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1  Introduction
With the rapid development of Internet of things, the integration of the storage and 
processing capabilities of plenty of Internet of things (IoT) devices should be inevi-
table for providing real-time and low-latency services [1]. In recent years, massive 
data computing and high-quality customer experience services such as unmanned 
driving, automatic navigation, ultra high definition video, virtual reality, augmented 
reality, online games have gradually been emerged. Due to long communication 
delay and high operation cost, remote computing task loading mode based on cloud 
computing technology will face severe challenges. Meanwhile, with the impres-
sive growth of mobile terminals, it is urgent to solve the contradiction among the 
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limited computing power, long-term continuous low latency and high quality of ser-
vice requirements [2]. As a technology usually integrated with IoT, MEC can sup-
ply services and cloud computing functions needed by wireless users nearby and has 
the potential to provide real-time, low-latency services to the underlying network 
[3]. Compared with the traditional cloud architecture, the number of data centers 
with mobile edge computing is relatively small, and seems to be more suitable for 
the delay, responsiveness and privacy requirements of those advanced services. At 
present, it is a trend to promote the development of MEC technology through the 
integration of technology of mobile computing and wireless communication [4–6]. 
In order to further reduce the response delay of user requests and the energy con-
sumption of mobile terminal and network, it is necessary to exploit more feasible 
ways to improve the efficiency of resource utilization.

In order to improve the urban traffic conditions, the Internet of Vehicle (IoV) 
as a new paradigm is introduced to enhance the information interaction between 
vehicles and people [7]. In the IoV environment, the vehicle is connected to devices 
such as smart cameras, sensors and actuators. By the transmitters and receivers in 
above signal collecting system, vehicles can connect to remote infrastructure and 
other vehicles [8]. However, with the rapid increase in road traffic, the gap between 
the requirements of communication services and the limited vehicle capacity has 
become a serious problem. The on-board network is facing the challenge of provid-
ing ubiquitous connection and high-quality service for many vehicles. In order to 
solve those problems, MEC has been explored as a promising technology in vehicu-
lar networks by using computing resources at the edge of vehicular wireless access 
networks [9, 10]. As a typical application of IoT technology in the field of the intel-
ligent transportation system, IoV can realize intelligent traffic management and 
introduce more mature conventional applications, which include path planning, 
navigation, autonomous driving, intelligent-assisted driving and augmented real-
ity for vehicles, online interactive games and other rich media applications for pas-
sengers [11, 12]. However, focusing on the various computing tasks with different 
granularity and quality of service (QoS) requirements, it is not enough to rely on the 
lightweight edge server placed on the roadside unit. It is a great challenge to ensure 
the normal and efficient operation of those highly complex services, especially to 
provide stable and reliable connections and high-quality network services for a large 
number of vehicles [13, 14].

MEC can be applied as the core access points for task transmission and processing 
of the edge computing resources in IoV [15]. Due to the delay caused by the distance 
between the edge IoT devices and the data center, the function related to the average 
task latency and resource cost should not be ignored in the centralized cloud model 
[16, 17]. As the number of edge devices grows exponentially, high latency can be a 
huge challenge for many applications that involve end-to-end communication.

The remainder of the paper is organized as follows. Section 2 reviews the related 
works. Section 3 presents problem formulation. The proposed task-offloading deci-
sion mechanism is presented in Sect. 4. The simulations and analysis are provided in 
Sect. 5, and the conclusions are presented in Sect. 6.
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2 � Related work
Due to the limited computing power, storage and energy of mobile devices, task sched-
uling is a classic method to transfer tasks to external platforms [18, 19]. It can improve 
computing efficiency, reduce task completion time and effectively make use of the 
resources of other devices. Since the edge computing network has the characteristics of 
ultra-dense deployment and simultaneous access of a large number of users, the selec-
tion of user computing task mode is extremely important and directly determines the 
computing time and cost of the system.

Wang et al. [20] designed a multilayer model integrated with user layer, access layer 
and cloud to jointly process user data, which defined the allocated computing and trans-
mission resources for each device and constructed a convex optimization problem to 
obtain the optimal resource allocation strategy. Zhang et al. [21] exploited the virtual-
ization technology to allocate resources online in dense cloud wireless access network 
and used Lyapunov optimization theory to achieve the tradeoff between the average 
energy consumption and delay. Prof. Chen et al. [22] proposed an improved the search 
tree algorithm by using the branch and bound method to solve the delay minimization 
problem of computational offloading and resource allocation. By establishing the cloud-
edge cooperation model, Zhao et al. [23] designed the optimal decision making scheme 
to transfer the request to the edge server or cloud server for serial processing, in which 
different mobile device requests should pass through the access point in chronological 
order. In order to maximize resource utilization, Dr. Ning et al. [24] proposed to com-
bine multiple edge servers for cache allocation and computational offload. Based on the 
Stackelberg game theory, Salahuddin et al. [25] introduced a strategy to decide whether 
to unload the computation tasks or not according to the decision of the operator and 
other devices, so as to achieve the optimal profit. Lee et  al. [26] adopted the idea of 
user centered fair resource allocation and defined a user-centered utility function with 
weighted the user’s delay tolerance, bit error rate and energy consumption.

The introduction of edge computing can greatly shorten the physical distance between 
on-board tasks and computing resources. Compared with the central cloud infrastruc-
ture, the IoV cloud-edge computing can provide real-time and low-latency services. 
Aiming at the problem of energy consumption control based on edge server, Kumar 
et al. [27] constructed an efficient and energy-saving IoV resource scheduling framework 
based on mobile edge computing for large scale and wide distribution of the vehicles. 
Yu et al. [28] proposed a MEC based offloading method in IoV for the selection of the 
optimal MEC server for task management. The method comprehensively considered the 
vehicle mobility and computing tasks to make the offloading decision. Zhang et al. [29] 
developed an energy-saving computing offloading scheme in multi-user fog computing 
system and proposed a distributed algorithm based on the alternating direction multi-
plier method. Wang et al. [30] designed a framework for jointly optimizing task alloca-
tion decisions and the CPU frequency, in which semidefinite relaxation algorithms are 
proposed to solve the problem of fixed and elastic CPU frequency. Zuo et al. [31] inves-
tigated the power minimization problem under the constraint of task buffer stability 
and proposed an online algorithm based on Lyapunov optimization for local execution 
and computational offloading. Ma et al. [32] investigated the multi-user computational 
offloading problem in multi-channel wireless interference environment and proposed a 
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game theory computational offload algorithm. Xiong et al. [33] designed an optimization 
algorithm for the allocation of network resources and computing resources to minimize 
the transmission delay and computation time. Aiming to minimize the average response 
time of vehicle computing tasks, Dai et al. [34] implemented the real-time traffic man-
agement of vehicle offloading based on fog computation. The vehicle based fog node is 
modeled mathematically according to the queuing theory, and an approximate method 
for solving the unloading optimization problem is introduced.

The cost for using the cloud resources is neglected in above methods. Hence, in this 
paper, we will provide a task-offloading decision mechanism with particle swarm opti-
mization, which considers both the completion time of tasks and monetary cost of com-
puting resources.

3 � Problem formulation
Consider a IoV cloud-edge computing (IoV-CEC) system with N  vehicle users and mul-
tiple MEC servers to perform computation offloading operation. Assuming that there 
is a bidirectional road and all computing devices share the same uplink spectrum of the 
system. All channel gains are modeled as large-scale path loss and small-scale Rayleigh 
fading, and Hij denotes the channel gain from i th vehicular user to associated j th MEC 
server. The additional noise of the user’s destination is an independent cyclosymmet-
ric complex Gaussian random variable with mean zero and variance σ 2 . Ei denotes the 
transmission power of the i th user is, and Ci denotes the number of CPU cycles required 
by the user to execute unit data. Assume that the total amount of workload for i th user 
is Li , αLi will be offloaded to the MEC and the rest will be processed locally. The user’s 
local CPU frequency is Fi , which is measured by the number of CPU cycles per second. 
Then, the time consumption for local computing of the i th user can be given by:

Once the IoV user conducts the computation offloading decision, the time consump-
tion of the offloading task includes the time consumption of workload transmission in 
uplink channel, the time consumption of task execution on the MEC server and the time 
consumption of results feedback. Therefore, the time consumption of computation off-
loading can be calculated by:

where tu,i , tc,i and td,i represent the time consumption of workload transmission in uplink 
channel, task execution on the MEC server and results feedback, respectively.

Since the local processing and offloading of the workload can be performed simultane-
ously, the time consumption of i th user to execute the task can be expressed as follows:

After the offloaded task is processed, the corresponding results will be sent back to the 
IoV user through the downlink channel. Let βLk denote the amount of the results, and 
β represents the ratio of the output to input offloaded workload. Hence, the time con-
sumption of result transmission through downlink channel can be given by:

(1)TLocal,i =
(1− α)LiCi

Fi

(2)TOFF,i = tu,i + tc,i + td,i

(3)Ti = max{TLocal,i,TOFF,i}
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where υi is the uplink transmission rate of i th user. According to Shannon’s theory, the 
uplink transmission rate can be defined as:

where N0 is the power spectral density of the noise. Besides, Bi is the communication 
band obtained by the communication between the user and the MEC server, i.e., the 
bandwidth being occupied by i th user for offloaded workload.

Furthermore, if fi denotes the computing ability allocated to i th user by the associated 
MEC server, the time consumption of task processing can be obtained by

For simplicity, the equal distribution is taken into account, and we have

where Fc represents the total computing ability of the MEC server and can be measured 
by the number of CPU cycles per second.

Meanwhile, owing to the user’s communication overhead of the interaction with the 
MEC server, the user’s transmission power can be regarded as a constraint condition, and it 
can be described by Ei ≤ Emax.

Since the user will consume the resources of the MEC server to perform the offloading 
task, the MEC server should provide enough computing capacity to complete the offloaded 
task. Therefore, in order to balance the demand and supply of resources, it is necessary to 
consider the energy consumption of the data generated by the communication between 
vehicle users and the MEC servers when they make offloading decisions.

The energy consumption for local computing can be given by

where γ is the energy consumption of the user’s CPU.
The MEC server can rent the corresponding computing resources to the user, and the 

user will cause energy consumption for workload transmission during the course of off-
loading, which can be expressed by:

Similarly, the energy consumption of the computing tasks offloaded from i th user in the 
MEC server can be given by

(4)td,i =
βLi

υi

(5)υi = Bi log2

(

1+
EiHi

BiN0

)

(6)tc,i =
αLiCi

fi

(7)fi =
Fc

N

(8)ELocal,i = γ (1− α)Li

(9)ETrans,i =
EiαLi

Bi log2

(

1+ EiHi
BiN0

)

(10)EOFF,i = γcαLi
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where γc is the CPU’s energy consumption of the MEC server.
Let µ = {µ1,µ2, · · · ,µN } be the monetary cost corresponding to the user’s energy 

consumption and the goal of IoV-MEC system is to maximize the utility of MEC pro-
vider by offering limited resources to IoV users. Mathematically, the optimization prob-
lem can be formulated by

For IoV user, the cost of the workload includes the energy consumption of local pro-
cessing with specific delay, the energy consumption for communication, and the energy 
consumption of task processing at the MEC server, which can be calculated by

For each IoV user, the determination of the optimal offloading workload according to 
the monetary cost of the MEC servers can reduce the payment to the greatest extent. 
Therefore, the optimization problem can be described as follows:

where Fmax is the maximum processing time of MEC server.

4 � Proposed method
Particle swarm optimization is a swarm intelligence optimization algorithm, which 
is derived from the behavior of birds looking for habitat by Kennedy and Eberhart in 
1995. It has the advantages of less parameters, easy implementation and fast conver-
gence [35]. For computing-intensive task offloading, the process can be regarded as dif-
ferent task particles to choose their best location and to quickly search for the location 
set in accordance with the scene under different conditions [36]. Therefore, the parti-
cle swarm optimization (PSO) method is adopted to realize the transformation between 
the decision-making of unloading and the dynamic search process. In PSO, according 
to the foraging behavior of birds, the search space of the problem is compared with the 
flight space of birds. Each bird is treated as a particle to represent the search for the 
target food, and the position of the particles is evaluated by the defined fitness function 
[37]. During the search phrase, the best position found can be also shared and dynami-
cally the position of particles should be adjusted through their own experience and peer 
experience.

Suppose the i th user generates Mi

(

Bi, fi,Emax

)

 tasks, and S = {s1, s2, · · · , sK } denotes 
the set of all MEC servers, and the maximum transmission rate of tasks transmitted to 
MEC server can be calculated by the matrix of channel gain:

(11)P1 : max
µ

Uc(µ) =

N
∑

i=1

µiEOFF,i

(12)Ci(Li,µi) = ELocal,i + ETrans,i + µiEOFF,i

(13)P2 : min

N
∑

i=1

Ci(Li,µi)

s.t. Ei ≤ Emax

N
∑

i=1

αLiCi ≤ Fmax
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where Hij is the channel gain for the task generated by i th user to be transmitted to j th 
MEC server.

The particles will represent a specific MEC server to which all tasks will be offloaded, 
and the dimension of particle is the same as the number of task sets [38]. The offloading 
decision vector of each particle is X[i] , which can represent the optimal execution loca-
tion of all tasks and each element is randomly selected from 0 to K  . X[i] = 0 indicates 
that the current task is executed locally. Otherwise, it indicates that the current task is 
loaded to the corresponding MEC server.

The speed of particles indicates the processing efficiency of the current task assigned 
to other MEC servers, which is recorded as V [i] [39, 40]. The dimension of particle speed 
is the same as the number of task sets. The optimal position of each particle during all 
iterations is denoted as Pbest , and the optimal position of all particles is denoted as 
Gbest.

To reflect the total cost of all tasks assigned to different MEC servers, the fitness of 
particles can be represented by the combination of above optimization problems. Thus, 
the fitness function can be given by

The update of the particle’s velocity can be given by:

where c1 , c2 are the learning factors, and rand is a random number between 0 and 1, and 
wi is the inertia weight factor.

To avoid falling into local optimization, the inertia weight factor should be dynami-
cally changed with the objective function value of particle swarm optimization. Hence, 
the inertia weight factor wi will be updated according to the following equation:

where wmin and wmax represent the minimum and maximum value of the inertia weight 
factor, respectively. In addition, gi is the current fitness value of each particle. gmin and 
gmax are the average fitness value of all particles whose fitness value is lower or greater 
than the average fitness value of the particle swarm, respectively.

Furthermore, the position of the particles can be updated as follows:

Next, the detailed computation offloading process is demonstrated as follows:

(14)H =













0 H1,2 · · · H1K

H21 0 · · · H2K

...
...

. . .
...

HN1 HN2 · · · HNK













(15)g(µi) =

N
∑

i=1

Ci(Li,µi)/
∑

µiEOFF,i

(16)V [i] = wiV [i] + c1rand
(

pbesti − X[i]
)

+ c2rand
(

gbesti − X[i]
)

(17)wi =







wmax, gi > gmax

wmax −
(wmax−wmin)(gmax−gi)

gmax−gmin
, gmin ≤ gi ≤ gmax

wmin, gi < gmin

(18)X[i] = X[i] + V [i]



Page 8 of 14Cheng and Guan ﻿J Wireless Com Network        (2021) 2021:101 

Step 1: Initialize the random position and velocity of i th particle. The delay and energy 
consumption are measured by local tasks, MEC server set and channel gain matrix H . 
The fitness of each particle is calculated according to Eq. (15).

Step 2: The current position of the particles is chosen as the individual optimal alloca-
tion scheme Pbest , and the position of the particle with the minimum fitness value will 
be set as Gbest.

Step 3: If t ≤ tmax , the velocity X[i] and the position V [i] will be updated indepen-
dently according to all dimensions for i th particle.

Step 4: The updated position of each particle is calculated according to Eq.  (17). If 
the corresponding fitness value is less than the current fitness value, the particle optimal 
Pbest will be replaced. Meanwhile, the population optimal allocation scheme Gbest and 
the total cost fitness will be updated.

Step 5: At the end of iterations, the optimal vector X[i] = Gbest and the offloading 
strategy with optimal fitness can are obtained. Through centralized control, the cloud-
edge computing enables the IoV users to offload the computing tasks to MEC servers for 
execution according to the optimal offloading strategy.

5 � Results and discussion
In this section, the simulation experiments are performed to evaluate the performance 
of the proposed algorithm. An MEC-IoV system with a hexagonal symmetric cellular 
structure is considered, in which the number of MEC servers is 6 and the number of 
IoV users is 10. The reference signal-to-noise ratio is set to be 20 dB, and the bandwidth 
of uplink and that of downlink is 20 MHz. The computing ability of the MEC server is 
4 GHz, the CPU cycles required for computing one bit of the task are between 500 and 
3000, and the maximum latency for completing the task is set to 5 s. The channel gain 
for the task generated by the IoV user to be transmitted to associated MEC server is 
varied from [2× 10−10, 2× 10−6] . In addition, the other parameters is set as following: 
Ei = 0.4 W, fi = 500 MHz, α = 0.3 , γ = 2× 10−8 J/bit, c1 = c2 = 2, respectively.

First, the convergence of the proposed unloading strategy is evaluated. The total cost 
of all tasks can be obtained with the number of iterations, and the experimental results 
are shown in Fig. 1. It can be observed that our proposed algorithm converges quickly 
in the early iterations. After 30 iterations, the total cost remains relatively stable and the 
global optimal solution can be found. Our proposed algorithm has a strong ability of 
global optimization. It can constantly seek the global optimal solution in the early stage 
and also has good global search ability in the later stage. Compared with greedy algo-
rithm, the total cost of our proposed algorithm is much less and reduces the total cost by 
14.2%.

In addition, the utility of MEC provider under different monetary cost is analyzed as 
shown in Fig. 2. From the experimental results, we can see that when the monetary cost 
changes between [1, 2.6], the utilities of MEC provider show a linear monotonic increas-
ing trend. However, when the monetary cost exceeds 2.6, the utility of MEC provider 
begins to decline sharply, and tends to be relatively stable at around 1.65. The reason is 
that the user’s offload costs increase as well as the monetary cost. Compared with the 
benefits of task offloading, the user’s spending exceeds the corresponding cost, which 
results in the user unwilling to make offloading decision. The greedy algorithm also 
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shows a similar trend, but on the whole, the utility of MEC provider is lower than our 
proposed algorithm.

Next, we explore the performance in aspect of average resource cost, utility of MEC 
provider, computation overhead and user’s offloading ratio and conduct the compari-
son with random scheme and round-robin scheme. Among them, random offload 
scheme refers to the random offloading of tasks to the MEC server for processing, 
while the round-robin scheme is to offload the tasks to the MEC server in sequence. 
Figure 3 shows the curve of the average resource cost with different amount of work-
load. It can be seen that the average resource cost is not conducive to the workload. 
In comparison, the average resource cost shows good stability in our proposed algo-
rithm and fluctuates sharply in Round-Robin scheme and Random scheme. With the 
increase of the amount of workload, the monetary cost will gradually decline. It will 
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cause that the user’s own processing capacity cannot meet the corresponding require-
ments. Moreover, with the increase of the amount of offloading, the MEC server can 
utilize the low cost to encourage users for more offloading tasks, which will bring 
more benefits to the system. When the user’s workload reaches about 5× 108 , the 
curve of average resource cost begins to flatten. The reason is that the users have to 
offload the task within the requirement as much as they will process.

Figure  4 shows the curve of the utility of MEC provider with different amount of 
workload. The simulation results show that with the increase of user data, the utility of 
MEC provider of our proposed algorithm, round-robin scheme and random scheme 
algorithms is on the rise. Also, it is obvious that the utility in random scheme algo-
rithm is much lower than that of our proposed algorithm and round-robin scheme. 
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At high level of workload, the utility of MEC provider in our proposed algorithm and 
Round-Robin scheme increases rapidly. Overall, the performance of our proposed 
algorithm is better than that of other schemes. It is clearly evident from Fig. 4 that 
the utility of the system gradually tends to be flat when the workload exceeds 8× 108 . 
That is because with the increase of users the processing capacity has reached satura-
tion, and the utility of MEC provider will not fluctuate at high level of workload.

Figure 5 shows the comparison of computation overhead. With the increase of work-
load, the computation overhead of all algorithms shows linear growth trend. In our 
proposed algorithm, the particle swarm optimization can obtain an optimal offloading 
decision and effectively reduce the computation overhead. The results also show that the 
increase of computation overhead in random scheme is obviously greater than that of 
our proposed algorithm and round-robin scheme. The low monetary cost will lead to 
large-scale offloading of users. However, the communication cost of users and the com-
putation overhead increase dramatically, which directly leads to the sharp increase of 
overall cost.

Figure 6 shows the curve of the user’s offloading ratio with the amount of workload. 
When the amount of workload is very low, the cost of local processing and offloading to 
MEC server is almost equivalent. Thus, the IoV users tend to offload tasks to the MEC 
server for execution. However, with the increase of user data, the difference of the cost 
between local computing and offloading decision becomes distinctly. Especially, when 
the amount of workload increases to a certain extent, the revenue of MEC server will no 
longer fluctuate and the user’s offloading ratio begins to decline. From the experimental 
results, we can observe that when the amount of workload is 5× 108 , the user’s offload 
ratio of round-robin scheme shows a downward trend. In this case, the computation 
overhead starts to increase sharply, and it is more cost-effective for users to choose local 
processing, which leads to the decrease of offloading ratio. In our proposed algorithm, 
the user’s offloading ratio begins to fluctuate as the workload exceed 5× 108 , and dem-
onstrates better than other schemes.
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6 � Conclusions
In this paper, we proposed a task-offloading decision mechanism with particle swarm 
optimization for IoV-based edge computing. First, a mathematical model to calculate 
the computation offloading cost for cloud-edge computing system is defined. Then, 
the particle swarm optimization is applied to convert the offloading of task into the 
process and obtain the optimal offloading strategy. Furthermore, to avoid falling into 
local optimization, the inertia weight factor is designed to change adaptively with the 
value of the objective function. The experimental results show that the proposed off-
loading strategy can effectively reduce the energy consumption of terminal devices 
while guarantee the service quality of users. In the follow-up research process, I will 
consider classifying tasks, such as QoS constraints, CPU requirements and priority.
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