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1  Introduction
The telemetry vibration signals are time series that include the system operating state, 
which are collected by sensors such as vibration acceleration or displacement, tempera-
ture and pressure installed in the aircraft. Affected by the vibration of the aircraft itself, 
the flight environment, the electromagnetic environment and the transmission condi-
tions, the vibrations from the various structural sections will affect, modulate and super-
impose each other. The transmission path of the vibration is complex and variable, and 
the collected telemetry vibration signals are often mixed with a large amount of differ-
ent frequencies (high frequency and low frequency), impact noise and harmonic com-
ponents. Therefore, the spectral components are extremely complex and highly coupled, 
and show strong nonlinearity, non-stationary and transient impact [1].

The anomaly of aircraft system state is usually not obvious, and the signal level is very 
weak and sparse; under the influence of test environment, noise and system vibration 
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complexity, the impact characteristics are very weak in the transient vibration signal, which 
is difficult to extract. At present, the research of feature enhancement focuses on linear 
filtering, adaptive decomposition combined with resonance demodulation and time–fre-
quency analysis [2]. For example, Combet et al. [3] proposed a filtering method based on 
spectral kurtosis (SK) to realize fault feature extraction for gearbox fault diagnosis. The idea 
is to find the appropriate center frequency and bandwidth with SK as the index, so as to 
retain the impact signal and remove the noise and interference signal. However, SK has a 
high sensitivity to noise (especially in-band noise), which seriously affects the accuracy of 
resonance band selection. In addition, for non-stationary signals, when there is interference 
signal with the same frequency as the fault signal component in the signal, SK value will also 
be large and the in-band interference is difficult to remove. Wang et al. [4] realized transient 
feature extraction of weak faults by modeling transient features and identifying transient 
signal model parameters with correlation filtering. However, this modeling method requires 
a lot of prior information, so it is difficult to establish an accurate transient signal model in 
practice. Georgoulas et al. [5] and He et al. [6] proposed hybrid intelligent fault diagnosis 
models, respectively, for rolling bearings based on EMD and EEMD resonance demodu-
lation. The adaptive decomposition method was used to decompose the non-stationary 
signal into several intrinsic mode functions (IMF) of instantaneous frequencies with physi-
cal significance, and a specific IMF was selected for resonance demodulation to extract the 
weak fault features, but the inherent problems of the adaptive decomposition method, such 
as mode aliasing, endpoint effect and pseudo-component, will restrict the effect of signal 
decomposition and affect the accuracy of feature extraction.

As a representative multi-scale analysis technique, wavelet analysis can detect the signal 
feature information hidden in a specific scale by matching the basis function of the inner 
product transformation principle with fault feature similarity, For example, Fyfe et al. [7] 
took Morlet wavelet as the wavelet basis, proposed a wavelet threshold de-noising method 
based on maximum likelihood estimation and realized the de-noising and fault feature 
extraction of bearing monitoring signals. Lin et  al. [8] proposed a wavelet coefficient 
screening method for vibration signal analysis based on data analysis, and then completed 
the reconstruction and resonance demodulation of the optimized wavelet coefficient, and 
extracted the transient fault information of vibration signal. Nguyen et al. [9] proposed a 
feature extraction and enhancement method for bearing state monitoring signal based on 
improved wavelet soft threshold and Hilbert envelope demodulation analysis. The effec-
tiveness of wavelet transform lies in that the wavelet base that matches the fault feature 
waveform best can best represent the fault feature information under multi-source noise 
interference, but the wavelet transform has its limitation due to its constant quality fac-
tor (which is defined as the ratio of center frequency to bandwidth). Once the basis func-
tion and decomposition layer number are determined, the quality factor is fixed. When the 
central frequencies of each component in the signal to be decomposed differ greatly, good 
decomposition effect will be achieved. However, when the center frequency of impulse 
signal is close to that of other signal components, good decomposition effect cannot be 
obtained. In view of the shortcoming of constant quality factor in traditional wavelet trans-
form, the tunable Q-factor wavelet transform (TQWT) was proposed by Selesnick [10], 
by adjusting the quality factor wavelet, the optimal matching is realized for the charac-
teristic signal components with specific oscillatory behavior. Even if the central frequency 
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of the signal component is close to each other, the signal can be separated effectively as 
long as it has different bandwidth. For example, Luo et al. [11] used kurtosis indicator to 
select fault feature frequency band and used the reconstruction signal of optimal TQWT 
decomposition coefficient and demodulation analysis to realize the extraction of bearing 
fault features. Li et al. [12] took the normalized weighted value of kurtosis and smoothness 
index as the objective function and proposed the fault diagnosis method of rolling bear-
ing based on the optimal quality factor signal resonance sparse decomposition. He et al. 
[13] proposed a feature enhancement method of adjacent coefficient bearing monitoring 
signal based on TQWT; according to the fault characteristics of Hilbert envelope demod-
ulation, the wavelet coefficient of adjustable quality factor was optimized to realize the 
feature enhancement of weak bearing signals. Song et al. [14] proposed a new automated 
epilepsy diagnosis scheme based on TQWT, which can extract various spectral features 
and realize the intelligent fault diagnosis for roller bearings. However, these aforemen-
tioned approaches only focused on extracting transient component, ignoring the effects of 
other interference components. Recently, sparse representation has attracted a great deal 
of attention in the field of feature extraction [15]. On the basis of TQWT, Selesnick et al. 
[16, 17] proposed the oscillatory behavior-based signal decomposition method via sparse 
optimization, which can not only achieve effective noise reduction, but also eliminate the 
effects of other interference components.

The transient vibration signal has a wide operating band caused by the shock with 
short response period and strong impact. Moreover, the abnormal state of the aircraft 
system is a complex dynamic process determined by many factors. The system state vari-
ation reflected by the telemetry vibration signal often has obvious reflection informa-
tion at a certain scale, and there is an inherent connection between the multi-scale state 
information. Therefore, the multi-scale feature of non-stationary state is the essential 
feature that reflects the operating state of the system. Analyzing the feature scale band, 
detecting and enhancing the weak sensitivity of the signal are the key issues for abnor-
mal detection. Although the above application has achieved a good practical effect, how 
to select the key parameters of TQWT to achieve the optimal matching of the charac-
teristic signal components with specific oscillatory behavior needs further research. In 
order to comprehensively and accurately detect the abnormality of the telemetry vibra-
tion signal, this paper proposes a transient feature extraction method based on adaptive 
TQWT, which takes time–frequency distribution as the basis, and selects the character-
istic frequency band to constrain the number of decomposition layers. Then, the sub-
band average energy weighted wavelet Shannon entropy is used as the objective function 
to optimize the quality factor and redundancy. The wavelet basis function matching with 
the feature waveform is constructed adaptively to improve the feature extraction abil-
ity of TQWT. According to the characteristics of the transient impact of the telemetry 
vibration signal, the TQWT decomposition coefficients were sparse reconstructed to 
obtain more sparse impact characteristics. Finally, the weighted power spectrum kur-
tosis is used as the impact feature index to select the optimal characteristic sub-band, 
and the optimal sub-band was reconstructed by the inverse transform of TQWT. Hilbert 
envelope demodulation is used to extract and enhance the weak impact characteristics. 
Simulation and measured signal processing results show that the method can effectively 
extract the impact characteristics of transient vibration signals.
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The rest of this paper is organized as follows. Section II gives the principle of TQWT 
algorithm. Section III presents the major principle and details of the proposed method. 
Section IV uses the simulation and measured transient vibration signal to verify the per-
formance of the proposed method as compared to other traditional methods. Finally, 
Section V draws conclusions.

2 � Principle of TQWT
Compared with traditional wavelet transforms, TQWT is a flexible and fully discrete 
wavelet transform which can offer excellent property in tuning the appropriate quality 
factor to match the signal oscillatory behavior [10]. The main input variables of TQWT 
that can be easily set are quality factor denoted as Q, redundancy parameter represented 
as r and the number of decomposition layers denoted as J. The variable Q determines 
the number of oscillations of the wavelet and the variable r determines the overlapping 
of frequency responses. As is shown in Fig. 1, the multi-stage decomposition and recon-
struction can be easily achieved by repeatedly attaching two channel filter banks to the 
low-pass sub-band signals.

At each level of decomposition, the input signal x(n) with sampling rate fs is converted 
into low-pass sub-band signal and high-pass sub-band signal with sampling frequencies 
αfs and βfs , respectively, where α = 1− β/r and β = 2/(Q + 1) are the scaling param-
eters. In order to obtain the low-pass sub-band, low-pass filter H0(ω) and low-pass scale 
transformation in the frequency domain which is represented as LPS α are used. Simi-
larly, the high-pass sub-band is obtained using H1(ω) and HPS β . The LPS α and HPS β 
maintain the low-frequency and high-frequency components of the signal depending on 
scaling parameter α and β , respectively. H∗

0 (ω) and H∗
1 (ω) represent the complex conju-

gate of H0(ω) and H1(ω) , respectively.
In order to achieve a perfect decomposition and reconstruction, TQWT requirements 

H0(ω) and H1(ω) must satisfy the reconstruction conditions in the respective pass band 
and transitional band; they can be expressed mathematically as follows:

where θ(ω) is the 2 π-periodic power-complementary function selected as frequency 
response of the Daubechies filter having two vanishing moments. It can be defined with 
following expression:

(1)H0(ω) =


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
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1, |ω| ≤ (1− β)π

θ

�

ω+(β−1)π
α+β−1

�

, (1− β)π < |ω| < απ

0, απ ≤ |ω| ≤ π

(2)H1(ω) =
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It can be seen that TQWT can be equivalent to the band-pass filter under multi-scale 
decomposition, and the central frequency f (j)c  and bandwidth Bw(j) of the equivalent fil-
ter under each scale are shown as follows

For the given quality factor Q and redundancy parameter r, in order to ensure that the 
analysis time domain length of all scales does not exceed the time domain of the ana-
lyzed signal, there is a theoretical maximum of J  , which is Jmax

where N is the signal length, ⌊.⌋ represents rounding down. Although TQWT has the 
advantage of overcoming the traditional wavelet constant quality factor, its time-domain 
and frequency-domain characteristics are uniquely determined by combination of 
three key parameters {Q, r, J } . Therefore, in order to achieve the optimal matching of 
the characteristic signal components with specific oscillation behavior and improve the 
decomposition performance of TQWT, it is necessary to optimize {Q, r, J }.

3 � The proposed method
3.1 � Adaptive optimization of TQWT parameters

For the optimization of wavelet parameters, Zhang et al. [18] optimized the waveform 
parameters, bandwidth and center frequency parameters of the Morlet wavelet basis 
function by minimizing the Shannon entropy of wavelet to achieve the optimal match-
ing with the impact characteristics of the fault. Taking its ideas for reference, wavelet 
Shannon entropy can measure the sparsity of wavelet coefficients on all scales. Then, 
the sparsity of the wavelet coefficients can represent the matching degree between the 
wavelet basis function and the characteristic waveform. This paper proposes an adaptive 
optimization strategy for TQWT parameters.

Compared with traditional continuous wavelet transform, TQWT has the following 
characteristics:

a.	 The length of the wavelet coefficients at all scales obtained by continuous wavelet 
transform is fixed, which is determined by the number of decomposition layers and 
the sampling frequency. However, TQWT realizes signal decomposition in an iter-
ative manner by using a two-channel bands pass filter. Adjusted by the parameter 
{Q, r, J } , the length of the obtained wavelet coefficient sequence decreases with the 
increase in the number of decomposition layers.

b.	 Once the basis function and decomposition layer number are determined, the quality 
factor of the continuous wavelet transform is constant. Constrained by the normali-
zation factor, wavelets of different scales maintain the same energy. But the quality 

(5)f
(j)
c = (2− β)αj−1fs

4
, j = 1, 2, · · · J

(6)Bw(j) = βαj−1fs

4
, j = 1, 2, · · · J

(7)Jmax =
⌊

ln
N

4(Q + 1)
/ ln

Q + 1

Q + 1− 2/r

⌋
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factor of TQWT is adjustable, so the wavelet energy of each scale varies with the 
scale.

Based on the above characteristics, traditional wavelet Shannon entropy cannot 
directly measure the sparsity of the TQWT decomposition wavelet coefficients effec-
tively. For this reason, this paper proposes to optimize parameter {Q, r, J } by using 
wavelet Shannon entropy weighted by sub-band average energy. The definition is as 
follows:

where Ej , Nj and w(j)
i  represent the wavelet energy, the length of the wavelet coefficient 

sequence and the ith element in the jth layer wavelet coefficient sequence of TQWT, 
respectively. According to Eqs. (8) and (9), the sub-band average energy-weighted wave-
let Shannon entropy (SAEWSE) comprehensively takes into account the series length 
unfixed and the energy-scale correlation of TQWT wavelet coefficients, and can meas-
ure the sparsity of the wavelet coefficients.

Although there is a theoretical maximum decomposition layers of TQWT, the increase 
in decomposition layers mainly affects the decomposition performance density in the 
low-frequency region. Too many decomposition layers may not only lead to excessive 
decomposition of feature band information, but also cause redundant decomposition of 
irrelevant band information and increase the computational burden. Based on the analy-
sis of the time–frequency distribution, the 3 dB bandwidth attenuation method is intro-
duced to determine the characteristic frequency band of the signal, so as to constrain the 
decomposition layer number of TQWT.

For signal x(n) to be analyzed, the time–frequency distribution was obtained by using 
STFT

where k and f are, respectively, time and frequency points, W (k) and NSTFT are the 
short-term analysis window and transformation points of STFT, the complex time–fre-
quency matrix S(k , f ) is composed of amplitude matrix A(k , f ) and phase matrix θ(k , f ) . 
By summing the time–frequency energy along the time axis, the sum vector is

First, the global maximum of the above equation is SSE(fcmax) . Then, the upper and 
lower band limits fh and fl are determined with fcmax as the center, that is, the frequency 

(8)p
(j)
i = Ej

Nj
|w(j)

i |
/

J+1
∑

j=1

Nj
∑

i=1

Ej

Nj
|w(j)

i |

(9)SAEWSE(Q, r, J ) = −
J+1
∑

j=1

Nj
∑

i=1

p
(j)
i ln p

(j)
i

(10)S(k , f ) =
+∞
∑

l=−∞
x(l)W (k − l)e−i2πfl/NSTFT = A(k , f )e−iθ(k ,f )

(11)SSE(f ) =
N
∑

k=1

S(k , f )S∗(k , f )
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band range obtained by shifting SSE(fcmax)/2 to the left and right with SSE(fcmax) as the 
center on the time–frequency energy curve. The fh − fl band contains the major time–
frequency energies. This paper is called 3 dB bandwidth attenuation method. After the 
lower limit of frequency band fl is determined, the combination Eq. (5) constrains the 
number of decomposition layers of TQWT.

The adaptive optimization method of TQWT parameters is summarized as follows:

a.	 Grid search space: Set the two-dimensional grid search space 
{(Q, r)|Q ∈ [QL : q : QH ], r ∈ [rL : γ : rH ]} of parameter (Q, r) , where QL and QH 
are the search upper and lower limits of parameter Q,rL and rH are the upper and 
lower limits of the search for parameters r, and q and γ are their corresponding 
search step sizes.

b.	 Decomposition layer selection: For a given (Q, r) , Eq.  (12) is used to calculate the 
appropriate decomposition layer number Js . Then, analysis signal was decomposed 
by TQWT, and the wavelet coefficients of each layer can be obtained.

c.	 Parameter optimization: Eqs. (8) and (9) are used to calculate SAEWSE, and the opti-
mal parameter (Qopt , ropt , Jsopt) was determined according to the minimum value of 
SAEWSE curve and the appropriate calculation cost.

3.2 � Sparse optimization of TQWT wavelet coefficients

Although the parameter adaptive optimization method proposed in Chapter  3.1 can 
extract the characteristic frequency band of the signal and realize the optimal match-
ing of TQWT wavelet to the intrinsic structure (characteristic signal component) of the 
signal, in essence, TQWT is over-complete redundancy decomposition, and the fre-
quency responses overlap on the adjacent scales. In combination with the characteristics 
of transient impact of telemetry vibration signals (which meet the sparse decomposi-
tion condition), in order to remove these redundant information and improve the energy 
aggregation of the characteristic frequency band, this section proposes sparse recon-
struction of the wavelet coefficients obtained from TQWT decomposition to further 
highlight its impact characteristics.

Since the transient impact signals have sparse characteristics, in order to reconstruct 
the original signal as accurately as possible, the most ideal result is naturally the sparsest. 
The objective function of sparse optimization is

where ||.||0 represents the l0 norm, which can represent the number of nonzero val-
ues in a vector. However, the l0 norm constraint optimization is a NP-hard prob-
lem, which is difficult to solve. Candes [19] proved that when the restricted isometry 
property (RIP) conditions are satisfied, the sparse solution obtained with the l0 norm 
constraint is equivalent to the sparse solution obtained with the l1 norm constraint. 
In practice, it is usually converted into the l1 norm constraint optimization

(12)f (Js)c ≤ fl ⇔ J hs ≤ logα 4fl/(2− β)fs + 1 ≤ Jmax

(13)ŵ = arg min ||w||0 S.T.x = TQWT−1(w)
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where w is the TQWT wavelet coefficient matrix, ŵ is the sparse expression matrix 
of the wavelet coefficient, and TQWT−1 is the inverse transformation of TQWT. 
Lagrange multiplier method is used to transform Eq.  (14) into an unconstrained 
optimization objective function

where � is the Lagrange multiplier, and the range of the selected decomposition 
layers is determined by the upper and lower limits of the characteristic frequency 
band, that is, the selection range of the wavelet layers is determined by combining 
Eqs. (12) and (16)

For the optimization problem of Eq. (15), due to the coupling relationship between 
||x − TQWT−1(w)||22 and ||w||1 , the traditional optimization methods for decou-
pling and multi-parameter joint optimization are not a good choice. Therefore, the 
ADMM algorithm is introduced to transform the above optimization problem into 
several independent sub-problems for alternate updating and solving; this will make 
the calculation simpler and more efficient. According to the framework of ADMM 
algorithm, an auxiliary variable s is introduced to transform Eq. (15) into the follow-
ing constrained optimization objective function

On the basis of the Lagrange multiplier method, we add a quadratic penalty term 
to transform Eq. (17) into an augmented Lagrange function

The alternating iterative formula is directly given as follows

where µ is the penalty parameter, and τ is the process parame-
ter,soft{η, ρ} = sign(η)max(|η| − ρ, 0).

3.3 � Optimal selection of TQWT wavelet sub‑band

Kurtosis contains time-domain kurtosis and frequency-domain kurtosis. Studies 
[20, 21] show that, as an index to measure the impulse property of the signal, tran-
sient impulse components can be effectively detected in the diagnosis of rotating 

(14)ŵ = arg min ||w||1 S.T.x = TQWT−1(w)

(15)L(w, �) = arg min
w,�

1

2
||x − TQWT−1(w)||22 + �||w||1

(16)f (Jh)c ≥ fh ⇔ J ls ≥ logα 4fl/(2− β)fs + 1

(17)arg min
w,s

1

2τ
||s||22 + ||w||1 S.T. s = x − TQWT−1(w)

(18)

L(w, s, �) = arg min
w,s,�

1

2τ
||s||22+||w||1−�

T(s−x+TQWT−1(w))+µ

2
||s−x+TQWT−1(w)||22

(19)















sk+1 = arg min(s, wk , �k) = µτ
1+µτ

�

�
k

µ
− (TQWT−1(wk)− x)

�

wk+1 = arg min(sk+1, w, �k) = soft
�

wk − τTQWT
�

sk+1 + TQWT−1(wk)− x − �
k

µ

�

, τ
µ

�

�
k+1 = �

k − µ[sk+1 + TQWT−1(wk+1)− x]
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machinery fault. Considering that the TQWT wavelet coefficient has the character-
istics of energy-scale correlation, the power spectrum kurtosis is used to measure the 
overall sharpness of the sub-band signal spectrum, and then to conduct the optimal 
selection of the TQWT wavelet characteristic sub-band. The definition is as follows:

After obtaining the sparse expression matrix ŵ of TQWT wavelet coefficients, the 
sub-band signal matrix y =[y(J ls , n), y2(2, n), · · · y(J hs , n)]T ∈ R(J hs −J ls+1)×N  was obtained 
by single branch reconstruction of the wavelet coefficients of each layer. Where N is 
the signal length of the sub-band, the envelope Ey(j, n) of each sub-band is extracted 
by Hilbert transformation

M point discrete Fourier transform (DFT) is applied to Ey(j, n) to obtain its fre-
quency domain sequence FE(j,ω) , and then, the power spectrum PE(j,ω) of signal 
envelope of layer j is

where F∗
E(j,ω) is the complex conjugate of FE(j,ω) , and the power spectrum kurto-

sis ( PSK )is defined as

where PE(j,ω) is the mean of PE(j,ω).

3.4 � Steps of the transient feature extraction method

The impact characteristics of the vibration signals are very weak and sparse, which is 
difficult to extract and enhance. In order to solve the problem, the adaptive TQWT is 
used to decompose the vibration signals into multi-scale, and the specific sub-band 
is extracted to enhance the impact characteristics of the signals. The algorithm is as 
follows:

a.	 Pre-processing: The vibration signals need to pre-processing: zero drift correction, 
trend item removal and outlier elimination, etc.

b.	 Adaptive TQWT decomposition: The method in Chapter 3.1 is adopted to adaptively 
select the optimal TQWT parameter (Qopt , ropt , Jsopt) , and the signal x(n) is decom-
posed to obtain the TQWT wavelet coefficient matrix w.

c.	 Sparse optimization of TQWT coefficients: the sparse expression matrix ŵ of TQWT 
wavelet coefficient matrix w was obtained by using Eqs. (13)–(15).

d.	 Single-branch reconstruction: the inverse transformation of TQWT is used to 
carry out the single-branch reconstruction of ŵ , and the sub-band signal matrix 
y =[y(J ls , n), y2(2, n), · · · y(J hs , n)]T ∈ R(J hs −J ls+1)×N was obtained. By using the signal 

(17)Ey(j, n)= ||Hilbert(y(j, n))||2, J ls ≤ j ≤ J hs

(18)PE(j,ω) =
FE(j,ω) · F∗

E(j,ω)

M

(19)PSK (j) =
1

M/2

M/2
∑

i=1

[PE(j,ωi)− PE(j,ω)]4

[

1
M/2

M/2
∑

i=1

[PE(j,ωi)− PE(j,ω)]2
]2

, J ls ≤ j ≤ J hs
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envelope Ey(j, n) of each sub-band in Eq.  (16), the power spectrum kurtosis of the 
envelope of each sub-band signal is calculated according to Eqs. (17)– (18).

e.	 Envelope spectrum analysis: The sub-band signal envelope with the maximum power 
spectrum kurtosis is selected for spectrum analysis to extract its impact characteris-
tic frequency.

4 � Results and discussion
4.1 � Experiment 1: Simulation signal analysis

A simulation experiment is designed to compare the performance of the EEMD-based 
feature extraction method, WPT-based feature extraction method and the proposed 
method. The signal-to-noise ratio (SNR) of the signal and the joint time–frequency 
entropy (JTFE) [22] which measure the aggregation of the time–frequency distribution 
are used as the quantization indicators.

The parameters are set as follows: fr = 1000  Hz is the system drive frequencies, 
ξ = 0.01 is the damping ratio, τ = [0.02, 0.04, 0.06, 0.08] is the initial time of the pulse, 
T is the pulse duration, n(t) is the Gaussian white noise, and the SNR of the simulated 
signal is -8 dB; the results are as follows:

Figure  2b, d shows the time domain waveform, spectrum and time–frequency dis-
tribution of the noise-added signal. It can be seen that the four transient shock com-
ponents in the noise-added signal are seriously polluted by the noise, resulting in the 
weakening of the transient characteristics. Figure 2c is a schematic diagram of the char-
acteristic frequency band selected by the attenuation method of 3 dB bandwidth. On the 
SSE curve, the driving frequency corresponding to the maximum value is 1072 Hz, and 
the upper and lower limits of the characteristic frequency band determined by the 3 dB 
bandwidth are 1386 Hz and 673 Hz, respectively. It can be clearly seen that the range of 
3 dB bandwidth can contain the main information of the pulse, which verifies the effec-
tiveness of the proposed optimal feature band selection method. Figure  2a shows the 
schematic diagram of TQWT decomposition layers selected from the upper and lower 
limits of the characteristic frequency band. From right to left, the frequency response 
curve of TQWT equivalent filter from low level to high level is presented. The number 
of TQWT decomposition layers is determined by the lower frequency limit of the char-
acteristic frequency band. Figure 2a shows that when Q = 3.1 and r = 3.5, the number of 
decomposition layers can be intuitively determined to be 11.

Figure  3 shows the SAEWSE 3d curve of adaptive parameter optimi-
zation, where the two-dimensional grid search space of parameter is 
{(Q, r)|Q ∈ [2 : 0.1 : 6], r ∈ [2 : 0.1 : 6]} . According to the weighted wavelet Shan-
non entropy of sub-band average energy, the parameter {Q, r, J } was optimized and 

(20)

x(t) =
4

∑

i=1

Aiψ(τi, θi)+ n(t)

ψ(τi, θi) =
{

e
− ξ√

1−ξ2
[2π fr (t−τi)]

2

cos[2π fr(t − τi)+ θi], |t − τ | ≤ T
0 else
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selected. As can be seen from Fig. 3, when Q = 3.1 and r = 3.5, the value of SAEWSE 
is the smallest.

The simulation signal is decomposed according to the optimal parameter 
(Qopt = 3.1, ropt = 3.5, Jsopt = 11) , and the results are shown in Fig.  4. Then, the 

a b

c d
Fig. 2  Schematic diagram of determining the characteristic frequency band by 3 dB bandwidth attenuation 
method: a frequency response of TQWT; b waveform and spectrum of the simulation signal; c SSE curve; d 
time–frequency distribution

Fig. 3.  3d curve of adaptive parameter optimization. The figure shows the SAEWSE value in the 
two-dimensional grid search space of parameter (Q,r); the optimal parameter (Qopt = 3.1, ropt = 3.5) is 
determined according to the minimum value of SAEWSE curve
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optimal characteristic sub-band is determined by the power spectrum kurtosis, as 
shown in Fig. 5. Sub-band 8 is the selected optimal characteristic sub-band, which has 
the highest PSK value. The envelope-spectrum analysis is performed and the result 
is shown in Fig. 6. The impact characteristics with a period of 0.02 s could be clearly 
seen. Moreover, the impact characteristic frequency and its frequency harmonic com-
ponents of 1–5 can be clearly identified, so it can be seen that the proposed method 
can extract the impact characteristic under the condition of strong noise.

Figures 7 and 9 show the time domain waveform and envelope spectrum of char-
acteristic sub-band signal extracted by wavelet packet decomposition and EEMD 
decomposition. The wavelet packet basis function adopts db4 wavelet. According to 
the frequency range of the characteristic frequency band, the 3-layer wavelet packet is 
determined to be decomposed into 8 nodes. The single-branch reconstruction of the 
wavelet coefficients of 8 nodes was carried out successively. The single-branch recon-
structed signal with the optimal characteristic sub-band of node (3,2) was determined 
according to the maximum power spectrum smoothness index, and its envelope spec-
trum was analyzed, as shown in Fig. 8. The EEMD method obtained 9 IMFs, and the 
same maximum PSK value determined the optimal characteristic sub-band as the 
IMF2, which was analyzed by envelope spectrum.

More obvious impact characteristics can also be observed from Fig.  7. However, 
the extraction of the impact characteristic frequency and its frequency doubling 
components is greatly affected by the noise, especially the basic annihilation of the 
frequency harmonic components 4 and 5 in the noise. The amplitude of other char-
acteristic frequencies is also smaller than that in Fig. 6, and there is still an obvious 

Fig. 4.  11 layers TQWT decomposition. The simulation signal is decomposed into 11 layers according to the 
optimal parameter Q = 3.1 and r = 3.5
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Fig. 5  Result of optimal characteristic sub-band selection. The figure shows the PSK value of each 
characteristic sub-band

Fig. 6  Waveform and envelope spectrum of characteristic sub-band signal extracted by adaptive TQWT
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noise interference frequency component. It can be seen in Fig. 9, the EEMD method 
reduces the degree of mode aliasing in the signal decomposition process by add-
ing random noise. However, with the introduction of noise, there are more noise 
interference components, but the impact characteristic frequency and its frequency 
doubling components are mixed with the interference frequency, so it is difficult to 
identify.

Table  1 presents the quantitative analysis results of the above three methods; by 
comparison, it can be seen that the adaptive TQWT sparse optimization method 
has the ability to extract transient features efficiently and accurately. The output 
SNR was 3.08db, and the envelope spectrum smooth index JTFE was 0.7816 at the 
minimum. It shows that the extracted characteristic sub-band energy distribution 
is more concentrated and has less in-band noise, which indicates that the proposed 
method has better capability of transient feature extraction with WPT decomposi-
tion and EEMD method.

4.2 � Experiment 2: Verification of measured signals

In order to verify the effectiveness of the proposed method, the telemetry vibration sig-
nals collected by high-frequency vibration sensors in the test mission of a certain aircraft 

Fig. 7  Waveform and envelope spectrum of characteristic sub-band signal extracted by WPT
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were used for processing and verification. The sampling frequency was 5.12  kHz. The 
results are shown in Fig. 10.

As SNR calculation requires the prior information of noiseless signal, it can be used as 
a good quantitative index in simulation research, but it cannot be used for the measured 
signal. Therefore, for the measured and telemetry vibration signals, we only use PSK and 
JTFE to quantify the time–frequency energy distribution.

Figure  10b, d shows the time-domain waveform, spectrum and time–frequency 
distribution of the measured and telemetered vibration signal. Under the influence 
of strong noise, the transient impact characteristics basically disappear. Figure 10c 
is a schematic diagram of the characteristic frequency band selected by the attenu-
ation method of 3  dB bandwidth. On the SSE curve, the driving frequency corre-
sponding to the maximum value is 1.763KHz, and the upper and lower limits of the 
characteristic frequency band determined by the 3  dB bandwidth are, respectively, 
1973 Hz and 1592 Hz. It is clear that the 3 dB bandwidth range can contain the main 
information of the pulse. According to the frequency response diagram of TQWT 

Fig. 8.  9 layers EEMD decomposition
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band-pass filter in Fig.  10a, the number of decomposition layers can be intuitively 
determined to be 10.

Figure  11 shows the SAEWSE 3d curve of adaptive parameter optimiza-
tion, where the two-dimensional grid search space of parameter (Q, r) is 
{(Q, r)|Q ∈ [2 : 0.1 : 8], r ∈ [2 : 0.1 : 8]} . According to the weighted wavelet Shannon 
entropy of sub-band average energy, the parameter {Q, r, J } was optimized and selected. 
As can be seen from Fig. 11, when Q = 6.2 and r = 8, the SAEWSE value is the smallest, 
thus determining the optimal parameter to decompose the measured signal. The decom-
position results of TQWT are shown in Fig. 12. According to Fig. 10a, select the number 
of layers (3 to 10 layers) of the sparse reconstruction of the wavelet coefficient, complete 
the sparse optimization of the wavelet coefficient and further highlight the impact char-
acteristics of the signal. Then, single branch reconstruction is carried out on the wavelet 

Fig. 9  Waveform and envelope spectrum of characteristic sub-band signal extracted by EEMD

Table 1  Comparison of SNR and JTFE of output signals

Methods SNR(dB) JTFE PSK

Simulation signal −8 0.9194 1.94

WPT 0.19 0.7928 32.91

EEMD −1.73 0.8372 14.77

Adaptive TQWT 3.08 0.7816 40.56
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a b

c d
Fig. 10  Schematic diagram of determining the characteristic frequency band by 3 dB bandwidth 
attenuation method: a frequency response of TQWT; b waveform and spectrum of the simulation signal; c 
SSE curve; d time–frequency distribution

Fig. 11.  3d curve of adaptive parameter optimization. The figure shows the SAEWSE value in the 
two-dimensional grid search space of parameter (Q,r), the optimal parameter (Qopt = 6.2, ropt = 8) is 
determined according to the minimum value of SAEWSE curve
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coefficients after sparse optimization. The power spectrum smoothness index PSK was 
used to determine the sub-band 6 as the optimal characteristic sub-band, as shown in 
Fig. 13, and the results are shown in Fig. 14 for envelope spectrum analysis.

Fig. 12.  10 layers TQWT decomposition. The measured signal is decomposed into 10 layers according to the 
optimal parameter Q = 6.2 and r = 8

Fig. 13  Result of optimal characteristic sub-band selection. The figure shows the PSK value of each 
characteristic sub-band
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Similarly, the time domain waveform and envelope spectrum of characteristic sub-
band signal are extracted by wavelet packet decomposition and EEMD decomposition in 
Figs. 15 and 16. The wavelet packet basis function also adopts db4 wavelet. According to 
the frequency range of the characteristic frequency band, the two-layer wavelet packet is 
determined to be decomposed into four nodes, and the wavelet coefficients of the four 
nodes are reconstructed by single branch. The single-branch reconstructed signal with 
the optimal characteristic sub-band of node (2,2) was determined according to the maxi-
mum power spectrum smoothness index, and its envelope spectrum was analyzed. The 
EEMD method obtained 10 IMFs, and the same maximum power spectrum smooth-
ing index determined the optimal characteristic sub-band as the second decomposition 
component imf2, which was analyzed by envelope spectrum.

Table 2 presents the quantitative analysis results of the above three methods; due to 
the small difference in the center frequency of each impact component in the measured 
transient vibration signal, the wavelet packet decomposition has its limitations under the 
influence of constant quality factor. Once the basis function and decomposition layer 
number are determined, the analysis frequency band of each layer is fixed and invariable, 
which is likely to span or not include the whole characteristic frequency band, so it is 
difficult to achieve good decomposition effect. Its JTFE is only 0.8395, and PSK is 13.03. 
The EEMD method reduces the degree of mode aliasing in the signal decomposition 

Fig. 14  Waveform and envelope spectrum of characteristic sub-band signal extracted by adaptive TQWT
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process by adding random noise, but when the modal frequency components are simi-
lar, it cannot completely eliminate the mode aliasing; in addition, with the introduction 
of noise, there are inevitably more interference frequency components, resulting in a 
larger JTFE of only 0.8742 and PSK of 15.26. The comparison shows that the adaptive 
TQWT sparse optimization method in this paper has efficient and accurate transient 
feature extraction capability. Envelope spectrum smooth index PSK is 20.71, JTFE is the 
minimum of 0.8028, and it reflects that the extracted characteristic sub-bands have more 
concentrated energy distribution and less in-band noise. Therefore, it can be concluded 
that the proposed method has better extraction capability of transient features with 
wave packet decomposition and EEMD method.

5 � Conclusions
A transient feature extraction method based on adaptive TQWT sparse optimiza-
tion is proposed to extract the impact characteristics of transient vibration signals. 
Based on the time–frequency distribution of vibration signal, an adaptive selection 
strategy for key parameters of TQWT is designed. In addition, the optimization idea 
was introduced into the TQWT decomposition process to further highlight the more 
sparse impact components in the signal according to the feature frequency band, 
which effectively improved the ability to extract the transient features of the signal. 

Fig. 15  Waveform and envelope spectrum of characteristic sub-band signal extracted by WPT
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The results of simulation experiments show that the new method is superior to the 
WPT decomposition and EEMD method in terms of noise removal and transient fea-
ture extraction.
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