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1  Introduction
Underwater acoustic channels are considered as one of the most challenging commu-
nication channels, generally characterized by low propagation speed of sound in water 
(nominally 1500  m/s), limited bandwidth, and complex multipath propagation which 
results in frequency-selective fading [1–5]. Multipath propagation and limited band-
width place significant constraints on the achievable throughput of underwater acoustic 
communication (UAC) systems. The bandwidth efficiency is an important system indi-
cator [6–8], to increase the bandwidth efficiency of UAC systems, adaptive modulation 
(AM) schemes, which have the ability to adjust modulation modes according to channel 
conditions, can be employed.

The investigation on the application of AM to underwater acoustic communications 
has been limited in comparison to the extensive investigations for terrestrial radio com-
munication. In [9], an AM scheme based on channel prediction is proposed, in which 
the channel state information (CSI) of future time is predicted with the estimated CSI of 
a previous time and then used to adjust the modulation mode. An adaptive modulation 
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approach based on the signal-to-noise ratio (SNR) is proposed in [10], in the approach, 
the SNR is obtained after channel estimation and then used as the working mode indica-
tor to select the appropriate modulation mode. In [11, 12], the future BER is predicted 
based on the CSI and SNR using the decision tree approach. In [13–15], the machine 
learning algorithms are used to select the modulation mode. However, these schemes in 
[9–15] assume that the CSI can be well estimated and non-blind equalization approach 
is adopted. For practical underwater acoustic communication, due to the complexity and 
variability of the underwater acoustic environment, the CSI is actually difficult to obtain. 
Moreover, to obtain a better estimation for the channel, sufficient pilot sequence length 
is required by non-blind equalization, and thus the transmission efficiency of the under-
water acoustic channel with limited bandwidth is significantly reduced.

In this paper, we propose an adaptive modulation scheme based on steady-state mean 
square error (SMSE) for the underwater acoustic communication system. In the pro-
posed scheme, the channel state information does not need to be assumed to be known, 
the adjustment of modulation mode is realized based on the output SMSE of blind 
equalization detector (BED). To achieve better performance, an adjustable tap-length 
BED (ATL-BED) is also adopted. Compared with the fixed tap-length BED (FTL-BED), 
better SMSE can be obtained under the same conditions. In addition, for BED, a pri-
ori knowledge of transmitted signal statistics is used to recover transmitted signals, no 
training sequence is required. Therefore, the transmission efficiency of the system can be 
improved.

2 � System model
For communication over underwater acoustic channels, OFDM is an efficient scheme. 
However, its performance will suffer from high peak-to-average power ratio (PAPR) 
value, and inter-carrier interference (ICI) caused by uneven Doppler frequency shift 
[16]. Compared with OFDM, Single-carrier (SC) technology has a better PAPR and is 
less sensitive to frequency offset. To avoid being affected by these problems, the SC is 
also a promising alternative approach [17]. Therefore, in the system model, the SC is 
adopted.

In the adaptive modulation, BPSK, 4QAM, 8QAM, and 16QAM are provided at the 
transmitter. For each transmission, the modulation mode may be adjusted to maximize 
the throughput. The channel is modeled by statistical underwater acoustic channel 
model [18, 19]. At the receiver, demodulation is performed using a blind equalization 
detector. The discrete model of the system is depicted in Fig. 1.
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Fig. 1  Discrete model of the system
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All the signals are sampled at the symbol rate, where the index n represents the signal 
sample at time nTs, where Ts is the symbol period. The received signals can be expressed 
as

where * denotes convolution, s(n) represents the transmitted signal after the modulation, 
h(n) denotes the discrete underwater acoustic channel impulse responses, v(n) repre-
sents samples of additive white Gaussian noise with zero mean and variance σ2.

The adaptive modulation procedure is described below. First, a transmitter node will 
initiate a request-to-send (RTS) message, and the receiver node will reply with a clear-
to-send (CTS) message after receiving RTS. The CTS will report the steady-state mean 
square error (SMSE) of blind equalization, upon which the transmitter node will esti-
mate the SNR and chose a suitable modulation scheme, and transmit a data burst to the 
receiver node.

3 � Method: the proposed adaptive modulation scheme based on steady‑state 
mean square error

One critical component of an AM system is to find an appropriate performance metric, 
based on which the transmitter can switch to a suitable transmission mode. The existing 
schemes assume that the CSI can be well estimated. However, due to the variability of 
the underwater acoustic channel, the CSI is difficult to obtain. Considering the realiza-
tion of the actual AM system, the output SMSE of BED can be used as the performance 
metric to select the appropriate modulation mode. The proposed scheme does not need 
to know the CSI, thus, it is more suitable for practical underwater acoustic AM systems.

3.1 � Acquisition of steady‑state mean square error

The SMSE is an important parameter in the detection performance of BED. The smaller 
the value is, the better performance the detector can achieve. In contrast, a larger value 
of SMSE may induce worse performance. Therefore, the SMSE can be used as the met-
ric to adjust the modulation mode. Compared with constant modulus algorithm-(CMA) 
based blind equalization, the multi-modulus algorithm-(MMA) based blind equalization 
can implement carrier phase recovery at the same time, and thus the rotator does not 
require to be added in steady-state operation. For MMA, the cost function is defined as 
[20]

where Ji(k) is the cost function, i ∈ {R, I} , and can be given by

where i ∈ {R, I} , R denotes the real part of a complex variable, I represents the imagi-
nary part, ŷi(k) denotes the output of blind equalization, G2,i can be calculated with 
G2,i = E

{
d4i (k)

}
/E

{
d2i (k)

}
 , i ∈ {R, I} , dR(k) represents the real part of d(k) , and dI (k) 

(1)r(n) = s(n) ∗ h(n)+ v(n)

(2)JM(k) = JR(k)+ JI (k)

(3)Ji(k) = E

{[
ŷ2i (k)− G2,i

]2}
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is the imaginary part of d(k) . d(k) denotes the equiprobable and statistical independ-
ent quadrature phase shift keying (QPSK) data stream sent by the transmitter. The total 
error is resolved by the difference between the BED output and the signal statistics of the 
transmitted signal, and can be expressed as

where ei(k) = ŷi(k)(ŷ
2
i (k)− G2,i) , i ∈ {R, I} , eR(k) represents the real part of error signal 

e(k) and eI (k) is the imaginary part of e(k) . Here, we will adopt the adaptive normalized 
MMA proposed in [21] to dynamically adjust the tap coefficient vector according to the 
error e(k) . In most formulations of the BED, the tap-length of the BED is assumed fixed 
[20, 22–24]. However, in different times and different underwater environments, the 
channel profile is different, and the optimal tap-length of BED is related to the specific 
channel profile. Therefore, optimal tap-length is difficult to be obtained in advance. The 
tap-length is an important parameter affecting the SMSE performance of blind equali-
zation. To achieve better SMSE performance, the detector should have the ability to 
dynamically adjust the tap-length according to the specific underwater acoustic channel. 
The SMSE performance of BED can be measured with the mean square error of e(k)

The normalized least mean square algorithm can be used to update the tap coefficient 
vector of BED. To reduce the computational complexity, in the process of tap-length 
adjustment, the accumulated squared error (ASE) is adopted as the measure criterion 
[25]

where the repetitive computation of division is avoided. Ideally, the out ASE will 
decrease with the increase of tap-length

where

where m ∈ {L, L− 1} , ζ is a forgetting factor used to weight the relative importance of 
preceding and recent samples, ζ ≤ 1 , the input sequence is equally divided into several 
segments, ymi(k) denotes the ith output of the BED for the mth segment input sequence, 
yR,mi(k) represents the real part of equalization out ymi(k) , yI ,mi(k) is the imaginary 
part of ymi(k) and ASEm(k) denotes the ASE corresponding to the mth segment input 
sequence.

By comparing the sizes of ASEL(k) and ASEL−1(k) , the adjustment of tap-length can 
be determined [25]. If ASEL(k) ≤ βuASEL(k) , the tap-length increases q taps, and vice 
versa, if ASEL(k) ≥ βdASEL(k) , the tap-length decreases q taps, where βd needs to meet 
βd ≤ 1 , βu and βd should satisfy βu ≤ βd . The function of βu and βd is to determine the 

(4)e(k) = eR(k)+ jeI (k)

(5)MSE(k) = E
[∣∣e(k)

∣∣2
]
=

∑k
j=1 e(j)e

∗(j)

k

(6)ASE(k) =
∑k

j=1
e(j)e∗(j)

(7)ASEL(k) < ASEL−1(k)

(8)ASEm(k) =
∑k

i=1
ζ k−i

∣∣∣yR,mi(k)
(
y2R,mi(k)− G2,R

)
+ jyI ,mi(k)

(
y2I ,mi(k)− G2,I

)∣∣∣
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sum of adjustments to increase or decrease the tap-length of BED according to the 
improvement or deterioration of ASE. The closer the values of βu and βd are, the more 
frequently the tap-length will be adjusted by the detector. In addition, it is worth noting 
that when the tap-length of ATL-BED and fixed tap-length (FTL) BED is the same, the 
incremental complexity caused by the adjustment of tap-length is finite. This is because, 
for ATL-BED, the adjustments of tap-length only require multiplication, subtraction, 
and addition operations.

After the convergence of BED, the steady-state mean square error can be obtained by

where Nc denotes the minimum number that can make the algorithm converge.
For the underwater environment, the channel dynamics tend to change rapidly in local 

so that the statistic of channel gains is highly nonstationary [26]. If the data packet is 
too long, the channel may have changed during the transmission of the packet. There-
fore, a short data packet is adopted for the UAC system. The channel is assumed to be 
stationary in the transmission process for the short data packet. To ensure the conver-
gence of the algorithms, each packet is repeated to use until the algorithms converge to 
steady-state. For the reuse of each packet, the tap coefficient vector is initialized by the 
last update in the previous training using the same packet.

3.2 � Fitting between estimated SNR and actual SNR

The output SNR γo of BED can be calculated by [27]

Due to the influence of noise and ISI, the ideal blind equalization performance cannot 
be obtained. To make the estimated SNR approximate to the actual SNR γa , polynomial 
fitting is used to correct the estimated SNR γo . Suppose N data γo,n have been obtained, 
n = 0, 1, . . . ,N − 1 and we have a function that describes the relationship between γo,n 
and γa,n

where εn is the error at γo,n . Our goal is to determine γa,n from the estimated data γo,n , 
n = 0, 1, . . . ,N − 1 . Therefore, a fitting function F(γo,n) = F(γo,n; c0, . . . , ck−1) should be 
selected, where F(γo,n) is an approximation to f (γo,n) , c0, . . . , ck−1 denote the parameters 
of the fitting function. To the function f (γo,n) , the equation of polynomial fitting can be 
written as follows

Next, we should determine the values for the parameter c0, . . . , ck−1 that make F(γo,n) 
a good approximation. To solve the problem, we use the approach of least-squares fitting 
[28], which minimizes the following error function

(9)SMSE =

∑k
j=Nc

e(j)e∗(j)

k − Nc + 1

(10)γo =
1− SMSE

SMSE

(11)γa,n = f (γo,n)+ εn, n = 0, 1, . . . ,N − 1

(12)F(γo,n) = c0 + c1γo,n + c2γ
2
o,n + · · · + ck−1γ

k−1
o,n
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In order to obtain the parameter value ci , a necessary condition for E(·) to be a mini-
mum is that

After the differential calculation for Eq. (13), we obtain

Because function F(·) has the form of (12), we get

Therefore, applying (16) to (15), we have

Equation (17) forms a system of k equations in k unknown parameters ci

By solving formula (18), the estimation ĉi for parameters ci can be obtained. Then, we 
substitute ĉi into (12), the correction estimation value for γa,n can be given by

γo,n can be calculated with (10)

Substitute (20) into (19), the relationship between SMSE, SMSEn and estimation SNR 
γ̂a,n can be given by

(13)E(c0, . . . , ck−1) =

N−1∑

n=0

[γa,n − F(γo,n; c0, . . . , ck−1)]
2

(14)
∂E

∂ci
= 0, i = 0, 1, . . . , k − 1

(15)

∂E

∂ci
=

N−1∑

n=0

∂

∂ci
[γa,n − F(γo,n; c0, . . . , ck−1)]

2

= −2

N−1∑

n=0

[γa,n − F(γo,n; c0, . . . , ck−1)]
∂

∂ci
F(γo,n; c0, . . . , ck−1)

(16)
∂

∂ci
F(γo,n; c0, . . . , ck−1) = γ i

o,n

(17)
N−1∑

n=0

[γa,n − F(γo,n; c0, . . . , ck−1)]γ
i
o,n = 0, i = 0, 1, . . . , k − 1

(18)

N−1∑

n=0

[
c0 + c1γo,n + c2γ

2
o,n + · · · + ck−1γ

k−1
o,n

]
γ i
o,n =

N−1∑

n=0

γa,nγ
i
o,n,

i = 0, 1, . . . , k − 1

(19)γ̂a,n = F(γo,n) = ĉ0 + ĉ1γo,n + ĉ2γ
2
o,n + · · · + ĉk−1γ

k−1
o,n

(20)γo,n =
1− SMSEn

SMSEn

(21)

γ̂a,n = ĉ0 + ĉ1
1− SMSEn

SMSEn
+ ĉ2

(
1− SMSEn

SMSEn

)2

+ · · · + ĉk−1

(
1− SMSEn

SMSEn

)k−1
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3.3 � Adaptive modulation based on steady‑state mean square error

After obtaining the SMSE, the fitted SNR γ̂a,n can be calculated with (21), and then be 
used to adjust the modulation levels.

To maintain the BER below the target threshold, we propose the following optimiza-
tion criterion:

where Pe expresses the BER of system, Pth is the expected BER, Ŵ(γ ) denotes the 
throughput of modulation scheme, and can be expressed as [29]

where R denotes the transmitted number of information bits per second. The probability 
of bit error for the corresponding modulation approach is approximated by [9]

where coefficients m(Mk) are determined numerically for each modulation alphabet, 
as accurately as desired for the BER approximation and take values 2.2, 3.3, 3.5, 3.6 for 
Mk = 2, 4, 8, 16 , respectively [9].

To realize the optimization criterion (22), for a given target BER, the thresholds for the 
available modulation levels can be obtained by the following method.

The throughput curve of N modulation modes would produce N-1 intersection points, 
which divide the SNR into N segment intervals. The switching threshold of modulation 
mode can be obtained by finding the corresponding SNR for the N-1 intersection points. 
Let the throughput of two adjacent modulation modes equal, the intersection point can 
be solved

where Ŵi(γ ) denotes the throughput of ith modulation mode. By Eq. (25), the obtained 
threshold set can be expressed as γ Ŵ = {γŴ,1, γŴ,2, ..., γŴ,N−1}.

The obtained threshold set γ Ŵ divides the whole SNR interval into N parts. Under dif-
ferent SNRs γa , the corresponding modulation mode can be selected according to the 
interval where the estimated SNR γ̂a is located. The AM algorithm based on the SMSE 
can be summarized as follows.

(22)
maximizeŴ(γ )

subjectPe ≤ Pth

(23)Ŵ(γ ) = (1− BER(γ ))R

(24)BER(γ ) = 0.2e
−

m(Mk )

2(Mk−1) γ

(25)Ŵi(γ ) = Ŵi+1(γ ) i = 1, 2, ...,N − 1
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4 � Simulation results and discussion
In this section, we present simulation results to validate the feasibility, and prove the 
advantages of the proposed scheme. The programs are developed in Python. We assume 
perfect synchronization and also assume that the underwater acoustic channel is quasi-
static, which means that in the process of data packet transmission, the channel is 
unchanged, but for the next packet, the channel will change. In the simulation, the sta-
tistical underwater acoustic channel model is used. In the model, the carrier frequency 
is 12KHz, the band is limited to 1 kHz, the depth is set as 60 m, the speed of sound in 
water is set to 1500 m/s, the range between transmitter and receiver is set as 200 m, both 
transmitter and receiver are located at a depth of 20 m, wave height is set as 0.2 m. We 
assume that the information bits frame length is 200. For FTL-BED, the tap-length is set 
as 5. For the ATL-BED, the initial length of the tap coefficient vector is set as 1, the seg-
ment length is 10 bits, and the parameter q of each tap-length adjustment is set as 2.

4.1 � Effect of tap‑length on SMSE

In this section, the simulation is based on a given UAC envelope, which is generated 
with the statistical underwater acoustic channel model. The influences of tap-length 
on steady-state MSE (SMSE) of BED are showed in Fig. 2. Each point on the curve is 
acquired through averaging the SMSE on every data packet. The output SMSE of BED 
can be calculated with (9) after the BED achieves convergence. As shown in Fig. 2, the 
tap-length can severely affect the SMSE performance of BED. Taking into account com-
putational complexity, the optimum tap-length is defined according to the minimum 
requirement, which means that the required minimum tap-length for achieving optimal 
SMSE performance is adopted. From Fig. 2, it can be observed that when tap-length is 
probably set between 13 and 20, the BED achieves extremely similar SMSE performance, 
which approximates to the optimal SMSE performance. Based on the definition of the 
optimum tap-length, from Fig. 2, we can obtain the optimum tap-length, which is about 
13.
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The evolving curve of tap-length is obtained with the approach of averaging all the 
evolving curves, which are acquired with different data packets. Figure  3 shows the 
adaptive adjustment process of tap-length of ATL-BED. In the simulation, for (18), ζ is 
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set to 0.999. βu is set as 0.98, and βd is set to 0.989. In Fig. 3, the same underwater acous-
tic channel used in Fig. 2 is adopted. It can be seen from Fig. 3 that after ATL-BED has 
adjusted the tap-length, the tap-length can finally converge to the optimal tap-length 
as shown in Fig. 2. Based on the above results, for the ATL-BED, it can adjust the tap 
length according to the difference of channel, so as to obtain close to the optimal SMSE 
performance.

4.2 � Validation of the relationship between SMSE and SNR

In this section, we verify the effectiveness of SNR estimation based on SMSE. The 
SNR estimation is calculated based on the SMSE with (10). All calculated SMSE were 
obtained by averaging the MSE with (9) after the convergence of BED.

In Fig. 4, we compare the estimated SNR γo with (10) and actual SNR γa . It is observed 
that the calculation with (10) for SNR is not very accurate, which deviates from the 
actual SNR. However, it is noted that the estimated SNR remains the same trend as the 
actual SNR. To better realize adaptive modulation, the polynomial fitting is adopted to 
approximate the actual SNR, the fitting formulas for BPSK, 4QAM, 8QAM and 16QAM are  

γ̂a,BPSK = −19.16+2.434

(
1−SMSEBPSK
SMSEBPSK

)
−0.05237

(
1−SMSEBPSK
SMSEBPSK

)2
+0.0005736

(
1−SMSEBPSK
SMSEBPSK

)3
  , 

γ̂a,4QAM = −9.167+1.128

(
1−SMSE4QAM

SMSE4QAM

)
−0.01011

(
1−SMSE4QAM

SMSE4QAM

)2
+0.0001968

(
1−SMSE4QAM

SMSE4QAM

)3
, 

γ̂a,8QAM = − 4.956+0.07977

(
1−SMSE8QAM

SMSE8QAM

)
+0.04093

(
1−SMSE8QAM

SMSE8QAM

)2
−0.000524

(
1−SMSE8QAM

SMSE8QAM

)3
  , 

γ̂a,16QAM = −10.68+0.8887

(
1−SMSE16QAM

SMSE16QAM

)
+0.006173

(
1−SMSE16QAM

SMSE16QAM

)2
−0.0001217

(
1−SMSE16QAM

SMSE16QAM

)3
  , 
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respectively, where γ̂a,j denotes the fitting SNR for modulation mode j, SMSEj expresses 
the steady-state mean square error corresponding to the modulation mode j, 
j ∈

{
BPSK, 4QAM, 8QAM, 16QAM

}
 . It is seen from Fig. 4 that the fitting SNR is very 

close to the actual SNR for the four modulation modes. According to the simulation 
results, it is proved that the fitting approach is feasible, we can use the estimated SNR 
based on SMSE as the measurement to adjust the modulation mode.

4.3 � Comparison of throughput performance

In this section, we will compare the throughput performance of the proposed method 
based on SMSE and existing approaches. In the simulation, we assume that the target of 
BER performance is 10–2. Figure 5 shows the throughput performance comparison for 
different modulation modes. It can be seen from the Fig. 5 that the intersection point of 
the throughput curve for adjacent modulation mode using adaptive modulation based 
on FTL-BED is greater than that using adaptive modulation based on ATL-BED. This is 
because adaptive modulation based on ATL-BED can achieve better SMSE performance 
than that based on FTL-BED, and thus achieve better BER performance under the same 
SNR. As a result, throughout performance can also be improved according to (23).

The threshold set of adjustments for modulation mode can be obtained according to 
(25). The SNR is divided into several intervals by the threshold set. By determining which 
interval the estimated SNR is located, based on the maximum throughput criterion (22), 
the corresponding modulation mode can be selected. Figure  6 shows the throughput 
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Fig. 5  Throughput performance comparison under different modulation modes. a Comparison for adaptive 
modulation based on SNR with FTL-BED, b comparison for adaptive modulation based on SNR with ATL-BED, 
c comparison for adaptive modulation based on SMSE with FTL-BED, d comparison for adaptive modulation 
based on SMSE with ATL-BED
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performance comparison for the proposed and existing schemes. It is observed that the 
throughput performance of the proposed adaptive modulation scheme based on SMSE 
is close to that of the adaptive modulation scheme based on SNR. This is because, after 
the fitting process, the estimated SNR based on SMSE approximates the actual SNR. In 
addition, it is also seen that the proposed adaptive modulation scheme based on ATL-
BED achieves better throughput performance than that based on FTL-BED. This is 
because that the tap-length is an important parameter affecting BER performance, the 
ATL-BED can achieve better BER performance than the FTL-BED, and thus obtain bet-
ter throughput performance under the same SNR.

5 � Conclusion
In this paper, an adaptive modulation scheme based on SMSE is proposed for the under-
water acoustic communication system. The effect of underwater channel complexity 
on adaptive modulation is taken into account, the proposed scheme does not need to 
assume that the CSI is known, or well estimated. The adjustment of modulation mode is 
implemented based on the SMSE of BED. To achieve better equalization performance, 
an ATL-BED is adopted. The polynomial fitting is adopted to correct the estimated SNR 
based on the SMSE of BED. Simulation results validate the feasibility of polynomial fit-
ting. Simulation results also demonstrate that the proposed adaptive modulation scheme 
can achieve approximated throughput performance as the scheme based on SNR, the 
throughput performance of AM based on ATL-BED significantly outperforms that 
based on FTL-BED.
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Page 13 of 14Liu et al. J Wireless Com Network         (2021) 2021:70 	

Abbreviations
AM: Adaptive modulation; SMSE: Steady-state mean square error; UAC​: Underwater acoustic communication; CSI: Chan-
nel state information; BED: Blind equalization detector; ATL: Adjustable tap-length; FTL: Fixed tap-length; RTS: Request-to-
send; CTS: Clear-to-send; CMA: Constant modulus algorithm; MMA: Multimodulus algorithm; ASE: Accumulated squared 
error.

Acknowledgements
The authors would like to thank the anonymous referees for their helpful suggestions.

Authors’ contributions
Zhiyong Liu conceived and designed the study. Zhoumei Tan and Fan Bai performed the experiments. Zhiyong Liu and 
Fan Bai wrote the paper. All authors read and approved the manuscript.

Funding
The work was supported in part by National Natural Science Foundation of China under Grant 61871148, and in part by 
the Research and Innovation Foundation of Weihai under Grant 2019KYCXJJYB04.

Availability of data and materials
We decided that the data does not need to be shared since all data have been obtained through the simulation 
approach.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 7 October 2020   Accepted: 22 March 2021

References
	1.	 C.P. Shah, C.C. Tsimenidis, B.S. Sharif, J.A. Neasham, Low complexity iterative receiver design for shallow water acous-

tic channels. EURASIP J. Adv. Signal Process. 2010, 1–13 (2010)
	2.	 M. Stojanovic, Underwater acoustic communications: design considerations on the physical layer. In: Proceedings 

IEEE/IFIP 5th Annual Conference on Wireless on Demand Network System Services. Garmisch-Partenkirchen, Germany, 
pp. 1–10 (2008)

	3.	 B. Li, S. Zhou, M. Stojanovic, L. Freitag, P. Willet, Multicarrier communications over underwater acoustic channels with 
nonuniform Doppler shifts. IEEE J. Ocean. Eng. 33(2), 198–209 (2008)

	4.	 B. Li, J. Huang, S. Zhou, K. Ball, M. Stojanovic, L. Freitag, P. Willett, MIMO-OFDM for high rate underwater acoustic 
communications. IEEE J. Ocean. Eng. 34(4), 634–645 (2009)

	5.	 M. Badiey, Y. Mu, J.A. Simmen, S.E. Forsythe, Signal variability in shallow-water sound channels. IEEE J. Ocean. Eng. 
25(4), 492–500 (2000)

	6.	 Y. Xu, B. Li, N. Zhao et al., Coordinated direct and relay transmission with NOMA and network coding in Nakagami-m 
fading channels. IEEE Trans. Commun. (2020). https://​doi.​org/​10.​1109/​TCOMM.​2020.​30255​55

	7.	 B. Li, J. Yang, H. Yang, et al. (2019) Decode-and-forward cooperative transmission in wireless sensor networks based 
on physical-layer network coding. Wirel. Netw. https://​doi.​org/​10.​1007/​s11276-​019-​02092-6

	8.	 J. Wang, G. Wang, B. Li et al., Massive MIMO two-way relaying systems with SWIPT in IoT networks. IEEE Internet 
Things J. (2020). https://​doi.​org/​10.​1109/​JIOT.​2020.​30324​46

	9.	 A. Radosevic, R. Ahmed, T.M. Duman, J.G. Proakis, M. Stojanovic, Adaptive OFDM modulation for underwater acous-
tic communications: design considerations and experimental results. IEEE J. Ocean. Eng. 39(2), 357–370 (2014)

	10.	 L. Wan, H. Zhou, X. Xu, Y. Huang, S. Zhou, Z. Shi, J.H. Cui, Adaptive modulation and coding for underwater acoustic 
OFDM. IEEE J. Ocean. Eng. 40(2), 327–336 (2015)

	11.	 K. Pelekanakis, L. Cazzanti, G. Zappa, J. Alves, Decision tree-based adaptive modulation for underwater acoustic 
communications. In: Proceedings IEEE 3rd Underwater Communications Networking Conference, pp. 1–5 (2016)

	12.	 K. Pelekanakis, L. Cazzanti, On adaptive modulation for low SNR underwater acoustic communications. In: Proceed-
ings OCEANS MTS/IEEE Charleston, pp. 1–6 (2018)

	13.	 W. Su, J. Lin, K. Chen et al., Reinforcement learning-based adaptive modulation and coding for efficient underwater 
communications. IEEE Access 2019(7), 67539–67550 (2019)

	14.	 Q. Fu, A. Song, Adaptive modulation for underwater acoustic communications based on reinforcement learning. In: 
OCEANS 2018 MTS/IEEE Charleston. IEEE, pp. 1–8 (2018)

	15.	 L. Huang, Q. Zhang, W. Tan et al., Adaptive modulation and coding in underwater acoustic communications: a 
machine learning perspective. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–25 (2020)

	16.	 C. He, L. Jing, R. Xi et al., Time-frequency domain turbo equalization for single-carrier underwater acoustic commu-
nications. IEEE Access 2019(7), 73324–73335 (2019)

	17.	 F. Pancaldi, G.M. Vitetta, R. Kalbasi et al., Single-carrier frequency domain equalization. IEEE Signal Process. Mag. 
25(5), 37–56 (2008)

	18.	 P. Qarabaqi, M. Stojanovic, Statistical characterization and computationally efficient modeling of a class of underwa-
ter acoustic communication channels. IEEE J. Ocean. Eng. 38(4), 701–717 (2013)

	19.	 F.K. Jia, E. Cheng, F. Yuan, The study on time-variant characteristics of under water acoustic channels. In: International 
Conference on Systems and Informatics (ICSAI 2012), pp. 1650–1654

https://doi.org/10.1109/TCOMM.2020.3025555
https://doi.org/10.1007/s11276-019-02092-6
https://doi.org/10.1109/JIOT.2020.3032446


Page 14 of 14Liu et al. J Wireless Com Network         (2021) 2021:70 

	20.	 J. Yang, J.J. Werner, G. Dumont, The multimodulus blind equalization and its generalized algorithms. IEEE J. Sel. Areas 
Commun. 20(6), 997–1015 (2002)

	21.	 J. Mendes Filho, M.D. Miranda, M.T.M. Silva, A regional multimodulus algorithm for blind equalization of QAM signals: 
introduction and steady-state analysis. Signal Process. 92(11), 2643–2656 (2012)

	22.	 J. Yuan, K. Tsai, Analysis of the multimodulus blind equalization algorithm in qam communication systems. IEEE 
Trans. Commun. 53(9), 1427–1431 (2005)

	23.	 J. Labat, O. Macchi, C. Laot, Adaptive decision feedback equalization: Can you skip the training period? IEEE Trans. 
Commun. 46(7), 921–930 (1998)

	24.	 R. Weber, F. Schulz, J. Bohme, Blind adaptive equalization of underwater acoustic channels using second-order 
statistics. In: OCEANS’02 MTS/IEEE, pp. 2444–2452 (2002)

	25.	 Z. Liu, F. Bai, Z. Tan, Variable observation window length blind equalization detector for underwater acoustic com-
munication. EURASIP J. Wirel. Commun. Netw. 2020(1), 1–12 (2020)

	26.	 W. Li, J.C. Preisig, Estimation of rapidly time-varying sparse channels. IEEE J. Ocean. Eng. 32(4), 927–939 (2007)
	27.	 J. Proakis, Digital Communications (McGraw-Hill, New York, 1989).
	28.	 S.A. Dyer, X. He, Least-squares fitting of data by polynomials. IEEE Instrum. Meas. Mag. 4(4), 46–51 (2001)
	29.	 M. López-Benítez, Throughput performance models for adaptive modulation and coding under fading channels. In: 

2016 IEEE Wireless Communications and Networking Conference (Doha, Qatar, 2016), pp. 1–6

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Adaptive modulation based on steady-state mean square error for underwater acoustic communication
	Abstract 
	1 Introduction
	2 System model
	3 Method: the proposed adaptive modulation scheme based on steady-state mean square error
	3.1 Acquisition of steady-state mean square error
	3.2 Fitting between estimated SNR and actual SNR
	3.3 Adaptive modulation based on steady-state mean square error

	4 Simulation results and discussion
	4.1 Effect of tap-length on SMSE
	4.2 Validation of the relationship between SMSE and SNR
	4.3 Comparison of throughput performance

	5 Conclusion
	Acknowledgements
	References


