 1  Flow of the proposed scheme
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retention strategy to obtain the final handoff strategy. The flow of the entire algorithm is 
shown in Fig. 1. 

Algorithm 1 The framework of the multi-objective genetic algorithm NSGA-II for solv-
ing multi-objective functions.
Input: The matrix of the data transmission rate, Q(t); The matrix of the state value

sequence, V (t); The total number of handoff users, u−is(t); The number of non-
handoff users in each BS, u−noni(t); The population size: Npop; The total number
of BSs: M ;

Output: The matrix of the connected BSs of all handoff users at time t, Θ(t)
1: Complete population initialization based on the principles: θij(1 − θij) = 0(i =

1, 2, . . . ,M, j = 1, 2, . . . , u−is(t)),
∑M

i=1 θij(t) ≤ 1 and 0 ≤ ‖Θ((i,:))‖1 ≤ ηi(i =
1, 2, . . . ,M). Generate the population Wpop ⊆ RM×u−is(t)×Npop and the corre-
sponding value Vpop ⊆ R1×Npop of the population ;

2: Using the fast non-dominated sorting module to solve the Pareto rank Fpop ⊆
R1×Npop of individuals in a population, the greater the Pareto level is, the closer
the corresponding solution is to the Pareto optimal solution;

3: Calculate the crowding degree of individuals under each Pareto level Dpop ⊆
R1×Npop , and the greater the congestion is, the more diverse the value of the
population;

4: According to the order of Pareto rank Fpop ⊆ R1×Npop from high to low and
the congestion Dpop ⊆ R1×Npop from large to small, select the parent population
for cross mutation to generate a new population Wpop ⊆ RM×u−is(t)×Npop and
recalculate the value Vpop ⊆ R1×Npop , Fpop ⊆ R1×Npop and Dpop;

5: Repeat step 4 until the maximum number of iterations niter is exceeded;
6: Find the maximum value of Vpop ⊆ R1×Npop and return the corresponding individual

Θ(t) in the population Wpop ⊆ RM×u−is(t)×Npop ;
7: return Θ(t);

4 � Experiments and results
To evaluate the performance of the proposed VHO algorithm, we set up a simula-
tion model in MATLAB 2018a and compared the proposed algorithm (MBMO) with 
the VHO algorithm based on decision tree (DT-VHO) [9], the VHO based on the 
multi-armed bandit model (MABA) [12] and the user-centered multi-objective hand-
off algorithm (MOS) [20]. DT-VHO is a multi-attribute decision-making algorithm 
based on decision trees, and the algorithm obtains more accurate decision attribute 
values through the Kalman filtering algorithm and deduces the false alarm probability 
and missed alarm probability to further reduce the handoff error rate and effectively 
improve the user’s QoS. MABA introduces the multi-armed bandit model-based 
algorithm and uses the Gittins index to characterize the network performance of the 
BS, which can monitor the dynamic changes of the network in real time and improve 
the resource utilization of the system. Both algorithms can bring great performance 
improvements, but neither fully considers user QoS and network dynamic changes. 
At the same time, this paper takes both the user QoS and network dynamic changes 
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into account to propose an improved algorithm to verify the performance obtained by 
the algorithm. MOS is similar to our paper; it constructs a multi-objective optimiza-
tion function to achieve VHO by considering the user’s data transmission rate and the 
blocking rate of the base station, but it still cannot reflect the real-time state of the 
BSs.

The network simulation scenario is illustrated in Fig.  2. We referred  to the litera-
ture [20]  to  build a heterogeneous network model with three BSs, 3G (W-CDMA), 
4G (LTE), and 5G BSs. Each network was assumed to be placed in a 520m× 510m 
matrix space, where a 3G BS was located at coordinate point (250, 510), a 4G BS was 
located at coordinate point (− 10, 0) , and a 5G BS was located at coordinate point 
(510, 0). Then, we supposed 100 users were randomly generated in a matrix space of 
500m× 500m in the middle of the BS. We assumed that the users’ moving speed was 
0–2 m/s and the initial direction of the movement was random. The relevant param-
eters of the three BSs in Table 2 are set according to the  literature [9] and [20], and 
common simulation parameters are given in Table 3.

Figure  3 shows the value of network state of each network. To show the value in 
different states intuitively, we assume that the user arrival rate is 2, and the availa-
ble bandwidth and delay increase with the number of access users. As the number of 
access users increases, the network performance of the BS will decrease, resulting in 
a decrease in the status of the BS. When the access user is 0, each BS can reach the 
best state, and when the access user is greater than the maximum accessible user set 
by the BS, the status value of the BS becomes 0. Since the performance of the 5G BS is 

Fig. 2  Heterogeneous network simulation scenarios
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better than other BSs, its status value remains maximum until the maximum number 
of access users is reached.

4.1 � Analysis of total throughput

Throughput reflects the amount of data transmitted by the system in unit time. The 
higher the throughput is, the higher the transmission efficiency of the system. It is an 
important performance indicator of the network. Figure  1 shows the throughputs 
under four types of VHO algorithms, MBMO, DT-VHO [9], MABA [12], and MOS [20] 
when they are connected with different numbers of accessing users. Among them, the 
throughput of MBMO is calculated by Eq. (14). From Fig. 4, we can see that the overall 

Table 2  Experimental parameters

3G 4G 5G

Coverage radii of BSs 7 km 50 km 25 km

Maximum number of serving users in BSs 10 20 16

Bandwidths of BSs 5 MHz 20 MHz 24 MHz

Transmission powers of BSs 40 dBm 43 dBm 46 dBm

Strength of the interfering signal − 110 dBm − 110 dBm − 110 dBm

Pass loss factor κi 46 dBm 52 dBm 56 dBm

Average access bandwidth (bandwidth of each 
channel)

0.5 MHz 1 MHz 1.5 MHz

Operating frequency 1900 MHz 2300 MHz 4800 MHz

Average time delay [1] 45 ms 60 ms 20 ms

Table 3  Common simulation parameters

Basic bandwidth requirements of users for BSs: γ 3 Mbps

Additive Gaussian random power of RSS: ǫ2i ǫ2i ∼ N(0, 3) dBm

Additive white Gaussian noise power: ξ2i ξ2i ∼ N(0, 5) dBm

Time slot: τ 2 s

Fig. 3  Value of the network state
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trend of throughput change is that when the number of accessing users is less than 50, 
the throughput increases continuously with the increase in users, but when the number 
of accessing users is greater than 50, the throughput increases slowly and gradually bal-
ance. Because the number of accessing users allowed by the heterogeneous network is 
limited, when the number of accessing users is greater than 50, the system tends to be 
saturated. Apart from that, Fig. 4 shows the proposed handoff algorithm MBMO always 
has the highest throughput.

4.2 � Analysis of blocking rate

Figure 5 illustrates how the blocking rate of the four algorithms would change as the 
number of accessing users increases. The blocking rate curve of the MBMO algo-
rithm is obtained by Eq. (14). It can be seen from Fig. 5 that overall, the blocking rate 
shows an ascending trend with the increase in accessing users. When the number of 
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accessing users is less than 30, the system still has capacity to accommodate more 
new users, so the blocking rate of each algorithm is small or even close to 0. Nev-
ertheless, when the number of accessing users is greater than 30, the blocking rate 
of each algorithm starts to increase. With the same number of accessing users, the 
blocking rate under the MOS method is always quite large because it always considers 
the worst case and overlaps the BSs that all users can access. As a result, this algo-
rithm could not truly reflect the blocking rate of the BS. The benefit function con-
structed by the DT-VHO method does not consider real-time changes in the BS state 
during the decision period, so its blocking rate changes gently but could not achieve 
an optimal effect. Both the MBMO algorithms proposed in this article and the MABA 
consider the real-time changes of BS state. Therefore, the blocking rates under those 
two methods are always in a low state, but it can be seen from the construction 
method of Eq. (14) that the proposed MBMO algorithm further considers the coordi-
nation between handoff users and the QoS of users and thus would further reduce the 
blocking rate of the system.

4.3 � Stability of algorithm

To verify the stability of the proposed algorithm, we simulate the throughput of each 
handoff user after switching when the number of handoff users is less than the sys-
tem capacity. Figure  6 shows the perceived throughput of each handoff user under 
each network. The simulation results of each algorithm are shown in Fig. 7. The pro-
posed algorithm MBMO and the VHO algorithm MABA based on the multi-armed 
bandit model take into account the dynamic characteristics of the networks when 
users switch, so when the system capacity is sufficient, there will be almost no hand-
off users that cannot access the BS due to a certain BS blocking. The user-centered 
VHO algorithm MOS and the decision tree-based VHO algorithm DT-VHO focus on 
a single user and thus lack the consideration of network-side characteristics, resulting 
in large fluctuations in the data reception rate obtained by users and unstable user 
performance. In addition, it can be clearly seen from the mean error graph of the 
user throughput in Fig.  8 that the MBMO algorithm has the highest mean and the 
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smaller standard deviation. That is because the proposed algorithm considers the per-
formance of both the user side and the network side.

5 � Conclusions and prospects
In this paper, we propose a VHO algorithm based on a multi-objective optimization 
model. We build a multi-objective optimization model with full consideration of the 
dynamic characteristics of the network side and the QoS of the user side. To quantify 
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the performance of the network state and make it convenient for mathematical pro-
cessing, a Markov chain is used to solve the value sequence of the BS. Finally, we solve 
the multi-objective optimization function through the NSGA-II algorithm to obtain 
the users’ decision result. The algorithm can effectively improve the user’s service 
quality and the resource utilization of heterogeneous network systems.

In future studies, the heterogeneous network environment will be more complex. With 
the development of the Internet of Things, a massive number of terminals will be con-
nected to heterogeneous networks. To maintain a balance between terminal QoS and 
network resource utilization, future VHO algorithms should have the ability to process a 
large amount of data. In the current study, although the neural network-based VHO can 
handle a large amount of data, its level of complexity is high, the speed of calculation is 
slow, and it is not suitable for high-speed moving scenes. Further study on VHO algo-
rithms may focus on processing massive data with lower latency.
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