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1 Introduction
The Fifth Generation (5G) of mobile networks is expected to deliver a wide range of 
location-based services [1]. To pave the way for those services, a myriad of precise posi-
tioning techniques have been introduced in the literature, the majority of which rely on 
the cooperation between the Access Points (APs) serving the Mobile Users (MUs) [2]. 
In particular, to estimate the location, these techniques capitalize on the time measure-
ments carried out between the agents, i.e., MUs and APs, requiring them to have a com-
mon time base [3]. Therefore, for the cooperative approaches to function, the APs need 
to be accurately synchronized among each other as well as with MUs [4, 5].

Considerable effort has been made to design fast, continuous, and precise synchro-
nization algorithms across different networks, from Wireless Sensor Networks (WSNs) 
to wireless communication networks [6]. Generally, state-of-the-art synchronization 
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algorithms adopt two main macroscopic approaches: (a) designing a network-wide syn-
chronization algorithm from scratch [7–10], and (b) employing the existing pairwise 
synchronization protocols in a structural manner, e.g., layer-by-layer pairwise synchro-
nization [11–13].

Network-wide synchronization in WSNs has been addressed in [7, 9, 10] by employ-
ing the Belief Propagation (BP) algorithm. Typically, BP runs on a Factor Graph (FG) 
corresponding to the network and calculates the marginals at each node by iteratively 
exchanging beliefs between neighboring nodes [14]. The algorithm is advantageous in 
the sense that it is fully distributed and estimates the clock offset and skew with high 
accuracy. However, the time required to compute the pairwise conditional probability 
distribution functions (pdfs) needed for FG, and then conducting the iterative message 
passing, can be considered as a potential drawback rendering its practical applicability 
limited.

Pairwise synchronization is mostly conducted by exchanging time-stamps between 
the nodes using the Precision Time Protocol (PTP) [15]. To perform network synchro-
nization in a layer-by-layer manner, PTP is then combined with the Best Master Clock 
Algorithm (BMCA), whose role is to determine the Master Node (MN) in the network. 
While this combination operates sufficiently robust in tree-structured networks with 
medium time-sensitivity (sub-µ s range), BMCA’s poor performance in networks with 
mesh topology on one hand, and uncertainty in time-stamping on the other hand, ren-
der the algorithm futile in highly time-sensitive (sub-hundred ns range) loopy networks.

Despite the attempts in [11, 16] to address the time-stamping uncertainty (or error) by 
the virtue of Kalman filtering, this approach is not optimal in the Bayesian sense since all 
the information available from time-stamps is not utilized. Instead, the Bayesian Recur-
sive Filtering (BRF) utilized in [17] can be employed to capture all the available infor-
mation in time-stamps, thereby optimally rectifying the time-stamping error. We have 
already revealed the outstanding merit of BRF in the mitigation of time-stamping error 
in [18].

Although all aforementioned techniques have made invaluable contribution, none of 
them alone can be expected to meet the global and local time precision aimed by 5G 
for accurate localization [19]. Instead, a combination of these algorithms is more likely 
to deliver a superior performance owing to diverse network typologies (mesh, tree, or 
a combination thereof ) [16]. In particular, to successfully achieve precise network syn-
chronization, it is suggested by [20] that the architecture of a large-scale network should 
consist of common synchronization areas and multiple synchronization domains. 
Therefore, equipping networks with different synchronization algorithms (or a combina-
tion thereof ) appears to be a balanced approach, whereby each domain can, based on its 
topology and capabilities, leverage the most suitable algorithm. In this manner, it is eas-
ier to satisfy the requirement of the relative time error in the synchronization domains 
while keeping the absolute time error low. This is particularly of interest in applications 
where ultra-high time accuracy is required in a specific synchronization domain, e.g., 
positioning services.

In [16], we have introduced and thoroughly described the idea of hybrid synchroniza-
tion, whereby clock offset can be precisely estimated and correspondingly corrected. The 
extension to incorporate the clock skew estimation was proposed in [18]. In this paper, 
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we expand on [16, 18] and design a hybrid synchronization algorithm based on asym-
metric time-stamp exchange to allow for accurate localization [21]. The merit of asym-
metric time-stamp for localization has been revealed in [3, 22, 23]. Furthermore, the fine 
time measurement standard introduced in [24] allows for implementation of such time-
stamp exchange mechanism. Given that, in addition to analysis of clock offset and skew 
estimation, we examine the impact of the proposed hybrid approach on a localization 
algorithm based on the technique presented in [22].

The contribution of this paper can then be briefly summarized as follows:

• We present the principles of BP-based network-wide and BRF-based pairwise syn-
chronization based on asymmetric time-stamp exchange.

• We develop a hybrid statistical synchronization algorithm by combining the two 
above-mentioned Bayesian approaches.

• We analyze the performance of the hybrid approach when estimating the clock offset 
and skew as well as its impact on a localization algorithm.

The rest of this paper is structured as follows: In Sect. 2, the system model is introduced. 
Section  3 deals with the estimation methods for network-wide, pairwise, and hybrid 
synchronization. We present and discuss the simulation results in Sect. 4. Section 5 is 
devoted to the impact of hybrid synchronization on MU localization. Finally, Sect.  6 
concludes this work and points to the future work.

1.1  Notation

The boldface capital A and lower case a letters denote matrices and vectors, respectively. 
a(n) indicates the nth element of vector a . AT represents the transposed of matrix A . IN 
denotes a N dimensional identity matrix. N (x|µ,�) indicates a random vector x distrib-
uted as Gaussian with mean vector µ and covariance matrix �. diag(x1, . . . , xK )

denotes a diagonal matrix with the diagonal elements given by (x1, . . . , xK ). The sym-
bol ∼ stands for “is distributed as,” and the symbol ∝ represents the linear scalar rela-
tionship between two functions.

2  System model
In this section, we firstly present the clock model for each node in the communica-
tion network. Then, we explain the components constructing the clock offset in details. 
Finally, the time-stamp exchange mechanism is described comprehensively.

2.1  Clock model

The clock behavior for each node i is modeled as [25]

where ci(t) shows the local time at each node, t represents the reference time, γi denotes 
the clock skew, and θi is the clock offset. We consider the parameter γi as random and 
varying over time. However, it is common to assume that it remains unchanged in the 
course of one synchronization period [9, 11]. Moreover, θi consists of several compo-
nents, all thoroughly discussed in the following subsection. In light of above-mentioned 

(1)ci(t) = γit + θi,
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points, time synchronization can be deemed equivalent to estimation of γi and θi (or 
transformations thereof ) for each node. Corrections are then applied such that, ideally, 
all the clocks show the same time as the reference time t.

2.2  Clock offset decomposition

We decompose the clock offset θi as shown in Fig.  1, thereby elaborating on its con-
stituent components. The parameter ti/tj is the time it takes for a packet to leave the 
transmitter after being time-stamped (the term “time-stamp” is refered to hardware 
time-stamping hereafter), dij/dji denote the propagation delay, and ri/rj represents the 
time that a packet needs to reach the time-stamping point upon arrival at the receiver. 
Generally,

meaning that the packets sent from node i to node j do not experience the same delay 
as the packets sent from node j to node i. In particular Tij = ti + rj , and Rij = tj + ri are 
random variables due to multiple hardware-related random independent processes and 
can, therefore, be assumed i.i.d. Gaussian random variables distributed as N (µT , σ

2
T ) 

and N (µR, σ
2
R), , respectively [7, 9, 10]. Conversely, dij and dji are usually assumed to be 

deterministic and symmetric ( dij = dji ) [7]. Figure 2 depicts the histogram of the clock 

ti + dij + rj �= tj + dji + ri,

Fig. 1 Decomposition of delay into its constituent components

Fig. 2 Histogram of measured offset and its Gaussian fit for 5000 packet exchange
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offset and its Gaussian fit for 5000 packet exchange between two Commercial Off-The-
Shelf (COTS) street nodes.1 In particular, the variance of offset turns out to be around 
9 ns, what is crucial to know if we are to reduce the error in the clock offset/skew 
estimation.

2.3  Time‑stamp exchange mechanism

We employ the asymmetric time-stamping mechanism introduced in [21] and shown 
in Fig. 3. It functions as follows: node j transmits a sync message wherein the local time 
cj(t

k
1 ) is incorporated. Node i receives the packet and records the local reception time 

ci(t
k
2 ) . After a certain time, the process repeats again with cj(tk3 ) and ci(tk4 ). Subsequently, 

at local time ci(tk5 ) , node i sends back a sync message to node j with ci(tk2 ), ci(t
k
4 ) and 

ci(t
k
5 ) incorporated. Upon reception, node j records the local time cj(tk6 ). Given that, the 

relation between local clocks can be written as:

where (tk1 , t
k
3 )/t

k
6  and tk5/(tk2 , t

k
4 ) are the time points where neighboring nodes j and i send/

receive the sync messages, respectively. Stacking the weighted sum of (2), (3) and (4) for 
K rounds of time-stamp exchange gives

where Wji and Wij are K × 2 matrices with the kth row being

(2)
1

γi
(ci(t

k
2 )− θi) =

1

γj
(cj(t

k
1 )− θj)+ dij + Tk ,0

ij ,

(3)
1

γi
(ci(t

k
4 )− θi) =

1

γj
(cj(t

k
3 )− θj)+ dij + Tk ,1

ij ,

(4)
1

γi
(ci(t

k
5 )− θi) =

1

γj
(cj(t

k
6 )− θj)− dij − Rk

ij ,

(5)Wjiξ i +Wijξ j = zij ,

Fig. 3 Asymmetric time-stamp exchange between node i and node j 

1 The uncertainty in time-stamping is due to the precision of the devices as well as the manner of hardware time-stamp-
ing implementation. For the nodes in this experiment, the precision of time-stamping was 8 ns meaning that the time-
stamps were always an integer of 8 ns.



Page 6 of 22Goodarzi et al. J Wireless Com Network         (2021) 2021:91 

and

, respectively. Moreover, we introduce the vector variables ξ i �
[

1
γi
, θi
γi

]T
, and 

ξ j �
[

1
γj
,
θj
γj

]T
 with 1

γi
, θi

γi
, 1

γj
, and θj

γj
 being Gaussian distributed [3, 10]. Finally, 

zij ∼ N (z|0, σ 2
ij IK ), where σ 2

ij =
σ 2
Tij

2 + σ 2
Rij
. In concrete terms, what (5) implicitly states 

is that for given ξ i and ξ j , the probability that we measure Wji and Wij is equal to 
N (z = Wjiξ i +Wijξ j|0, σ

2
ij IN ). This can be expressed as

3  Methods of clock offset and skew estimation
In this section, first the principles of BP-based network-wide synchronization are 
described. Subsequently, we introduce the BRF-based pairwise synchronization. Lastly, 
we present an approach, where both techniques are employed in a hybrid manner.

3.1  Network‑wide offset and skew estimation

In network-wide synchronization, we aim to synchronize each node with a global MN. 
Alternatively, we can restate the problem as estimation of parameters γi and θi (or vector 
parameter ξ i ), based on the observation matrices Wji and Wij . Mathematically, this is 
translated to the following marginal calculation:

where Ii denotes the set of neighboring nodes of node i and M is total number of the 
nodes in the network. Consequently, ξ i can be estimated as

Unfortunately, the computation cost and complexity of the marginal pdf in (7) are 
extremely high. Instead, as a compromise, one can resort to approximating the integrand 
of (7). This is carried out in the sequel with the aid of variational methods.

3.1.1  Variational methods

The basic idea underpinning variational methods is to approximate an intractable com-
plex distribution p(x) by a straightforward tractable distribution q(x) . To this end, one 
can minimize the discrepancy measure Kullback–Leibler (KL) divergence between p(x) 
and q(x) , given by [14]

[

1

2

(

ci(t
k
2 )+ ci(t

k
4 )

)

+ ci(t
k
3 ),−2

]

,

−

[

1

2

(

ci(t
k
3 )+ ci(t

k
4 )

)

+ cj(t
k
4 ),−2

]

,

(6)p(Wji,Wij|ξ i, ξ j) ∼ N (z = Wjiξ i +Wijξ j|0, σ
2
ij IN ).

(7)

p(ξ i|{Wji,Wij}i=1:M,j∈Ii)

=

∫

· · ·

∫

p(ξ1, . . . , ξM |{Wji,Wij}i=1:M,j∈Ii)

dξ1 · · · dξ i−1dξ i+1 · · · dξM ,

(8)ξ̂ i = argmax
ξ i

p(ξ i|{Wji,Wij}i=1:M,j∈Ii).
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The minimization is then achieved by drawing on the Bethe method, which imposes the 
following structure on q(x) [26]:

where xj and xi are neighboring nodes. The structure in (10) can be appropriately repre-
sented by FG. Furthermore, to efficiently infer the marginal beliefs, BP is typically run on 
the FG [14]. Therefore, in the sequel, we briefly describe FG and BP.

3.1.2  Factor graph

An FG is a bipartite graph that depicts a pdf with the factorized form, e.g., that of (10). 
In particular, an FG comprises several nodes known as variable nodes, and a number of 
factor nodes, each being a function of its neighboring variable nodes (Fig. 4).

We construct the graphical model in Fig. 4, where a number of APs are backhauled 
by a mesh network, each represented by ξ i . The main objective is then to compute the 
marginal illustrated in (7). Adopting the approximation outlined in Sect. 3.1.1, the con-
ditional probability under the integral of (7) turns into

where p(ξ i) indicates the Gaussian distributed prior knowledge on ξ i and 
p(Wji,Wij|ξ i, ξ j) is the pairwise conditional probability computed from (6). In the 

(9)DKL(p�q) =

∫ +∞

−∞

p(x) log

(

p(x)

q(x)

)

dx.

(10)q(x) ∝
∏

i

q(xi)
∏

i,j

q(xi, xj),

(11)
p(ξ1, . . . , ξM |{Wji,Wij}i=1:M,j∈ ne(i)) ∝

∏

p(ξ i)
∏

p(Wij ,Wji|ξ i, ξ j),

Fig. 4 The FG corresponding to an exemplifying network. Note that, the FG is drawn only for the backhaul 
network to avoid unnecessary complexity. To draw the FG of the whole network, one can simply consider APs 
as variable nodes connected to their corresponding backhaul nodes via factor nodes
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sequel, we briefly describe the principles of BP as an efficient algorithm to obtain the 
estimation in (8).

3.1.3  Belief propagation

BP is a technique which relies primarily on the exchange of beliefs between neighboring 
nodes to infer the marginals. This inference is proved to be exact when the graphs are 
singly connected and approximate if they contain loops [14]. While generally there is no 
guarantee that the algorithm converges in the loopy graphs, [9, 10] have indicated that, 
if there exist at least one MN in the network, the convergence of BP is certain. Figure 5 
depicts the principles of the message passing in BP for the nodes ξ i and ξ j . For the sake 
of simplicity, we denote the factor p(Wji,Wij|ξ i, ξ j) with pij . The message from a factor 
vertex pij to a variable vertex ξ i in iteration l is then given by [14]

where �(l)ξ j→pij
(ξ j) denotes the message from a variable node ξ j to the variable vertex pij 

and is given by

Finally,

where b(l)(ξ i) denotes the marginal belief of variable node ξ i in the lth iteration. It is 
expected that the result of the integral in (12) is Gaussian distributed as its arguments 
are also Gaussian distributed. We note that, in practice, both (12) and (13) are locally 
computed at each node and only �(l)pij→ξ i

(ξ i) is transmitted from node j to node i as 

shown in Fig. 6.
Let �(l)j→i(ξ i) ∼ N (ξ i|µ

(l)
j→i,Q

(l)
j→i) denote the message sent from j to i. Considering (12) 

and (13), the covariance matrix Q(l)
j→i can be calculated by [10, 18, 27]

where

(12)
�
(l)
pij→ξ i

(ξ i)

=

∫

p(Wji,Wij|ξ i, ξ j)�
(l)
ξ j→pij

(ξ j)dξ j,

(13)�
(l)
ξ j→pij

(ξ j) = p(ξ j)
∏

k∈{I(j)\i}

�
(l−1)
pkj→ξ j

(ξ j).

(14)b(l)(ξ i) ∝ p(ξ i)
∏

k∈Ii

�
(l)
pik→ξ i

(ξ i),

(15)Q
(l)
j→i =

[

WT
ji

(

�
(l−1)
j→i

)−1
Wji

]−1

,

Fig. 5 Message passing principles in BP
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and Qj is the covariance matrix of p(ξ j) . Furthermore,

where µj represents the mean vector of p(ξ j). It should be noted that Qj and µj remain 
unchanged during the message updating process.

The BP algorithm initializes the message from node j to node i as 
�
(0)
j→i(ξ i) ∼ N (ξ i|0,+∞I2) . Node j computes its outgoing message to node i according to 

(15) and (17) in iteration l with its available Q(l−1)
k→j  and µ(l−1)

k→j  ( k ∈ ne(j) \ i ). The belief of 
node i is then computed as

where

and

Finally, the clock skew and offset estimation can be computed by

(16)

�
(l−1)
j→i

= σ 2
ij IN +Wij



Q−1
j +

�

k∈ne(j)\i

�

Q
(l−1)
k→j

�−1





−1

WT
ij ,

(17)

µ
(l)
j→i = −Q

(l)
j→iW

T
ji �

(l−1)
j→i Wij

×



Q−1
j +

�

k∈ne(j)\i

�

Q
(l−1)
k→j

�−1





−1

×



Q−1
j µj +

�

k∈ne(j)\i

�

Q
(l−1)
k→j

�−1
µ
(l−1)
k→j



,

(18)b(l)(ξ i) ∼ N (ξ i|η
(l)
i ,Ŵ

(l)
i ),

(19)Ŵ
(l)
i =



Q−1
i +

�

j∈ne(i)

�

Q
(l−1)
j→i

�−1





−1

,

(20)η
(l)
i = Ŵ

(l)
i



Q−1
i µi +

�

j∈ne(i)

�

Q
(l−1)
j→i

�−1
µ
(l−1)
j→i



.

ξi ξjp(Wij, Wji|ξi, ξj) p(Wij, Wji|ξi, ξj)

physical node i

physical node j

λ j→i

λ i→j

Fig. 6 �i→j = �pij→ξ j
 and �j→i = �pij→ξ i

 are the BP messages exchanged between physical nodes in practice
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3.2  Pairwise offset and skew estimation

In pairwise synchronization, one node is assumed to be the MN. In particular, in Fig. 3, 
instead of a global reference c(t) = t, we take node j as MN. We can then introduce the 
transformations

For the sake of simplicity, as done in [28], we assume d̃ij = dij , R̃k
ij = Rk

ij , and T̃ k
ij = Tk

ij . 
This is valid owing to γj ≈ 1 and the value of dij + Tk

ij  and dij − Rk
ij being low. Finally, (2), 

(3) and (4) turn into

By the end of the kth round of time-stamp exchange, each node is expected to have col-
lected the time-stamps Cij =

[

c1ij , . . . , c
k
ij

]T
, where

(21)γ̂
(l)
i =

1

η
(l)
i (1)

, θ̂
(l)
i =

η
(l)
i (2)

η
(l)
i (1)

.

(22)
1

γ̃i
=

γj

γi
,

(23)θ̃i = θi − γ̃iθj ,

(24)d̃ij + T̃ k
ij = γj(dij + Tk

ij ),

(25)d̃ij − R̃k
ij = γj(dij − Rk

ij).

(26)
1

γ̃i
(ci(t

k
2 )− θ̃i) = cj(t

k
1 )+ dij + Tk ,0

ij ,

(27)
1

γ̃i
(ci(t

k
4 )− θ̃i) = cj(t

k
3 )+ dij + Tk ,1

ij ,

(28)
1

γ̃i
(ci(t

k
5 )− θ̃i) = cj(t

k
6 )− dij − Rk

ij .

ckij =
[

cj(t
k
1 ), ci(t

k
2 ), cj(t

k
3 ), ci(t

k
4 ), ci(t

k
5 ), cj(t

k
6 )

]

.

Fig. 7 Bayesian representation of offset and skew estimation
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Let ξ̃
k

i  be the state of the vector variable ξ̃ i �
[

1
γ̃i
, θ̃i
γ̃i

]T
 after kth round of time-stamp 

exchange (visualized in Fig. 7). Similar to (7) the pdf corresponding to the kth state can 
be written as

where �k−1 =
[

ξ̃
0

i , . . . , ξ̃
k−1

i

]

 . Following the steps explained in “Appendix”, (29) can be 

simplified to

The term p(ξ̃
k

i |c
1:k−1
ij ) is known as prediction step, while the term p(ckij|ξ̃

k

i ) is referred 
to as measurement update or correction step [29]. Considering the clock properties dis-
cussed in Sect. 2.1, it is typical in wireless networks to assume that ξ̃

k

i  is Gaussian distrib-
uted [3, 9, 28]. Given this assumption, in the sequel, we show that the relation between 
the states is linear, implying that the marginal in (30) is also Gaussian distributed.

3.2.1  Prediction

Assuming constant skew in one synchronization period ( = K rounds of time-stamp 
exchange), a reasonable prediction for ξ̃

k

i  is given by [11]

where A =

[

1 0

cj(t
k
1 )− cj(t

k−1
1 ) 1

]

, and nk−1
i  denotes the Gaussian noise vector. Given 

(31), the prediction term can be written as

where µp = Aµk−1
i  and �p = A�k−1

i AT +Qn where Qn denotes the noise covariance 
matrix.

3.2.2  Correction

To obtain the correction term in (30), we conduct the following mathematical manipula-
tions. Subtracting (26) from (27) leads to

while weighted sum of (26)–(28) gives

(29)p(ξ̃
k

i |Cij) =

∫

p(ξ̃
0

i , . . . , ξ̃
k

i |Cij) d�
k−1,

(30)p(ξ̃
k

i |Cij) ∝ p(ξ̃
k

i |c
1:k−1
ij )p(ckij|ξ̃

k

i ) ∼ N (µk
i ,Q

k
i ).

(31)ξ̃
k

i = Aξ̃
k−1

i + nk−1
i ,

(32)p(ξ̃
k

i |c
1:k−1
ij ) ∼ N (ξ̃

k

i |µp,�p),

(33)

1

γ̃i
(ci(t

k
4 )− ci(t

k
2 ))

= cj(t
k
3 )− cj(t

k
1 )+ Tk ,1

ij − Tk ,0
ij ,

(34)

1

γ̃i
(
ci(t

k
2 )+ ci(t

k
4 )

2
+ ci(t

k
5 )− 2θ̃i)

=
cj(t

k
1 )+ cj(t

k
3 )

2
+ cj(t

k
6 )+

Tk ,0
ij + Tk ,1

ij

2
− Rk

ij ,
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where, given the assumptions in Sect. 2.2, 
Tk ,0
ij +Tk ,1

ij

2 − Rk
ij and Tk

ij − Tk−1
ij  are zero mean 

and have the variances 
σ 2
Tij

2 + σ 2
Rij

 and 2σ 2
Tij
, , respectively. This is straightforward to 

observe since they are linear subtraction of independent random processes. Alterna-
tively, we can write (33) and (34) in matrix form as

where zij ∼ N (z|0,Rij) with

and rij =
[

cj(t
k
3 )− cj(t

k
1 ),

cj(t
k
1 )+cj(t

k
3 )

2 + cj(t
k
6 )

]T

.

Consequently,

where µc = B−1
ij rij and �c = B−1

ij RijB
−T
ij .

3.2.3  Estimation

Considering (32) and (36), the estimated distribution in (30) is given by

where

The parameters in (32), (36), and (37) are calculated recursively and, in each iteration k,  
the estimation of the clock skew and offset can be obtained by

(35)Bijξ i = rij + zij ,

Rij = diag

(

[2σ 2
Tij
,
σ 2
Tij

2
+ σ 2

Rij
]

)

,

Bij =

[

ci(t
k
4 )− ci(t

k
2 ) 0

ci(t
k
2 )+ci(t

k
4 )

2 + ci(t
k
5 ) − 2

]

,

(36)p(ckij|ξ
k
i ) ∼ N (ξ̃

k

i |µc,�c),

(37)p(ξ̃
k

i |Cij) ∼ N (ξ̃
k

i |µe,�e),

(38)µe =
[

�p +�c

]−1(
�cµp + �pµc

)

,

(39)�e =
[

�−1
p + �−1

c

]−1
.

Fig. 8 A summary of the BRF-based pairwise synchronization and joint sync&loc. The satellite information is 
used to initialize the joint sync&loc algorithm described in Sect. 5
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Figure 8 summarizes this recursive process.

3.3  Hybrid synchronization

Given Sects. 3.1 and 3.2, to ensure a low end-to-end synchronization error at the global 
level, BP can be run over the backhaul network. At the same time, we can employ the 
BRF algorithm to perform synchronization between the backhaul nodes and the APs at 
the edge of the network where fast and frequent synchronization is required to keep the 
relative time error small. This is, in particular, crucial to a number of applications such as 
localization as will be discussed in Sect. 5.

The steps of the hybrid synchronization are described in algorithm  1. Firstly, step  1 
determines the network sections suitable for BP and BRF (they are labeled as BP-nodes 
and BRF-nodes, respectively). Then, step  2 initiates the time-stamp exchange mecha-
nism (Fig. 3) and, correspondingly, the BRF algorithm at BRF-nodes. Step 3 triggers the 
time-stamp exchange among the BP-nodes, thereby collecting the required time-stamps 
to construct the matrices Wji and Wij . Step  4 is where the BP iterations commence 
and continue until it converges, or the maximum number of iterations L is achieved. In 
step 5, the outgoing messages are computed by each BP-node using (15) and (17). They 
are then sent to their corresponding nodes. Step 6 updates each node’s belief. Lastly, in 
steps 7-10, we check for the convergence by comparing the difference between clock off-
set and skew estimation in iterations (l) and (l − 1) with a predefined small value ǫ . If the 
algorithm is converged, the clock offset and skew estimation are calculated by means of 
(18) and (21), respectively. Note that step 2 and steps 3-11 can run simultaneously.

3.3.1  Convergence analysis

Convergence of hybrid synchronization algorithm depends on the behavior of BRF, and 
BP. In particular, at the edge of the network where we aim to locally synchronize the APs 
using BRF the convergence is of no meaning. Nevertheless, as a measure to evaluate the 
estimator’s performance, given the set of linear equations presented in Sect. 3.2, we can 
refer to BRF with Gaussian parameters as minimum variance unbiased estimator [30]. 

(40)γ̃ k
i =

1

µe(1)
and θ̃ki =

µe(2)

µe(1)
.
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Given that, convergence of Algorithm 1 depends solely on the convergence of BP which 
is of crucial importance for global synchronization.

While it is known that BP converges to the exact marginal on loop-free FGs, its con-
vergence on loopy FGs is highly conditional. In the context of clock synchronization, 
detailed convergence analysis of loopy BP has been conducted in [7, 9, 10, 31]. For the set 
of message passing formulas presented in this paper, we can leverage on [10, Lemma 1] 
and [10, Lemma 2] to prove that the mean vector η(l)i  in (20) and the covariance matrix 
Ŵ
(l)
i  in (19) of the belief b(l)(ξ i) in (18) converge to constant vector/matrix regardless of 

the network topology [10, Theorem 1], [10, Theorem 2]. The crucial point of this proof is 
that, regardless of the network topology, the belief parameters (mean vector and covari-
ance matrix) converge as long as there is an informative prior, i.e., there exist at least one 
MN in the network.

4  Simulation results and discussion
In this section, we evaluate the performance of the hybrid synchronization algorithm 
proposed in this work. Detailed analysis of its impact on the achievable performance of 
the joint sync&loc algorithm at the edge of the network is left to the next section.

4.1  Network synchronization

Figure 4 exemplifies a wireless network where the algorithm proposed in this work can 
be applied. It comprises a number of APs, all backhauled by a wireless mesh network and 
delivering services to MUs. The following scenarios are simulated: a) synchronizing the 
whole network using only BP (the APs in Fig. 4 are assumed to be variable nodes con-
nected to the mesh network via factor nodes), b) performing hybrid synchronization as 
described in Algorithm 1, where we synchronize the mesh backhaul network by means 
of BP and the APs at the edge of the network using BRF, and c) carrying out synchro-
nization across the rounds of time-stamp exchange K. Scenario (a) is considered as the 

Table 1 Simulation parameters

Parameters Values in synchronization 
(Sect. 4)

Values in joint sync&loc 
(Sect. 5)

Number of independent simulations 10000 1000

Master node ξ1 ξ1

Initial random delays interval [− 1000, 1000] ns [− 1000, 1000] ns

Number of time-stamp exchange (K) 10 −
Standard deviation of T kij  and Rkij 9 ns [2, 4, 6, 8, 10] ns

Random propagation delay between each 
pair of nodes

[200, 300] ns [200, 300] ns

Initial pdf of the offset/skew for each node N (0,+∞)/N (1, 10−4) −
Initial pdf of the offset/skew of MN N (0, 0)/N (1, 0) −
STD of acceleration noise ( σax , σay) − 2.5 m/s2

Period of joint sync&loc ( �) − 200 ms

Process noise covariance matrix ( Qn) diag(10−12, 10−2) diag(10−12, 10−2, (0.5σax�)2,

(0.5σay�)2, σ 2
ax
, σ 2

ay
)

Constant velocity − 2 (m/s)

AN density − 50 m



Page 15 of 22Goodarzi et al. J Wireless Com Network         (2021) 2021:91  

baseline for comparison with the hybrid approach. Furthermore, we compute the Root 
Mean Square Error (RMSE) of clock offset and skew estimation as a measure to evaluate 
the performance. For the sake of simplicity and without loss of generality, in (a), (b), and 
(c) we consider only the nodes ξ8 and ξ9 and their corresponding APs. Further simula-
tion parameters can be found in Table 1.

Figure 9 shows the RMSEs of the clock offset and skew estimation versus the number 
of message passing iterations for scenario (a). The RMSEs of offset and skew are indi-
cated in nanosecond (ns) and parts per million (ppm), respectively. As can be observed, 
BP converges after four iterations and achieves an offset and skew RMSE below 7 ns 
and 0.2 ppm, respectively. As shown in [7, 14], when there exist at least one MN in the 
network, the convergence is guaranteed. However, the value to which BP converges in 
loopy networks is deemed to be approximate. Note that, although this simulation setup 
reveals the potential performance of BP, the nodes, and particularly the APs, must wait 
at least four message passing iterations in addition to K rounds of time-stamp exchange 
(required for obtaining the conditional probabilities) to be fully synchronized. This is 
particularly unfavorable in certain synchronization-based services such as localization, 
where continuous time alignment is essential for accurate estimation of the MUs’ posi-
tions. Therefore, it is necessary that the APs synchronize themselves to the backhaul net-
work more frequently to be able to deliver those services at an increased performance as 
required in 5G networks.

Figure 10 depicts the RMSEs of the clock offset and skew estimation versus the num-
ber of message passing and BRF iterations for scenario (b). We can observe a slight dete-
rioration in performance (RMSE increases by 2–3 ns for the offset and 0.5–0.6 ppm for 
the skew) compared to scenario (a). In fact, this is the cost of economizing on the num-
ber of BP iterations as well as rounds of time-stamp exchange. To clarify, BP commences 

Fig. 9 BP applied on the whole network

Fig. 10 BP and BRF applied to the network in a hybrid manner
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only when the nodes have already conducted K rounds of time-stamp exchange (to con-
struct Wij and Wji ). Even then, it takes four iterations, or n if there are n nodes between 
an AP and the MN, to estimate the clock parameters and correspondingly perform 
synchronization. Conversely, BRF is faster, as it is directly applied after each round of 
time-stamp exchange and runs independently (does not need any information from the 
other network sections as BP does). Therefore, it can conduct more iterations, thereby 
continuously fulfilling the requirement of very low relative time error on a local level. 
Given the above-mentioned properties for BP and BRF, the hybrid approach sacrifices 
a fraction of global accuracy to rapidly achieve synchronization at a local level, which is 
crucial to a number of applications such as MU localization.

Figure  11 presents the RMSEs of the clock offset and skew estimation versus the 
rounds of time-stamp exchange K. As can be observed, the RMSEs of both offset and 
skew estimation decrease as K grows, indicating that the higher number of time-stamp 
exchanges leads to a more accurate estimation. The gradient is, however, slightly smaller 
for the APs owing to the fact that their RMSEs comprises two components, i.e., the syn-
chronization error of the backhaul mesh network and the error arising when synchro-
nizing APs with their corresponding backhaul nodes. Although the former decreases as 
K grows, the latter remains constant resulting in a slower decline of RMSEs of clock off-
set and skew estimation at the APs.

We note that the network in Fig. 9 is only a random example picked to lucidly convey 
the fundamental concepts of hybrid synchronization introduced in this work. The intui-
tions obtained from above simulations are still valid even if we replace the network by 
any other network with arbitrary size. Nevertheless, while the size of the network, in 
particular the backhaul network, does not play a role when locally synchronizing adja-
cent APs, it can prolong the time of convergence for BP depending on the number of 
nodes between node i and the MN.

5  Impact of hybrid synchronization on localization
To evaluate the impact of hybrid synchronization on the localization accuracy, we draw 
on the idea of joint synchronization and localization (sync&loc) introduced in [22]. In 
particular, in this section we focus on the edge of the communication network, as shown 
in Fig. 12, where the APs, on one hand, synchronize themselves with the backhaul nodes, 
i.e., the serving Base Stations (BSs). On the other hand, they perform joint sync&loc by 
exchanging time-stamps with MUs to which they have Line-of-Sight (LoS) connection 
(Fig. 12). Each MU i is assumed to exchange time-stamps with two APs, i.e., j and l.2 In 
the sequel, we briefly describe the principles of joint sync&loc.

5.1  Joint MU synchronization and localization

The principles of Bayesian joint sync&loc are akin to those described in (30), (31), and 
(35). To incorporate the location estimation into the algorithm, we need to redefine ξ̃ i as

ξ̃ i �
[

1
γ̃i

θ̃i
γ̃i

xi yi vxi vyi

]T
,

2 It is worth mentioning that in [22] each MU exchanges time-stamps with only one AP and the second AP passively 
listens to their exchange, which might not be implementable in practice. Therefore, in this work we have modified the 
algorithm as explained above.
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where xi/vxi and yi/vyi denote the position/velocity of the MU i on the x and y axes, 
respectively. In particular, location-related parameters appear when expanding the prop-
agation delay dij (or dji ) as

where xj and yj represent the known position of the jth AP on the x and y axes, respec-
tively. Furthermore, each AP is assumed to be equipped with an N-element Uniform 
Linear Array (ULA) antenna and is able to perform Angle of Arrival (AoA) estimation in 
each round of time-stamp exchange. This estimation is given by

where ϕij denotes the true AoA and nϕ ∼ N (0, σ 2
ϕ ) is the zero mean Gaussian noise 

stemming from the AoA estimation algorithm. For the sake of simplicity, in our simula-
tions we rely on the Cramer–Rao Bound (CRB) of AoA estimation, derived in [32], to 
calculate σϕ while ϕij is computed knowing the exact trajectory of MU i and the location 
of AP j. Moreover, the nonlinearity in (41) and (42) is dealt with by resorting to Taylor 
expansion. The details of the approximation can be found in (43)–(46), where vc repre-
sents the speed of light and ( xki , y

k
i  ) denotes the position of MU i predicted by the pre-

diction step in the kth round of joint sync&loc. We note that similar set of equations, i.e., 
(41)–(45), and (46), can be written for the second AP serving MU i,  i.e., AP l.

Given the new prediction and measurement equations, it is clear that A, Qn, in (31) 
and Bij , rij , Rij in (35) require adjustment to account for the location parameters added 
to ξ̃ i . The former can readily be updated using motion equations [22, 33], while the latter 
is adapted with the aid of time-stamp exchange and AoA measurements. The adjusted 
matrices and vectors are given in (47)–(49), where � represents the time between two 
consecutive rounds of joint sync&loc and ci(t)j/ci(t)l denotes the time-stamp of MU i 
when exchanged with AP j/l (this is to distinguish the time-stamps sent by MU i to its 
two serving APs).

5.2  Performance analysis

We perform our analysis for the pedestrian scenario shown in Fig. 12. In particular, in 
this scenario, a MU (the pedestrian) moves with a constant velocity of 2 m/s ( ≈ 7 km/h) 
and takes the turns randomly until it exits the map. During its journey, we assume that 
the MU exchanges time-stamps with two APs to which it has LoS connection. Each AP 
performs AoA estimation as well. Both time-stamps and the AoA estimations are then 
combined by means of the joint sync&loc algorithm, described in Sect. 5 and depicted 
in Fig. 8, to estimate the vector variable ξ̃ i. The simulation is conducted for two cases: (1) 
the APs synchronize themselves with the backhaul network by means of BP, correspond-
ing to scenario (a) in Sect. 4.1, and (2) using the hybrid approach proposed in this work, 
corresponding to scenario (b) in Sect. 4.1.

(41)dij =

√

(xi − xj)2 + (yi − yj)2,

(42)arctan
yi − yj

xi − xj
= ϕij + nϕ ,
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Figure  13 depicts the RMSEs of the clock offset and position estimation of the MU 
versus the uncertainty in time-stamping. As can be noticed, both RMSEs increase with 
growth of σT . Although generally the RMSEs for (b) are larger, the difference in the rate 
of growth appears to be small, i.e., 0.05 m/ns for the RMSE of position and 0.3 for that of 
clock offset. This is a negligible cost at which we reduce the complexity of the algorithm 
by one BP iteration and K rounds of time-stamp exchange. Furthermore, the APs at the 
edge are able to perform localization immediately without waiting for the BP iterations. 
Consequently, as shown in Fig. 13, with only 3 more iterations of BRF, the gap between 
RMSEs can be halved (dotted curves lie in the middle of the solid ones).

(43)
dij

vc
≈ akj,0 + akj,x(xi − xki )+ akj,y(yi − yki ),

(44)
arctan(

yi − yj

xi − xj
) ≈ bkj,0 + bkj,x(xi − xki )

+ bkj,y(yi − yki ),

(45)

akj,0 =
1

vc

(

√

(xki − xj)2 + (yki − yj)2
)

, akj,x

=
xki − xj

v2c a
k
j,0

, akj,y =
yki − yj

v2c a
k
j,0

,

(46)

bkj,0 = arctan(
yki − yj

xki − xj
), bkj,x

= −
yki − yj

v2c (a
k
j,0)

2
, bkj,y =

xki − xj

v2c (a
k
j,0)

2
.

(47)

Bi,jl =



















B11 0
B21 − 2

02 02

B31 0 akj,x − akl,x akj,y − akl,y 0 0

02
bkj,x bkj,y
bkl,x bkl,y

02

02 − 1
�
I2 I2



















,

B11 =
1

2

�

ci(t
k
4 )

j − ci(t
k
2 )

j + ci(t
k
4 )

l − ci(t
k
2 )

l
�

B21 =
1

4

�

ci(t
k
2 )

j + ci(t
k
4 )

j + 2ci(t
k
5 )

j

+ci(t
k
2 )

l + ci(t
k
4 )

l + 2cl(t
k
5 )

l
�

B31 = ci(t
k
5 )

j − ci(t
k
5 )

l
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(48)

ri,jl =

[

r1, r2, r3, r4, r5,−
xk−1
i

�
,−

yk−1
i

�

]T

.

r1 =
1

2

(

cj(t
k
3 )− cj(t

k
1 )+ cl(t

k
3 )− cl(t

k
1 )

)

r2 =
1

4

(

cj(t
k
1 )+ cj(t

k
3 )+ 2cj(t

k
6 )

r3 = cj(t
k
6 )− akj,0 + akj,xx

k
i + akj,yy

k
i

+cl(t
k
1 )+ cl(t

k
3 )+ 2cl(t

k
6 )

)

−
(

cl(t
k
6 )− akl,0 + akl,xx

k
l + akl,yy

k
i

)

r4 = ϕk
j − bkj,0 + bkj,xx

k
i + bkj,yy

k
i

r5 = ϕk
l − bkl,0 + bkl,xx

k
i + bkl,yy

k
i

(49)

Ri,jl = diag

([

1

2

(

σ 2
Tij

+ σ 2
Til

)

,
1

4
(

σ 2
Tij

+ σ 2
Til

2
+ σ 2

Rij
+ σ 2

Ril

)

,

σ 2
Rij

+ σ 2
Ril
, σ 2

ϕj
, σ 2

ϕl
, (
σ k−1
xi

�
)2, (

σ k−1
yi

�
)2

])

.

Fig. 11 Impact of number of time-stamp exchanges K 

Fig. 12 An example where MU joint sync&loc can be carried out. In each position, e.g., P1, P2, or P3, the MU is 
exchanging time-stamps with at least two APs based on the protocol described in Sect. 2.3
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6  Conclusions and future work
We presented two Bayesian approaches toward clock offset and skew estimation in com-
munication networks. In particular, Belief Propagation (BP) was employed to perform 
high-precision network-wide synchronization, albeit at the cost of a high number of 
time-stamp exchanges and message passing iterations. Additionally, Bayesian Recursive 
Filtering (BRF) was leveraged to carry out pairwise synchronization, delivering a superb 
performance at the edge of the network. Based on these two algorithms, a hybrid Bayes-
ian approach was proposed to not only fulfill a low relative time error at a local level but 
also to maintain a high synchronization accuracy at a global level. Lastly, we analyzed 
the impact of the proposed hybrid approach on a joint synchronization and localiza-
tion (sync&loc) algorithm. Simulation results show that the proposed hybrid approach 
achieves faster and more frequent synchronization at the cost of only a slight deterio-
ration in performance, i.e., around 3 ns, 0.5 ppm, and 0.1 m in the RMSEs of the clock 
offset, clock skew, and position, respectively.

Given the promising results, our future work targets the implementation of the hybrid 
synchronization algorithm presented in this work using Commercial-Off-The-Shelf 
(COTS) millimeter wave hardware. This would then allow the implementation of the 
joint synchronization and localization at the edge of the network as well.

Appendix
Employing Bayes rule:

Assuming the independent measurements and Markov property [29], the integrands in 
(50) can be rewritten as

(50)p(ξ̃
k

i |Cij) ∝

∫

p(Cij|ξ̃
0

i , . . . , ξ̃
k

i )p(ξ̃
0

i , . . . , ξ̃
k

i ) d�
k−1.

(51)
p(Cij|ξ̃

0

i , . . . , ξ̃
k

i ) = p(ckij|ξ̃
k

i ) · · · p(c
1
ij|ξ̃

1

i ),

p(ξ̃
0

i , . . . , ξ̃
k

i ) = p(ξ̃
k

i |ξ̃
k−1

i ) · · · p(ξ̃
1

i |ξ̃
0

i )p(ξ̃
0

i ),

Fig. 13 Impact of hybrid synchronization on MU joint sync&loc. (a)/(b) denotes the algorithm used for 
network synchronization (Sect. 4.1). The numbers in the legend denote the number of iterations each 
algorithm runs
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where p(ξ̃
0

i ) denotes the prior knowledge on ξ̃ i. Plugging (51) into (50) leads to (30) 
where
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