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Abstract 

Spectrum sensing in a cognitive radio network involves detecting when a primary user 
vacates their licensed spectrum, to enable secondary users to broadcast on the same 
band. Accurately sensing the absence of the primary user ensures maximum utilization 
of the licensed spectrum and is fundamental to building effective cognitive radio net-
works. In this paper, we address the issues of enhancing sensing gain, average through-
put, energy consumption, and network lifetime in a cognitive radio-based Internet of 
things (CR-IoT) network using the non-sequential approach. As a solution, we propose 
a Dempster–Shafer theory-based throughput analysis of an energy-efficient spectrum 
sensing scheme for a heterogeneous CR-IoT network using the sequential approach, 
which utilizes firstly the signal-to-noise ratio (SNR) to evaluate the degree of reliability 
and secondly the time slot of reporting to merge as a flexible time slot of sensing to 
more efficiently assess spectrum sensing. Before a global decision is made on the basis 
of both the soft decision fusion rule like the Dempster–Shafer theory and hard decision 
fusion rule like the “n-out-of-k” rule at the fusion center, a flexible time slot of sensing 
is added to adjust its measuring result. Using the proposed Dempster–Shafer theory, 
evidence is aggregated during the time slot of reporting and then a global decision is 
made at the fusion center. In addition, the throughput of the proposed scheme using 
the sequential approach is analyzed based on both the soft decision fusion rule and 
hard decision fusion rule. Simulation results indicate that the new approach improves 
primary user sensing accuracy by 13% over previous approaches, while concurrently 
increasing detection probability and decreasing false alarm probability. It also improves 
overall throughput, reduces energy consumption, prolongs expected lifetime, and 
reduces global error probability compared to the previous approaches under any 
condition [part of this paper was presented at the EuCAP2018 conference (Md. Sipon 
Miah et al. 2018)].
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1  Introduction
1.1 � Motivation

The Internet of things (IoT) is a new machine-to-machine (M2M) communication 
paradigm that includes a variety of domains, protocols, and applications, which allow 
devices to communicate with each other using different communication technolo-
gies without human intervention [1]. The Internet of things will have a strong impact 
on many aspects of our daily life including assisted living, manufacturing, intelligent 
transportation of people/materials, e-health, and smart cities [2]. There are still many 
problems for applications on Internet of things including (i) the problem of interfer-
ence between different IoT devices in heterogeneous networks, (ii) spectrum scar-
city, i.e., the efficient allocation of spectrum bands to all Internet of things devices, 
and (iii) bandwidth requirements and energy constraints, particularly for multimedia 
applications [3]. To resolve the above-mentioned problems, research [4–6] is shifting 
towards cognitive radio networks (CRNs), presenting them as a potential solution for 
IoT applications. A paradigm shift of the cognitive radio-based Internet of things net-
work, called CR-IoT network, has already been introduced. As a result, some of the 
potential applications of IoT that can benefit from CRNs are health care, social activi-
ties, environment-related applications, in-home applications, smart grid, smart cities 
and Internet of vehicles.

Cognitive radio is a vital technology that allows dynamic spectrum access in a CR-
IoT network. It can dramatically enhance spectrum utilization as unused sections of the 
spectrum can be used by CR-IoT users [7]. A prerequisite of the CR-IoT user access is 
the prevention of unwanted interference that impacts on the primary users. If the pri-
mary user does not use it, the CR-IoT user automatically accesses the idle licensed spec-
trum of the primary network. In addition, when the primary user accesses it, the CR-IoT 
users instantly relinquish their momentarily allotted licensed spectrum.

Spectrum sensing plays a very important role in a CR-IoT network. In spectrum sens-
ing, CR-IoT users detect the primary user spectrum occupancy status and identify spec-
trum holes in the licensed channels that can be used to communicate themselves. There 
are a variety of spectrum sensing methods, like matched filter detection [8], cyclosta-
tionary detection [9], energy detection [10], and eigenvalue detection [11, 12]. When the 
transmitting signal is recognized, matched filter detection is known as the best method 
for the detection of primary users. The main benefit of matched filter detection is that 
effective spectrum sensing requires a short period of time compared to other methods. 
However, it needs full knowledge of the primary user signal features, including oper-
ating frequency, bandwidth, modulation type as well as order, packet layout, and pulse 
shaping. Cyclostationary detection offers excellent performance, yet needs knowledge 
of the cyclic frequencies of the primary user and takes a long time to accomplish sens-
ing. The energy detection technique is an interesting alternative method with a simple 
implementation and low computational complexity. However, it is highly susceptible to 
noise power uncertainty and is unable to distinguish between signal and noise. Its main 
drawback is that the signal intensity obtained at a particular geographic position can be 
severely reduced due to multipath fading and the shadow effect [13, 14]. On the other 
hand, the eigenvalue detection technique is a widely used method, because it can per-
form well in a noise uncertain environment.
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There are two types of CR-IoT networks [15–18]: (i) homogeneous CR-IoT networks 
and (ii) heterogeneous CR-IoT networks. In homogeneous CR-IoT networks, all CR-
IoT users have the same node capabilities, including equal antennae numbers, sampling 
rate, and a similar signal-to-noise ratio (SNR), which may be very minimal for detec-
tion purposes. In heterogeneous CR-IoT networks, each CR-IoT user may have different 
reporting errors and sensing qualities for different primary users. Cooperative spectrum 
sensing is more difficult because it requires a high SNR for each CR-IoT user. It is also 
faced by other difficulties including standardization, storage format, methods of pro-
cessing, synchronization, and resolution of measurement.

With cooperative spectrum sensing, each CR-IoT user conducts local sensing indepen-
dently and then sends the sensing results to the corresponding fusion center via a (noise-
free or non-noise-free) control channel. The fusion center combines all sensing findings 
and makes a final global decision based on fusion rules [19–22]. The fusion rule can be 
categorized either as hard decision fusion rule or as soft decision fusion rule. Each CR-
IoT user makes a one-bit decision on the existence of the primary user in a hard decision 
fusion rule (using the “n-out-of-k” rule, i.e., “OR” rule, “AND” rule, “M” rule [23], and 
“Optimal” rule [24]) and sends this decision to the fusion center, therefore needing only 
limited bandwidth. The sensing gain of the hard decision fusion rule is lower than that of 
the soft decision fusion rule, where each CR-IoT user sends the entire sensing result to 
the fusion center, making a decision using maximal ratio combining, square law combin-
ing, selection combining, and Dempster–Shafer theory. While it delivers better sensing 
gain than the hard fusion rule, the control channel needs wide bandwidth.

However, a CR-IoT user does not separate the primary signal from the noise signal in 
poor SNR conditions. In [25], the authors analyze a scheme using the “Dempster–Shafer 
theory I” to combine all decisions made by CR-IoT users with their self-assessed cred-
ibility of each decision. Moreover, authors introduce an approach in distributed CR-IoT 
networks using the more suitable basic probability assignment function and a reliabil-
ity source analysis based on “Dempster–Shafer theory II” [26]. Nevertheless, it cannot 
enhance sensing gain for a homogeneous CR-IoT network. The same sensing gain was 
achieved here by both Qihang et al. [25] and Nhan et al [26]. Miah et al. [27] proposed 
an improved cooperative sensing gain for hybrid CRNs, where the detection perfor-
mance is analyzed using the reporting framework via the soft decision fusion rule (i.e., 
the Dempster–Shafer theory). Here, the average throughput, energy consumption, net-
work lifetime, and global error probability were not analyzed.

1.2 � Contributions

The following major contributions are presented in this paper:
We propose a novel algorithm for heterogeneous CR-IoT networks under the sequen-

tial approach, in which each CR-IoT user uses a flexible sensing time slot by utilizing 
the reporting framework efficiently to sense the primary signal more accurately than the 
conventional scheme using a non-sequential approach.

We experimentally analyze the sensing gain at the fusion center with a flexible sensing 
time slot using both the soft decision fusion rule (i.e., the conventional Dempster–Shafer 
theory) and the hard decision fusion rule (i.e., the “n-out-of-k” rule); we demonstrate 
that the proposed Dempster–Shafer theory enhances the sensing gain for heterogeneous 
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CR-IoT networks using the sequential approach compared to both the conventional 
Dempster–Shafer theory and the “n-out-of-k” rule.

The average throughput of all CR-IoT users and the primary user is analyzed consider-
ing the proposed Dempster–Shafer theory for heterogeneous CR-IoT networks, hereby 
distinguishing between both the non-sequential approach and the sequential approach. 
Moreover, the energy consumption and the expected lifetime are analyzed where the 
expected lifetime is inversely proportional to the energy consumption in the proposed 
scheme.

Finally, the theoretical analysis has been confirmed by simulations. Overall, it will be 
shown that the proposed Dempster–Shafer theory for heterogeneous CR-IoT networks 
using both a non-sequential and sequential approach obtains a better sensing gain, 
an enhanced average throughput, a more efficient energy consumption, a prolonged 
expected lifetime, and a lower global error probability compared to both the conven-
tional Dempster–Shafer theory and “n-out-of-k” rule.

1.3 � Organization

The rest of this paper is structured as follows: In the “Related works” section, the gen-
eral motivation and background of this paper are outlined. “System model” explains the 
proposed scheme (consisting of the primary network and the CR-IoT network). “Energy 
detection technique” explains how the CR-IoT user measures its particular estimated 
energy from the primary user signal. “The conventional scheme using the non-sequential 
approach” outlines how each CR-IoT user underutilizes the reporting framework. In the 
“The proposed scheme based on the sequential approach” section, it is shown how each 
CR-IoT user utilizes the reporting framework. In the “Simulation results and discussion” 
section, the simulation metrics of the proposed scheme and comparisons are presented. 
Final remarks are addressed in “Conclusion and future work.” The mathematical nota-
tions used in this paper are briefly described in Table 1 in order to obtain the paper more 
readable.

2 � Related work
Spectrum sensing can broadly be broken up into two groups, noncooperative spec-
trum sensing and cooperative spectrum sensing using non-sequential and sequential 
approaches. Thus, we examine the literature from these two perspectives:

In noncooperative spectrum sensing, the analysis of spectrum sensing in a cognitive 
radio network using a non-sequential approach is presented in [28–30]. These papers 
show different aspects of the problem of spectrum sensing studied from the context of 
cognitive radio. The authors in [30] propose a “Fast” and “Optimal” sensing approach 
with power allocation using a non-sequential approach.

An analysis of cooperative spectrum sensing using a non-sequential approach in a 
cognitive radio network is presented in [31, 32]. Cooperative spectrum sensing of a 
single sensing node can concurrently decrease both the probability of false alarm and 
the miss detection. It has been shown that fading, shadowing, uncertainty, and the 
hidden terminal problem affect the spectrum sensing accuracy [13, 14, 33]. In [34], 
the authors proposed to identify the portions of the spectrum that are unused by pri-
mary user systems and other CR systems, called existing user (EU) systems altogether, 
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with the emphasis on conquering the challenge imposed by multipath fading chan-
nel where, in the first step, the maximum likelihood (ML) estimates of the frequency 
bands of EU systems were calculated; and in the second step, detection was per-
formed at each suspected band to decide whether an EU system is truly in operation.

The relay-based spectrum sensing was studied in [35] to mitigate the fading prob-
lem. The benefits of cooperative spectrum sensing can be compromised due to noisy 
reporting channels, which are discussed in [36–38]. To solve these problems, several 
approaches have been proposed, such as cluster-based cooperative spectrum sensing 
and sequential cooperative spectrum sensing [39, 40]. Lee et  al. [39] proposed the 
opportunistic non-orthogonal multiple access-based cooperative relaying network 
where if the transmit SNR is high and the average channel power of the sender to 
receiver link is low. However, the proposed method requires channel state informa-
tion response or alternative response schemes with lower overhead and complexity. 
In [40], the authors analyzed a cluster-based sequential cooperative spectrum sens-
ing scheme for cognitive radio networks to drastically reduce the number of direct 
reports to the fusion center from cognitive radio users, while also maintaining the 
same sensing gain compared to the conventional cooperative spectrum sensing 
scheme.

Table 1  Main notations with corresponding definitions

Notations Definition

H(H0/H1) Hypotheses (absent/present)

p0 The probability of absence of the primary signal

p1 The probability of presence of the primary signal

τs(NSA) The sensing time slot in the conventional scheme

τs(SA) The sensing time slot in the proposed scheme

STS The time slot of sensing

RTS The time slot of reporting

fs The sampling frequency

Nx ,j The total number of samples of the jth CR − IoT  user

T The total frame length

SA Sequential approach

NSA Non-sequential approach

CR − IoTtx The CR-IoT transmitter

CR − IoTrx The CR-IoT receiver

PUtx The primary user transmitter

PUrx The primary user receiver

A The frame of discernment

pd,j The probability of detection of the jth CR − IoT  user

pf ,j The probability of false alarm of the jth CR − IoT  user

gdd Global probability of detection of the fusion center

gdf Global probability of false alarm of the fusion center

c0 The channel capacity under H0

c1 The channel capacity under H1

Ravg The average throughput of the proposed scheme

SNRCR−IoT The SNR in the CR − IoTtx and CR − IoTrx link

SNRPU The SNR in the PUtx and CR − IoTrx link
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For distributed models, various fusion rules such as the “AND” rule, “OR” rule, and 
“M” rule [41] were outlined. Nguyen-Thanh et al. [41] showed that the “M” rule only 
works well when all CR-IoT users have identical thresholds. By combining results 
with a counting rule [42], an optimal fusion rule has been achieved. However, when 
the channel environment changes, the approach needs some time to converge.

In [43], a cluster-based cooperative spectrum sensing approach was introduced to 
attain a suitable assignment strategy with the aim of optimizing the average through-
put of the cognitive radio network. Nevertheless, the noise-free reporting channels 
were considered. In addition, the average throughput was still not evaluated for the 
utilization reporting framework. Eryight et  al. [44] tried to minimize total sensing 
and reporting energy consumption using the “OR” rule in an error-free cooperation 
environment. However, the soft decision fusion rule is already pointed out to be the 
best fusion rule in the context of additional SNR requirement which achieves opti-
mal performance. Zhang et  al. [45] used discrete convexity tools to maximize the 
achievable throughput in both homogeneous and heterogeneous scenarios. Yu [46, 
47] introduced optimum channel sensing to optimize the sum rate in cognitive radio 
networks with cooperative secondary users evaluating the cognitive radio capacity. In 
addition, some interesting characteristics have been observed including asymptotic 
results. Nevertheless, the average throughput in the heterogeneous CR-IoT network 
was not evaluated for the utilization reporting framework. In [48], an efficient termi-
nal assignment strategy for coordinated spectrum sensing was to determine the opti-
mum number of cooperative sensing cognitive terminals that is provided to optimize 
the proposed metric. In [49], the authors proposed a new time-division energy-effi-
cient (TDEE) sensing scheme in which the sensing period is divided into an optimal 
number of time slots and each secondary user (SU) is assigned to detect a different 
channel in one time slot. In [50], the authors proposed to investigate the joint impact 
of sensing probability, access probability, and energy queue capacity on the maximum 
achievable throughput in a multi-user CR network incorporating energy harvesting. 
In [51], the authors proposed a scheme which utilizes both the multi-user selection 
diversity and the inter-user transmission error comparison jointly where to reduce 
the transmission error of sending messages over fading channels. However, above 
papers [48–51] were not evaluated for the utilization reporting framework.

In [52], the authors presented optimizing the sum rate in amplify and forward-cogni-
tive radio networks using the sequential method and “n-out-of-k” rule with the through-
put of cognitive radio networks being analyzed. However, the average throughput was 
not analyzed using the soft decision fusion rule. In the cluster-based cognitive radio 
relay network [53], the authors introduced an improved sum rate using the sequential 
method to evaluate the sum rate. Nevertheless, the soft decision fusion rule did not 
evaluate the average throughput. In addition, due to the limited reporting control chan-
nel, the sequential approach was not evaluated because that would be a more desirable 
approach. In [54], an energy-efficient cooperative spectrum sensing scheme based on 
spatial correlation for cognitive Internet of things (CIoT) which mitigates the commu-
nication overhead and ensures sufficient sensing accuracy, the CR-based devices (CRDs) 
can be grouped into several clusters. However, the reporting time for the CRDs and the 
cluster heads are rigid frame structure, i.e., using the non-sequential approach.
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To the best of our knowledge considering all the previous studies, no previous work has 
been published which improves sensing accuracy, enhances throughput, reduces energy 
consumption, prolongs expected lifetime, and reduces global error probability.

3 � System model
We will model the primary network as well as the CR-IoT network in this section. In addi-
tion, the main assumptions are also presented.

3.1 � Modeling of the primary network

A two-state Markov chain describes the modeling of the primary user’s activities in the 
licensed channel, as shown in Fig. 1. In the “ON” state, the licensed channel is presumed 
to be used by a primary user, while the licensed channel is free in the “OFF” state. The pri-
mary network consists of a transmitter and a receiver, where the transmitter sends data to 
its receiver in the allocated licensed channel. We consider that the primary user uses time 
division multiplexing access.

3.2 � Modeling of the CR‑IoT network

A heterogeneous CR-IoT network consists of M users, i.e., transmitters and receivers, and 
a fusion center. In this model, all CR-IoT users are distributed in a heterogeneous region 
called a heterogeneous CR-IoT network in which there is a large distance between CR-IoT 
users as shown in Fig. 2 and every CR-IoT user has a different SNR sensing channel. All 
CR-IoT users use energy detectors to identify the primary user activities during the flexible 
sensing time slot due to utilizing the reporting framework in the sequential approach and 
then forwarding the local test statistics to its corresponding fusion center (FC) during the 
fixed reporting time slot. For simplicity, the reporting channel is assumed to be error-free. 
Finally, the global decision is conducted at the FC, which uses certain criteria to fuse the 
received decision results from all CR-IoT users. Also, we assume that the reporting links 
between the CR-IoT users and the FC will be perfect and the data fusion (hard fusion) rules 
are implemented.

In the primary user and CR-IoT user link, each CR-IoT user performs spectrum sensing 
during the sensing time slot to identify the primary user status on the licensed channel. The 
problem of spectrum sensing can be derived using a testing problem of binary hypothesis 
as follows:

(1)
{

H0 : if the primary user in the licensed channel is not detected
H1 : if the primary user in the licensed channel is detected

Fig. 1  The primary network time slot structure [55]



Page 8 of 36Miah et al. J Wireless Com Network        (2021) 2021:201 

where H0 and H1 indicate the primary user’s absence and presence in the desired 
licensed channel, respectively.

A binary hypothesis testing question can be used to formulate the received signal 
of the jth CR-IoT user as follows:

where j = 1, 2, 3, . . . ,M , t = 1, 2, 3, . . . ,Nx,j ; here, M is the total number of CR-IoT 
users, Nx,j is the total number of samples of the jth CR-IoT user’s received signal that 
is specified as Nx,j = 2τ

j
s fs , τ

j
s is the sensing duration of the jth CR-IoT user, and fs is 

the sampling frequency; x(t) is the signal transmitted from the primary user, hj(t) is 
the channel gain between the jth CR-IoT user and the primary user which is assumed 
that the channel is static during each sensing period, nj(t) is the additive white Gaussian 
noise, and yj(t) is the received signal of the jth CR-IoT user. A common spectrum allo-
cation scheme is shared by all CR-IoT users and the primary user.

(2)yj(t) =

{

nj(t); H0

hj(t)x(t)+ nj(t); H1

Fig. 2  The proposed system model
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4 � The energy detection technique
The most popular sensing method employed to identify the primary user is the energy 
detection technique. This is due to its ease of implementation, compatibility with any 
type of signal, and low computational complexity. We assume that each CR-IoT user 
transmitter ( CR− IoTtx ) senses the primary user signal using the energy detection tech-
nique. Fig. 3 demonstrates the structure of the channel sensing process at the CR− IoTtx 
using the technique of energy detection.

With the proposed scheme, the sensing result, yEj obtained by the jth CR-IoT user 
transmitter, is the signal power of a specific frequency in the time domain. A band-pass 
filter is applied to the received signal; then, this filter’s output is converted by an analog-
to-digital converter (ADC), before being averaged and squared using the energy detec-
tion technique to estimate its own calculated energy as provided by

where yj(t) is the tth sample of an obtained signal of the jth CR-IoT user and yEj is the 
received energy signal at the jth CR-IoT user .

When Nx,j is large, the probability distribution function (PDF) of yEj can be approxi-
mated with mean 

(

µ0j ,µ1j

)

 and variance 
(

σ 2
0j , σ

2
1j

)

 as a Gaussian random variable (Gauss-

ian distribution) using central limit theorem (CLT) under both hypotheses H0 and H1 , 
respectively as follows [56, 57]:

where γj is the SNR of the primary signal at the jth CR-IoT user.

5 � The conventional scheme using the non‑sequential approach
In the non-sequential approach, each CR-IoT user has obtained both a fixed/rigid time 
slot of sensing and a time slot of reporting. The time slots of sensing and reporting are 
not mergeable as shown in Fig. 4.

Proposition 1  Using the non-sequential approach, all CR-IoT users obtain a fixed time 
slot of sensing to detect the primary user because of the underutilized time slot of report-
ing framework as follows:

(3)yEj =
1

Nx,j

Nx,j
∑

t=1

|yj(t)|
2

(4)yEj ∼







N
�

µ0j = Nx,j , σ
2
0j = 2Nx,j

�

; H0

N
�

µ1j = Nx,j

�

1+ γj
�

, σ 2
1j = 2Nx,j

�

1+ 2γj
�

�

; H1

Fig. 3  A block diagram of the technique for energy detection
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1 � Proof
Please see the “Appendix.” �

5.1 � The hard decision fusion rule

The probability of detection, pd,j , is the probability that when the primary user is actually 
available on the licensed channel, the jth CR-IoT user correctly proclaims that the pri-
mary user is active on the licensed channel. The probability of false alarm, pf ,j , is the 
probability that the jth CR-IoT user incorrectly proclaims that the primary user is active 
on the licensed channel, when the primary user is really absent. In a hard decision fusion 
rule, we consider that the overall probability of detection, pEDd,j (τ

j
s (NSA)) = Pr(H1|H1) , 

and the probability of false alarm, pEDf ,j (τ
j
s (NSA)) = Pr(H1|H0) , of the jth CR-IoT user 

using the non-sequential approach can be written as follows:

(5)τ
j
s (NSA) = τs(NSA)

Fig. 4  TDMA frame structure of a time slot of sensing, time slot of reporting, and packet transmission in the 
conventional scheme using the non-sequential approach
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and

where �j denotes a local decision threshold of the jth CR-IoT user as well as Q(.) denotes 
the right-tail probability of a normalized Gaussian distribution that is mathematically 
expressed as Q(x) = 1

√

2π

∫

∞

x exp(− t2

2 )dt.

At the fusion center, all local decisions collected would be combined to make a global 
decision on the absence or presence of the primary user signal using the “n-out-of-k” 
rule test as follows:

and

where �ED is the global decision threshold of the “n-out-of-k” rule.

5.2 � The soft decision fusion rule

In the soft decision fusion rule, all CR-IoT users perform local sensing independently 
during the time slot of sensing and then sent their sensing results to the fusion center 
during the reporting time slot. Based on the conventional Dempster–Shafer theory, 
the fusion center is made a global decision. In the conventional Dempster–Shafer the-
ory using a non-sequential approach, each CR-IoT user will calculate the credibility of 
their self-assessed decision which is approximately equal to the conventional elementary 
assignment of probability for both hypotheses. We calculate an elementary assignment 
of probability as a cumulative density function based on the non-flexible time slot of 
sensing, τs(NSA) as follows:

(6)

pEDd,j

�

τ
j
s (NSA)

�

= Pr
�

yEj > �j|H1

�

= Q





�j − µ1,j
�

σ 2
1,j





= Q

�

�j

σ 2
1,j

− γj − 1

�

�

�

�

�

2τ
j
s (NSA)fs

�

1+ 2γj
�

(7)

pEDf ,j

�

τ
j
s (NSA)

�

= Pr
�

yEj > �j|H0

�

= Q





�j − µ0,j
�

σ 2
0,j





= Q

�

�j

σ 2
0,j

− 1

�

�

2τ
j
s (NSA)fs

(8)gdEDd (τs(NSA)) =



























1,



















if
�M=1

j=1 pd,j

�

τ
j
s (NSA)

�

> �ED; “OR”rule

if
�M

j=1 pd,j

�

τ
j
s (NSA)

�

> �ED; “AND”rule

if
�M>M/2

j=1 pd,j

�

τ
j
s (NSA)

�

> �ED; “M”rule

0, Otherwise

(9)gdEDf (τs(NSA)) =




















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where mj(H0) and mj(H1) denote an elementary assignment of probability of the jth CR-
IoT user under H0 and H1 , respectively.

5.3 � Global decision

At the fusion center using the non-sequential approach, all the traditional basic probability 
calculations of the jth CR-IoT user for both hypotheses will be combined to make a global 
decision on the absence or presence of the primary user signal based on the conventional 
Dempster–Shafer theory as follows:

and

where A denotes the discernment frame (defined as [H0,H1,�] , any hypothesis, � is valid 
that is defined as m(�) = 1−m(H1)−m(H0) ) as well as ⊕ refers to the orthogonal sum 
of ω1m1 , ω2m2, . . . ,ωMmM , which is both commutative and associative. The weight of 
the jth CR-IoT user ωj is a function of the distance between the two mean values of both 
hypotheses, Dj , which is defined as g(Dj) ωj = g

(

Dj

)

=

γj

max(γj)
.

The fusion center collects the final combination result m(H0) and m(H1) from each CR-
IoT user, and then it is made a global decision (gdf (τs(NSA))/gdd(τs(NSA))) as follows:

and

Now, we can calculate the decision statistics using Algorithm 1. Here, each CR-IoT user 
of a heterogeneous CR-IoT network obtains a fixed sensing time slot τ js (NSA) (see line 4) 
for a single CR-IoT user and τ js (NSA) (see line 6) for a cooperative CR-IoT user. Then, the 
algorithm computes the weight of the jth CR-IoT user for a heterogeneous CR-IoT 
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(14)gdf (τs(NSA)) = m(H0)>m(H1)

(15)gdd(τs(NSA)) = m(H1)>m(H0)
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network (see line 8). After that, it computes the jth local decisions pEDd,j (τs(NSA)) and 
pEDf ,j (τs(NSA)) based on the hard decision fusion rule (see lines 10 and 11), whereas it 
computes the basic probability assignment for both hypotheses (see lines 13 and 14) 
using the conventional Dempster–Shafer theory II. Finally, it computes the global detec-
tion gain gdEDd (τs(NSA)) and gdEDf (τs(NSA)) based on the hard decision fusion rule (see 
lines 19 and 20) and gdf (τs(NSA))/gdd(τs(NSA)) based on the conventional Dempster–
Shafer theory II (see lines 21 and 22). 
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6 � The proposed scheme based on the sequential approach
The proposed Dempster–Shafer theory-based spectrum sensing in a heterogeneous CR-
IoT network using the sequential approach is an impressive solution to the issue of spec-
trum shortages; it merges a time slot of reporting in a reporting framework which is 
shown in Fig. 5.

Fig. 5  Frame structure of the proposed Dempster–Shafer theory-based scheme using a sequential approach
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Proposition 2  In the sequential approach, CR-IoT users get a flexible time slot of sens-
ing because the remainder of the CR-IoT user reporting time slots merging to the flexible 
time slot of sensing defined as follows:

1 � Proof
Please see the “Appendix.” �

In the sensing phase, the fusion center transmits a “sensing request message” across all 
CR-IoT users of the heterogeneous CR-IoT networks. After receiving the “sensing request 
message” from the fusion center, all CR-IoT users stay quiet as well as to detect the primary 
user signal during the flexible time slot of sensing using the energy detection technique 
based on Proposition 2. Once a “local decision” is made, each jth CR-IoT user must send 
their “local decision” during the time slot of reporting to the corresponding fusion center, 
who collects all “local decisions” as well as then makes a “global decision” of the hypotheses 
like H1 or H0 . Finally, the fusion center transmits the “global decision” across all CR-IoT 
users. After receiving the “global decision” from the fusion center, the CR-IoT users either 
commence or cease transmission, depending on the decision.

6.1 � The hard decision fusion rule

In the proposed scheme using the sequential approach with the hard decision fusion rule, 
we consider that the overall probability of detection, pEDd,j

(

τ
j
s (SA)

)

= Pr(H1|H1) , and the 

probability of false alarm, pEDf ,j
(

τ
j
s (SA)

)

= Pr(H1|H0) , of the jth CR-IoT user can be writ-

ten as follows:

and

At the fusion center, all local decisions collected would be combined to make a global 
decision on the absence or presence of the primary user signal using the hard decision 
fusion rule test as follows:
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and

where �ED is the global decision threshold of the “n-out-of-k” rule.

6.2 � The soft decision fusion rule

In the soft decision fusion rule, all CR-IoT users perform local sensing independently 
during the time slot of sensing as well as then send their sensing results to the fusion 
center during the time slot of reporting. Based on the proposed Dempster–Shafer 
theory, the fusion center is made a global decision. In the proposed Dempster–Shafer 
theory using the sequential approach, each CR-IoT user will calculate the credibil-
ity of their self-assessed decision that is approximately equal to the conventional ele-
mentary assignment of probability for both hypotheses. We calculate an elementary 
assignment of probability as a cumulative density function based on the flexible time 
slot of sensing, τ js (SA) , as follows:

where m′

j(H0) and m′

j(H1) denote an elementary assignment of probability of the jth CR-
IoT under H0 and H1 , respectively.

Proposition 3  In the proposed Dempster–Shafer theory for a heterogeneous CR-IoT 
network using the sequential approach, the weight of the jth CR-IoT user ω′

j is a function 
of the distance between the two hypothesis mean values, Dj , which is defined as g(Dj) and 
a function of attaining the flexible time slot of sensing, τ js (SA) , that is defined as f

(

τ
j
s (SA)

)

 

as follows:
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1 � Proof
Please see the “Appendix.” �

Proposition 4  In the proposed Dempster–Shafer theory for a homogeneous CR-IoT net-
work, the weight of the jth CR-IoT user, ω′

j , depends on only f
(

τ
j
s (SA)

)

 that is defined as 

follows:

1 � Proof
Please see the “Appendix.” �

Proposition 5  In the proposed Dempster–Shafer theory for a heterogeneous CR-IoT 
network, we obtain an improved self-assessed elementary assignment of probability 
of both hypotheses of the jth CR-IoT user compared to the normal basic probability of 
assignment which is defined as follows:

6.3 � The global decision

The proposed Dempster–Shafer theory has gained a great deal of attention in applica-
tion areas like intelligence analysis, target identification, wireless sensor networks to 
name but a few. It achieves significant sensing performance improvements because of its 
ability to model uncertainty with regards to the propositions, that is a great approach for 
decision-making in a heterogeneous CR-IoT network.

At the fusion center, all the improved self-assessed elementary assignments of prob-
ability calculations of the jth CR-IoT user for both hypotheses will be combined to make 
a global decision on the absence or presence of the primary user signal as follows:

and
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where A denotes the discernment frame (defined as [H0,H1,�] , any hypothesis, � is valid 
that is defined as m′′(�) = 1−m′′(H1)−m′′(H0) ) as well as ⊕ refers to the orthogonal 
sum of ω′

1m
′

1 , ω
′

2m
′

2, . . . , and ω′

Mm′

M , that is both associative and commutative.
The fusion center collects the final combination result m′′(H0) as well as m′′(H1) from 

each CR-IoT user, and then it is made a global decision ( gdf (τs(SA))/gdd(τs(SA)) ) as 
follows:

and

6.4 � Throughput analysis

In each transmission slot, if a CR− IoTtx user do not identify the primary user signal, they 
decide that the channel is free and they transmit data to their own receiver; otherwise, they 
wait till the channel is available for transmission, that is scheduled round-robin. If the pri-
mary user is absent and this absence is perfectly detected by the CR-IoT user, the CR-IoT 
user accesses the licensed channel of the primary user with probability (1− gdf (τs(SA))) 
as well as does not access the licensed channel of the primary user with the probability 
gdd(τs(SA)) . The successful (round-robin) transmission of data in a time slot relies on two 
things: (i) a free licensed channel of the primary user that is sensed accurately by the CR-
IoT users, as well as (ii) error-free data are transmitted. In such a case, the average through-
put of all CR-IoT users and the primary user is calculated using a sequential approach as 
follows [58]:

and

where c0 refers to the transmitter (CR− IoTtx)–receiver (CR− IoTrx) channel capacity 
of the link when the primary user is not present, c1 denotes the transmitter (CR− IoTtx)

–receiver (CR− IoTrx) channel capacity of the link when the primary user is not absent, 
T is the length of a time slot, and p1 and p0 are the presence and absence probabilities of 
the primary user signal, respectively.

When the CR− IoTtx transmits data under H0 , the CR− IoTtx and CR− IoTrx link has a 
capacity c0 as follows:
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(28)gdf (τs(SA)) = m′′(H0) > m′′(H1)

(29)gdd(τs(SA)) = m′′(H1) > m′′(H0)

(30)Ravg (τs(SA)) = θ
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p0 + c1
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)

(31)θ =
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T − τs(SA)

T

)

(32)c0 = log2(1+ SNRCR−IoT )
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where SNRCR−IoT is the SNR in the CR− IoTtx–CR− IoTrx link.
When the CR− IoTrx receives data under H1 , the CR− IoTrx receives the primary user 

signal as noise. In this case, the CR− IoTtx and CR− IoTrx link has a capacity c1 as follows:

where SNRPU is the SNR in the PUtx and CR− IoTrx link.

6.5 � Energy consumption analysis

The average energy consumption of the proposed scheme using a sequential approach can 
be calculated as follows [58]:

where es is the energy consumed for sensing time slot, et is the energy consumed for the 
transmission, tt is the transmission time which is defined as tt = T − τs(SA)− τr , and T 
is the overall time slot duration.

6.6 � Expected lifetime analysis

The expected lifetime of the proposed scheme using a sequential approach for a heteroge-
neous CR-IoT network based on the proposed Dempster–Shafer theory can be calculated 
as follows [58]:

where ec is the capacity of battery.
Now, we can calculate the decision statistics using Algorithm 2. Here, each CR-IoT user 

for both a homogeneous and a heterogeneous CR-IoT network obtains a flexible time slot 
of sensing τs(SA) (see line 6), whereas it obtains a non-flexible time slot of sensing τs(SA) for 
a single CR-IoT user (see line 4). Then, the algorithm computes the weight of the jth CR-
IoT user for both a heterogeneous CR-IoT network (see line 8) and a homogeneous CR-IoT 
network (see line 9). After that, it computes the jth CR-IoT user local decision pEDd,j

(

τ
j
s (SA)

)

 

and pEDf ,j
(

τ
j
s (SA)

)

 based on the hard decision fusion rule (see lines 11 and 12), and then it 

sets an enhanced self-assessed basic probability assignment for both hypotheses (see lines 
17 and 18). Finally, it computes the global detection gain gdEDd (τs(SA))/gd

ED
f (τs(SA)) using 

the hard decision fusion rule (see lines 21 and 22) and gdf (τs(SA))/gdd(τs(SA)) using the 
proposed Dempster–Shafer theory (see lines 23 and 24), the average throughput 
Ravg (τs(SA)) (see line 25), the average energy consumption Eavg (τs(SA)) (see line 26), and 
the expected lifetime η(τs(SA)) (see line 27).

(33)c1 = log2
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1+
SNRCR−IoT

1+ SNRPU

)

(34)Eavg (τs(SA)) = esτs(SA)+ et tt
(

(1− gdf (τs(SA)))p0 + (1− gdd(τs(SA)))p1
)

(35)η(τs(SA)) =
ec

Eavg (τs(SA))
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7 � Simulation results and discussion
The parameters used in simulations are provided in this chapter as well as a descrip-
tion of the simulation performance.



Page 21 of 36Miah et al. J Wireless Com Network        (2021) 2021:201 	

7.1 � Simulation parameter setting

In this subsection, we confirm the theoretical findings and analyze the performance of 
the proposed throughput analysis of an energy-efficient spectrum sensing scheme for the 
CR-IoT networks. This is achieved by means of computational MATLAB simulations. 
The implementation of the proposed scheme was performed to computer machines run-
ning the Windows 10 operating system. The system includes a 8 GB built volatile mem-
ory capacity Intel(R) Core(TM)2 Duo CPU T7250 @ 2.00 GHz.

Simulations of Monte Carlo were performed using the parameter setting mentioned in 
Table 2.

7.2 � Performance comparison

Under the conditions shown in Table 2, the receiver operating characteristics (ROC) are 
shown in Fig. 6. This shows that the proposed Dempster–Shafer theory-based spectrum 
sensing for homogeneous CR-IoT networks achieves better sensing gain compared to 
both the conventional Dempster–Shafer theories I and II for homogeneous CR-IoT net-
works. With the non-sequential approach, the detection probability of the “OR” rule is 
always higher compared to both the “M” rule and “AND” rule.

Moreover, the sensing gain of both the conventional Dempster–Shafer theories I and 
II for homogeneous CR-IoT networks is the same, as the SNR of all the CR-IoT users is 
identical.

In Fig. 7, it has been shown that the proposed Dempster–Shafer theory-based spec-
trum sensing for heterogeneous CR-IoT networks using the sequential approach 
achieves better detection gain compared to both the conventional Dempster–Shafer 
theories I and II for heterogeneous CR-IoT networks. With the hard decision fusion 
rule, using the “n-out-of-k” rule, the probability of detection of “Optimal” rules using 
the non-sequential approach is always larger compared to the “AND” rule, “OR” rule, 
and “M” rule. Moreover, the probability of detection of the “OR” rule using the non-
sequential approach is always larger compared to the “AND” rule and “M” rule. With the 

Table 2  Main parameters with corresponding values

Parameters Value

The primary user signal, x(t) DTV signal

The sampling frequency of the primary user signal, fs 6 MHz

The channel noise, n(t) AWGN

The sensing time slot, τs 50 µs

The reporting time slot, τr 5 µs

The total time slot length, T 10 µs

The number of samples, Nx 300

The number of CR-IoT users, M 10

The SNR of each primary user, SNRPU 10 dB

The SNR of each CR-IoT user, SNRCR−IoT −28 dB

The energy consumed during the sensing phase, es 1 J

The energy consumed during the transmission phase, et 3 J

The capacity of the battery, ec 300 J

The probability of the absence of the primary user, p0 0.5

The probability of the presence of the primary user, p1 0.5



Page 22 of 36Miah et al. J Wireless Com Network        (2021) 2021:201 

soft decision fusion rule, the probability of detection of the proposed Dempster–Shafer 
theory is higher compared to both the conventional Dempster–Shafer theories I and II.

When comparing the sensing gain at the FC, as shown in Table  3 where the pro-
posed Dempster–Shafer theory-based spectrum sensing when the probability of 
false alarm (gdf = 0.2) for homogeneous CR-IoT networks can detect the spectrum 
with 80% accuracy, whereas the conventional Dempster–Shafer theories I and II for 

Fig. 6  ROC curves of the proposed homogeneous CR-IoT networks using the non-sequential approach and 
sequential approach

Fig. 7  ROC curves of the proposed heterogeneous CR-IoT networks using the non-sequential approach and 
sequential approach
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homogeneous CR-IoT networks only detect the primary user signal with a detection 
accuracy of 70% . Moreover, the proposed Dempster–Shafer theory-based sensing 
gain when the probability of false alarm (gdf = 0.2) for heterogeneous CR-IoT net-
works can detect the spectrum with 93% accuracy, whereas the conventional Demp-
ster–Shafer theories I and II for heterogeneous CR-IoT networks detect the primary 
user signal with a detection accuracy of 80% and 87% , respectively. Therefore, the pro-
posed Dempster–Shafer theory-based spectrum sensing for both homogeneous and 
heterogeneous CR-IoT networks using the sequential approach is a better solution to 
address the scarcity problem for future IoT networks.

Figure 8 shows that the average throughput of the proposed method for homogeneous 
CR-IoT networks is higher compared to both the conventional “n-out-of-k” rule and the 
conventional Dempster–Shafer theories I and II for heterogeneous CR-IoT networks.

Figure  9 shows that the average throughput of the proposed Dempster–Shafer 
theory for heterogeneous CR-IoT networks is higher compared to the conventional 
“n-out-of-k” rule and both the conventional Dempster–Shafer theories I and II for 
heterogeneous CR-IoT networks.

Table  4 shows that the throughput of the proposed Dempster–Shafer theory for 
homogeneous CR-IoT networks when the probability of false alarm (gdf = 0.2) 

Table 3  Sensing gain at the fusion center for CR-IoT networks using the non-sequential approach 
and sequential approach

Item HDF rule under NSA SDF rule under NSA and SA Figure

Sensing gain OR rule AND rule M rule Opt rule DS theory I DS theory II Proposed 
DS theory

gdd for homogeneous 0.49 0.46 0.51 0.60 0.70 0.70 0.80 Fig. 6

gdd for heterogeneous 0.60 0.49 0.57 0.79 0.80 0.87 0.93 Fig. 7

Fig. 8  The average throughput versus the probability of false alarm for homogeneous CR-IoT networks
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achieves an average throughput of 2.64Hz compared to both the conventional Demp-
ster–Shafer theories I and II with 2.42Hz and 2.42Hz, respectively. Similarly, the 
throughput of the proposed Dempster–Shafer theory for heterogeneous CR-IoT net-
works when the probability of false alarm (gdf = 0.2) achieves an average throughput 
of 2.82Hz compared to both the conventional Dempster–Shafer theories I and II with 
2.60Hz and 2.71Hz, respectively. This enhanced average throughput would be much 
more acceptable to emerging IoT networks.

Figure  10 shows that the energy consumption of the proposed Dempster–Shafer 
theory for homogeneous CR-IoT networks is less when compared to the conventional 
“n-out-of-k” rule and both the conventional Dempster–Shafer theories I and II for 
homogeneous CR-IoT networks. Here, the average energy consumption Eavg

(

τ
j
s (SA)

)

 

depends on the probability of false alarm, gdf
(

τ
j
s (SA)

)

.

Figure 11 shows that the proposed Dempster–Shafer theory-based energy consump-
tion for heterogeneous CR-IoT networks is lower when compared to the conventional 
“n-out-of-k” rule and both the conventional Dempster–Shafer theories I and II for het-
erogeneous CR-IoT networks. Here, the average energy consumption Eavg

(

τ
j
s (SA)

)

 

depends on the probability of false alarm, gdf
(

τ
j
s (SA)

)

.

Fig. 9  The average throughput versus the probability of false alarm for heterogeneous CR-IoT networks

Table 4  Average throughput versus probability of false alarm for CR-IoT networks

Item HDF rule under NSA SDF rule under NSA & SA Figure

Average throughput OR rule AND rule M rule Opt rule DS theory I DS theory II Proposed 
DS theory

Ravg for homogeneous 1.73 1.68 1.85 2.20 2.42 2.42 2.64 Fig. 8

Ravg for heterogeneous 2.10 1.56 2.00 2.50 2.60 2.71 2.82 Fig. 9
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Table 5 shows that the energy consumption of the proposed Dempster–Shafer the-
ory for homogeneous CR-IoT networks when the probability of false alarm (gdf = 0.2) 
achieves an average energy consumption of 1.50J compared to both the conventional 
Dempster–Shafer theories I and II with 1.52J and 1.52J, respectively. Similarly, the 
average energy consumption of the proposed Dempster–Shafer theory for heteroge-
neous CR-IoT networks when the probability of false alarm (gdf = 0.2) is 1.25J when 

Fig. 10  The average energy consumption versus the probability of false alarm for homogeneous CR-IoT 
networks

Fig. 11  The average energy consumption versus the probability of false alarm for heterogeneous CR-IoT 
networks
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compared to both the conventional Dempster–Shafer theories I and II with 1.45J and 
1.35J, respectively. This lower average energy consumption makes it more applicable 
for future IoT networks.

Figure 12 compares the expected lifetime of the conventional “n-out-of-k” rule and 
both the conventional Dempster–Shafer theories I and II for homogeneous CR-IoT 
networks, and the proposed Dempster–Shafer theory for homogeneous CR-IoT net-
works. Here, the proposed Dempster–Shafer theory using the sequential approach 
enhances energy efficiency when compared to both the conventional Dempster–
Shafer theories I and II.

Figure 13 compares the expected lifetime of the conventional “n-out-of-k” rule and 
both the conventional Dempster–Shafer theories I and II for heterogeneous CR-IoT 
networks and the proposed Dempster–Shafer theory for heterogeneous CR-IoT net-
works. Here, the proposed Dempster–Shafer theory using the sequential approach 
enhances energy efficiency when compared to both conventional Dempster–Shafer 
theories I and II.

Table 6 shows that the average throughput of the proposed Dempster–Shafer the-
ory for homogeneous CR-IoT networks using the sequential approach for round 
200 achieves an average throughput of 2.75 Hz compared to both the conventional 

Table 5  Energy consumption versus probability of false alarm for CR-IoT networks

Item HDF rule under NSA SDF rule under NSA and SA Figure

Energy consumption OR rule AND rule M rule Opt rule DS theory I DS theory II Proposed 
DS theory

Ec for homogeneous 1.90 1.90 1.80 1.75 1.52 1.52 1.50 Fig. 10

Ec for heterogeneous 1.90 1.80 1.75 1.50 1.45 1.35 1.25 Fig. 11

Fig. 12  Average throughput versus the expected lifetime for a homogeneous CR-IoT network
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Dempster–Shafer theories I and II with 2.53 Hz and 2.53 Hz, respectively. Similarly, 
the average throughput of the proposed Dempster–Shafer theory for heterogeneous 
CR-IoT networks using the sequential approach for round 200 achieves an average 
throughput of 2.90 Hz when compared to both the conventional Dempster–Shafer 
theories I and II with 2.65 Hz and 2.75 Hz, respectively. This enhanced average 
throughput makes it more applicable for future IoT networks.

Figure  14 shows that pe for the conventional “n-out-of-k” rule and both the con-
ventional Dempster–Shafer theories I and II for homogeneous CR-IoT networks and 
the proposed Dempster–Shafer theory for homogeneous CR-IoT networks decreases 
along with an increase in the probability of detection value from 0 to 0.7. In addition, 
pe for the conventional “n-out-of-k” rule and both the conventional Dempster–Shafer 
theories I and II for homogeneous CR-IoT networks gets larger along with an increase 
in the probability of detection value from 0.6 to 0.8. On the other hand, the global 
error probability pe in the conventional “AND” rule is always high along with an 
increase in the probability of detection from 0 to 1. Therefore, the global error proba-
bility pe of the proposed Dempster–Shafer theory for homogeneous CR-IoT networks 
is lower than for the conventional “n-out-of-k” rule and both the conventional Demp-
ster–Shafer theories I and II for homogeneous CR-IoT networks.

Fig. 13  Average throughput versus the expected lifetime for a heterogeneous CR-IoT network

Table 6  Average throughput versus expected lifetime for CR-IoT networks using the non-sequential 
approach and sequential approach

Item HDF rule under NSA SDF rule under NSA & SA Figure

Average throughput OR rule AND rule M rule Opt rule DS theory I DS theory II Proposed 
DS theory

Ravg for homogeneous 2.45 2.25 2.40 2.50 2.53 2.53 2.75 Fig. 12

Ravg for heterogeneous 2.50 2.35 2.40 2.60 2.65 2.75 2.90 Fig. 13
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Figure 15 shows that pe for the conventional “n-out-of-k” rule and both the conven-
tional Dempster–Shafer theories I and II for heterogeneous CR-IoT networks and the 
proposed Dempster–Shafer theory for heterogeneous CR-IoT networks decreases along 
with an increase in the probability of detection value from 0 to 0.7. In addition, pe for 
both the conventional “n-out-of-k” rule and the conventional Dempster–Shafer theories 
I and II for heterogeneous CR-IoT networks gets larger along with an increase in the 
probability of detection value from 0.6 to 0.8. On the other hand, the global error prob-
ability pe in the proposed Dempster–Shafer theory for heterogeneous CR-IoT networks 

Fig. 14  The global error probability versus the probability of detection for a homogeneous CR-IoT network

Fig. 15  The global error probability versus the probability of detection for a heterogeneous CR-IoT network
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is low with an increase in the probability of detection from 0 to 0.9. Therefore, the global 
error probability pe of the proposed Dempster–Shafer theory for heterogeneous CR-IoT 
networks is lower than for the conventional “n-out-of-k” rule and both the conventional 
Dempster–Shafer theories I and II for heterogeneous CR-IoT networks.

When comparing the global error probability at the fusion center in Table 7, we can 
see that the proposed Dempster–Shafer theory for homogeneous CR-IoT networks can 
obtain an pe of 23% when the probability of detection, (gdd) , is 0.9, whereas the conven-
tional Dempster–Shafer theories I and II for homogeneous CR-IoT networks can obtain 
the same pe with 30% . Similarly, the proposed Dempster–Shafer theory for heterogene-
ous CR-IoT networks can obtain an pe of 11% when the probability of detection, (gdd) , 
is 0.9, whereas the conventional Dempster–Shafer theories I and II for heterogeneous 
CR-IoT networks can obtain a pe of 22% and 18% , respectively. Therefore, the proposed 
Dempster–Shafer theory-based spectrum sensing for heterogeneous CR-IoT networks 
is a better solution to address the global error probability problem for the future IoT 
networks.

8 � Conclusion and future work
We calculate the weight ratio in this paper, that is specified as the ratio of the two mean 
values of both hypotheses. In the sensing gain, the proposed Dempster–Shafer theory for 
homogeneous CR-IoT networks demonstrates a 10% improvement over both the con-
ventional Dempster–Shafer theories I and II. Moreover, the proposed Dempster–Shafer 
theory for heterogeneous CR-IoT networks demonstrates a 13% and 10% improvement 
over both the conventional Dempster–Shafer theories I and II, respectively.

With respect to the average throughput for homogeneous CR-IoT networks, the 
proposed Dempster–Shafer theory is 7.14% and 50.35% better than both the conven-
tional Dempster–Shafer theories I and II, respectively. Moreover, the proposed Demp-
ster–Shafer theory for heterogeneous CR-IoT networks is 13% and 10% better than the 
conventional Dempster–Shafer theories I and II for heterogeneous CR-IoT networks, 
respectively.

In comparison, the proposed scheme with the Dempster–Shafer theory for heteroge-
neous CR-IoT networks demonstrates for the probability of false alarm (gdf = 0.1) a 30% 
and 20% lower energy consumption to both conventional Dempster–Shafer theories I 
and II, respectively.

With regard to the expected lifetime in terms of average throughput, the proposed 
Dempster–Shafer theory for heterogeneous CR-IoT networks for round 200 shows a 
10% and 25% improvement when compared to both conventional Dempster–Shafer the-
ories I and II, respectively.

Table 7  Global error probability versus probability of detection for CR-IoT networks using HDF rule 
and SDF rule under NSA and SA

Item HDF rule under NSA SDF rule under NSA and SA Figure

Average throughput OR rule AND rule M rule Opt rule DS theory I DS theory II Proposed 
DS theory

pe for homogeneous 0.37 0.47 0.39 0.34 0.30 0.30 0.23 Fig. 14

pe for heterogeneous 0.29 0.39 0.34 0.24 0.22 0.18 0.11 Fig. 15
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Finally, a global error probability of 10% is achieved in the proposed Dempster–Shafer 
theory for heterogeneous CR-IoT networks, while 57% and 21% global error probabilities 
are achieved in both the conventional Dempster–Shafer theories I and II, respectively. 
Therefore, we conclude that our proposed Dempster–Shafer theory would be much more 
acceptable to emerging IoT networks because it alleviates the issue of spectrum short-
age, enhances system throughput, improves energy efficiency, and prolongs the expected 
lifetime.

Our future research would entail a complexity evaluation of the proposed Algorithm 2. In 
addition, we will analyze the sensing gain, the average throughput, the average energy con-
sumption, and the expected lifetime of the proposed Dempster–Shafer theory for hetero-
geneous CR-IoT networks that use the underlay approach. Furthermore, we will investigate 
the scalability of the proposed Dempster–Shafer theory with regard to network size and 
number of CR-IoT devices.

Appendix

Proof of proposition 1
In the conventional scheme using a non-sequential approach, the jth CR-IoT user can 
obtain a fixed both time slot of sensing and time slot of reporting as a result of the remain-
der of CR-IoT users time slots of reporting are not merged to the flexible time slot of sens-
ing as shown in Fig. 4 which is defined as follows:

where τ js (NSA) is not a flexible time slot of sensing of the jth CR-IoT user using the non-
sequential approach and τs is the sensing time slot which is a fixed for all CR-IoT users. �

Proof of proposition 2
The proposed scheme using the sequential approach utilizes the reporting framework as 
shown in Fig. 5; it is seen that the 2nd CR-IoT user has acquired a flexible time slot of 
sensing to detect the primary user signal because of merging the time slot of reporting of 
the 1st CR-IoT user and the sensing time slot of the 2nd CR-IoT user. The time slot of sens-
ing of the 2nd CR-IoT user is merged which is defined as follows:

where τ 1r  is a reporting time slot of the 1st CR-IoT user which is a fixed for all CR-IoT 
users, i.e., τ 1r = τ 2r = · · · = τ

j
r = τr.

In addition, the flexible time slot of sensing for the 3rd CR-IoT user must be achieved 
which is defined as follows:

(36)τ
j
s (NSA) = τs

(37)τ 2s = τ 2s + τ 1r
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Finally, the flexible time slot of sensing of the jth CR-IoT user can be calculated as 
follows:

�

Proof of proposition 3
In the proposed Dempster–Shafer theory based on the sequential approach for a heteroge-
neous CR-IoT network, the weight, ω′

j , can be expressed using Eq. (23) which is defined as 
follows:

In a heterogeneous CR-IoT network, the jth CR-IoT user utilizes only the distance Dj of 
both hypotheses that is defined as follows:

The function f (.) will meet the specific constraints in order to assess an acceptable 
adjustment [27]: 

	 i.	 f (.) agrees a flexible time slot of sensing, τ js (SA) , the weight function as an output 
ω′

jǫ[1, 0]

	 ii.	 f (.) = 0 if τ js (SA) = τ
j
s (NSA)

	iii.	 f (.) = 1 if τ js (SA) = 2τ
j
s (SA)

	iv.	 f (.) ∼ |τ
j
s (SA)− τ

j
s (NSA)|

Now, we can normalize the flexible time slot of sensing based on the above specific con-
straints as follows:

In the proposed Dempster–Shafer theory based on the sequential approach for a hetero-
geneous CR-IoT network, the weight ω′

j of the jth CR-IoT can be calculated by normal-
izing the distance using Eq. (41) as follows:

(38)

τ 3s = τ 3s + τ 2r + τ 1r

= τ 3s +

2
∑

j=1

τ
j
r

(39)τ
j
s (SA) = τ

j
s (NSA)+

j−1
∑

j=1

τ
j
r = τs(NSA)+

(

j − 1
)

τ
j
r

(40)ω′

j = g
(

Dj

)

× f
(

τ
j
s (SA)

)

(41)

Dj = µ1j − µ0j

= 2τsfs
(

1+ γj
)

− 2τsfs

= 2τsfsγj

(42)f
(

τ
j
s (SA)

)

=

|τ
j
s (SA)− τ

j
s (NSA)|

min
(

τ
j
s (SA), τ

j
s (NSA)

)
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Now, based on both Eqs. (42) and (43), we can rewrite Eq. (40) as follows:

�

Proof of proposition 4
In a homogeneous CR-IoT network using the sequential approach, the SNR of all CR-IoT 
users is identical, i.e.,γ1 = γ2 = γ3 =, . . . ,= γj−1 = γj = γ . The weight of the jth CR-IoT 
user, ωj , is obtained by Eq. (42)

Now, we can rewrite Eq. (43) based on Eq. (44) as follows:

�

Proof of proposition 5
In the proposed Dempster–Shafer theory-based heterogeneous CR-IoT network using the 
sequential approach [27], we obtained an improved self-assessed elementary probability 
assignment function of both hypotheses of the jth CR-IoT user as a form of a flexible time 
slot of sensing, τ js (SA) , instead of a non-flexible time slot of sensing, τ js (NSA) , as follows:

(43)
g
(

Dj

)

=

Dj

max
(

Dj

)

=

γj

max
(

γj
)

(44)ω′

j =
γj

max
(

γj
) ×

|τ
j
s (SA)− τ

j
s (NSA)|

min
(

τ
j
s (SA), τ

j
s (NSA)

)

(45)

g
(

Dj

)

=

Dj

max
(

Dj

)

=

γ

max(γ )

= 1

(46)ω′

j =
|τ

j
s (SA)− τ

j
s (NSA)|

min
(

τ
j
s (SA), τ

j
s (NSA)

)

(47)m′

j(H0) =

�

+∞

Ej

1
�

8πτ
j
s (SA)fs

e






−

�

x−2τ
j
s (SA)fs

�2

4τ
j
s (SA)fs







dx

(48)m′

j(H1) =

� Ej

−∞

1
�

8πτ
j
s (SA)fs

�

1+ 2γj
�

× e






−

�

x−2τ
j
s (SA)fs

�

1+γj
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where m′

j(H0) as well as m′

j(H1) denotes an improved self-assessed elementary probabil-
ity assignment of the jth CR-IoT under H0 and H1 , respectively.

Now, we can compare with Eqs. (21, 22) and (11) as follows:

�
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