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1 Introduction
The ability to accurately determine the location of mobile station (MS) in a cellular 
network is a vital component of numerous applications, such as emergency services, 
commercial service and network optimization [1]. Emergency services are driven by 
governmental institutions, which need to locate MS in case of emergency calls. Com-
mercial service is named as location-based services (LBSs) that can be developed com-
mercially by the network operators or the application developers to obtain a revenue, 
such as navigation, location-based advertising, location-sensitive billing, social net-
works, and inventory tracking. Network optimization is known as the location-aware 
communication that can be used to improve the communication capacity and network 

Abstract 

Mobile station (MS) localization in a cellular network is appealing to both industrial 
community and academia, due to the wide applications of location-based services. The 
main challenge is the unknown one-bound (OB) and multiple-bound (MB) scattering 
environment in dense multipath environment. Moreover, multiple base stations (BSs) 
are required to be involved in the localization process, and the precise time synchro-
nization between MS and BSs is assumed. In order to address these problems, hybrid 
time of arrival (TOA), angle of departure (AOD), and angle of arrival (AOA) measure-
ment model from the serving BS with the synchronization error is investigated in 
this paper. In OB scattering environment, four linear least square (LLS), one quadratic 
programming and data fusion-based localization algorithms are proposed to eliminate 
the effect of the synchronization error. In addition, the Cramer-Rao lower bound (CRLB) 
of our localization model on the root mean-square error (RMSE) is derived. In hybrid 
OB and MB scattering environment, a novel double identification algorithm (DIA) is 
proposed to identify the MB path. Simulation results demonstrate that the proposed 
algorithms are capable to deal with the synchronization error, and LLS-based localiza-
tion algorithms show better localization accuracy. Furthermore, the DIA can correctly 
identify the MB path, and the RMSE comparison of different algorithms further prove 
the effectiveness of the DIA.

Keywords: Localization, Synchronization error, Linear least square (LLS), Quadratic 
programming (QP), One-bound (OB), Multiple-bound (MB)

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Wu et al. J Wireless Com Network          (2022) 2022:4  
https://doi.org/10.1186/s13638-021-02082-3

*Correspondence:   
msczz@foxmail.com 
Information Technology 
and Engineering College, 
Chongqing Jiaotong 
University, No. 66 Xuefu Road, 
Nan’an Dist, Chongqing, 
China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-021-02082-3&domain=pdf


Page 2 of 21Wu et al. J Wireless Com Network          (2022) 2022:4 

efficiency, for example, network management, radio reconfigurable spectrum, and intel-
ligent transportation systems (ITS), etc.

Millimeter wave (mmWave) and massive multiple-input-multiple-output (MIMO) are 
two promising techniques to be deployed on the next generation wireless network, due 
to the large available bandwidths and highly directional communication [2]. In addition, 
the location information is considered as the key factor to perform directional com-
munication by beamforming. In other words, when the location of the user is known, 
the base station (BS) can steer its transmission to the user, either directly or through a 
reflected path. Therefore, it is a meaningful work to research accurate location estimate 
of MS with hybrid range and angle measurements in a cellular network.

1.1  Related works

The two-step localization scenario with low complexity is the most widely used 
method in localization systems [3], which first extracts the certain signal parameters, 
and then estimates the location of MS based on those signal parameters. In the first 
step, signal parameters, such as time of arrival (TOA), angle of departure (AOD), and 
angle of arrival (AOA) are estimated. The related literatures can be found in [4–8]. 
In the second step of location estimation, geometric, statistical or optimized meth-
ods are utilized depending on the accuracy requirements and system constraints. 
The work in [9] proposes a hybrid TOA/AOD/AOA localization method to give an 
iterative nonlinear least square solution through utilizing Taylor-series linearization. 
However, an initial guess on the location of MS is needed, which cannot guarantee to 
converge to the global optimal solution. The least square (LS) algorithm is proposed 
in [10] by analyzing the geometrical relationship among TOA/AOD/AOA measure-
ments, and maximum likelihood (ML) algorithm is presented to jointly estimate the 
position of MS and scatterers. Through leveraging the bidirectional estimate of TOA 
and AOA measurements, the work in [11] also proposes an LS algorithm based on 
one-bound (OB) scattering paths, and a two-step proximity detection method is pre-
sented to detect and discard the multiple-bound (MB) scattering path. Under the 
assumption of the OB scattering environment, a closed-form solution of the location 
of MS is derived in [12] with the nonlinear geometrical TOA/AOD/AOA measure-
ments. Utilizing the bidirectional TOA and AOA measurements, taking the TOA 
measurements as the constraints of an optimization problem, a novel nonlinear pro-
gramming (NLP) localization algorithm is proposed in [13] with the presence of the 
MB scattering path. Based on the linearization of TOA/AOD/AOA measurements 
with a first order Taylor series, a three-dimensional localization algorithm is proposed 
in [14] through utilizing the geometry relationship of the OB scattering paths. By 
assuming a ring of scatterer model with the OB scattering, a single MIMO BS (SMBS) 
algorithm with virtual BS based on TOA/AOD/AOA measurements is proposed in 
[15]. Based on the circular model of the OB scattering, a nonlinear constrained opti-
mization localization algorithm is proposed in [16] by employing the geometry rela-
tionship among the location of BS, MS, and scatterers. The work in [17] utilizes the 
concept of virtual BS to identify the location of all virtual BSs, then the location of 
MS is determined by using only one OB scattering path and its corresponding virtual 
BS. Instead of obtaining the virtual BS, the work in [18] estimates the scattering point 
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associated with the OB scattering path to determine the location of MS, and proposes 
the two-step elliptical Lagrange constrained optimization approach without any prior 
knowledge on the propagation environment. In [19], the authors analyze the perfor-
mance of an mmWave localization approach that can utilize TOA/AOD/AOA meas-
urements in an urban environment with both line of sight (LOS) and OB scattering, 
and proposes gradient-assisted particle filter method to accurately estimate the loca-
tion of MS as well as nearby scatterers with radio-environmental mapping. After the 
identification of the LOS and OB scattering paths, a weighting localization algorithm 
is proposed to fuse the measured data of the LOS and OB scattering [20].

1.2  Methods and contributions of this work

All the above works assume that the network between MS and BSs is synchronized. That 
means the TOA measurements are only corrupted by the non-line of sight (NLOS) error 
and measured noise. However, the synchronization error is unavoidable for the TOA 
measurements, due to the unknown clock bias and drift [21–24]. Moreover, the conven-
tional localization approaches assume that multiple BSs are involved in the localization 
process, which leads to the extra information exchange overhead and latency [25, 26]. 
Fortunately, as larger scale antenna arrays and wide bandwidth are adopted in the next 
generation wireless communication networks, the BSs can easily acquire higher mul-
tipath resolution in the angle and delay domains [27, 28]. These provide the possibility of 
localization with only the serving BS, which can significantly reduce the signaling over-
head and latency of wireless network. To the best of our knowledge, hybrid localization 
that exploits the OB and MB scattering paths from one BS utilizing the TOA/AOA/AOD 
measurements with the synchronization error has not been studied in the literature. The 
main contributions of this paper are summarized as follows:

1. In OB scattering environment, when the synchronization error is present, the locali-
zation accuracy of the related algorithms in [9–20] degrades significantly. In order to 
deal with the synchronization error, four linear least square (LLS), a quadratic pro-
gramming (QP) and data fusion (DF) based localization algorithms are proposed in 
this paper. It is concluded that DF-based algorithms cannot improve the localization 
accuracy in comparison with LLS-based algorithms.

2. In OB scattering environment, the Cramer-Rao Lower Bound (CRLB) of our locali-
zation model is derived. Comparing it with the existing CRLB in [19], we find that 
the synchronization error greatly increases the CRLB of the estimated location of 
MS.

3. In hybrid OB and MB scattering environment, when the synchronization error is 
presented, due to the infeasibility of the existing MB identification methods, a novel 
double identification algorithm (DIA) is proposed to identify the MB scattering path.

4. Intensive simulations are performed to compare the performance of different algo-
rithms. In OB scattering environment, it is shown that the LLS-based localization 
algorithms can effectively eliminate the effect of the synchronization error, and have 
higher localization accuracy than other algorithms. Moreover, in hybrid OB and MB 
scattering environment, the DIA can correctly identify the MB scattering path.
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The rest of this paper is organized as follows. Section 2 introduces the localization model. 
In OB scattering environment, Sect.  3 shows our proposed localization algorithms and 
the CRLB in the presence of the synchronization error. Section 4 discusses the methods 
to detect and discard the MB scattering path. Simulation results are provided in Sect. 5 to 
demonstrate the performance of the proposed localization algorithms. Finally, Sect. 6 pro-
vides the concluding remarks.

2  System model
In dense multipath environments, only one BS is deployed, as shown in Fig. 1, the signal 
propagation of each path between the BS and MS is the OB or MB NLOS propagation. Due 
to an increased communication capacity, the next generation cellular communication sys-
tem will likely adopt the mmWave and MIMO techniques. Thus, three important parame-
ters of each propagation path such as TOA, AOD and AOA can be estimated when both BS 
and MS are equipped with antenna array [4, 5, 7, 8]. If all the propagation paths experience 
the OB scattering, the mathematical expressions are as follows [10–13, 20]

where c is the speed of light, ti is the measured TOA of the i-th propagation path, t0 is 
the time of signal transmission, Δt is the time synchronization error, (x1, y1) is the loca-
tion of home BS, (x, y) is the location of MS, (x′i, y

′
i) is the location of scatterer from the 

MS to home BS in i-th OB scattering path, and a tan is the function of inverse tangent. 
αi and α0

i  are the measured and actual AOD of the i-th propagation path, respectively. 
βi and β0

i  are the measured and actual AOA of the i-th propagation path, respectively. L 
is the number of multipath. ni , mi and vi are white Gaussian random variables with the 

(1)

ri = c · (ti − t0)+ ni = r0i + c ·�t + ni i = 1, . . . , L

=

√

(x − x′i)
2 + (y− y′i)

2 +

√

(x1 − x′i)
2 + (y1 − y′i)

2 + ε + ni

αi = α0
i +mi = a tan

(

y′i − y

x′i − x

)

+mi

βi = β0
i + vi = a tan

(

y′i − y1

x′i − x1

)

+ vi

Fig. 1 System model in a multipath environment. Two signal propagation scenario one-bound and multiple 
bound are depicted
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standard deviation σn , σα , and σβ , respectively. When the propagation signal experiences 
the MB scattering path, as shown in Fig. 1, the number of scatterers is larger than one, 
the measured parameters will experience extra range and angle deviation.

If the measured noise and the synchronization error are ignored, only two OB scattering 
paths can decide the possible position of MS [9–13]. As shown in Fig. 2, the position of MS 
is the intersection point of line AB and line CD. If all the propagation paths experience the 
OB scattering path, the true range and angle parameters in (1) can be transformed into the 
linear form [13, 20, 29]

3  Proposed algorithms with only OB scattering paths
Comparing with the NLOS error and measured noise, the synchronization error signifi-
cantly affects the localization accuracy [21, 22]. In this section, four types of LLS-based 
algorithms, a quadratic programming (QP) algorithm and data fusion (DF)-based algo-
rithms are presented to deal with the synchronization error.

3.1  LLS algorithm with a new variable

As the linear equations shown in (2), if we define the synchronization error as a new vari-
able, the new linear equations can be easily obtained by ignoring the measured noise. Then 
putting measured parameters into it, we can obtain the following linear equations

(2)

(

cos(α0
i )+ cos(β0

i )

)

y−
(

sin(α0
i )+ sin(β0

i )

)

x = y1

(

cos(α0
i )+ cos(β0

i )

)

− x1

(

sin(α0
i )+ sin(β0

i )

)

− r0i sin(α
0
i − β0

i ), i = 1, . . . , L

(3)Z = H · X ′

Fig. 2 Possible position of MS with two OB scattering paths. Two one-bound propagation paths which can 
decide the position of MS are illustrated
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where X ′ = [XT , ε]T , X = [x, y]T , T is the symbol of transpose,

Since the variables in (3) are independent, a new least square (LS) algorithm 
denoted as LLS is utilized to obtain the estimated location of MS and the synchroni-
zation error

3.2  LLS algorithms with the synchronization error elimination

Instead of defining a new variable, we can obtain the linear equations by eliminating 
the synchronization error. Three different methods inspired from the literatures [30, 
31] are introduced to eliminate the synchronization error, and construct the corre-
sponding linear equations. Then, the LS algorithm is applied to obtain the estimated 
location of MS. The first method is called LLS-1, through selecting the first equation 
in (2) as the reference equation, we subtract it from the rest equations to eliminate 
the synchronization error. Then, the linear equations can be obtained through ignor-
ing the measured noise and doing some mathematic manipulations

where

The second method is called LLS-2, the L× (L− 1)
/

2 linear equations are obtained 
by choosing two equations from (2) and subtracting each other. Thus, the following 
equations are employed for the estimated location of MS:

where

Z =









y1(cos(α1)+ cos(β1))− x1(sin(α1)+ sin(β1))− r1 sin(α1 − β1)

y1(cos(α2)+ cos(β2))− x1(sin(α2)+ sin(β2))− r2 sin(α2 − β2)
...
y1(cos(αL)+ cos(βL))− x1(sin(αL)+ sin(βL))− rL sin(αL − βL)









H =









− sin(α1)− sin(β1) cos(α1)+ cos(β1) − sin(α1 − β1)

− sin(α2)− sin(β2) cos(α2)+ cos(β2) − sin(α2 − β2)
...

...
...

− sin(αL)− sin(βL) cos(αL)+ cos(βL) − sin(αL − βL)









(4)X̂ ′ = (HTH)−1HTZ

(5)Z1 = H1 · X

Z1 =









c2 − c1 − r2 + r1
c3 − c1 − r3 + r1

...
cL − c1 − rL + r1









, H1 =









a2 − a1 b2 − b1
a3 − a1 b3 − b1

...
...

aL − a1 bL − b1









ai =
− sin(αi)− sin(βi)

sin(αi − βi)
, bi =

cos(αi)+ cos(βi)

sin(αi − βi)
,

ci =
y1(cos(αi)+ cos(βi))− x1(sin(αi)+ sin(βi))

sin(αi − βi)
.

(6)Z2 = H2 · X
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The third method is called LLS-3, instead of obtaining the difference of the equations 
directly as the LLS-1 and LLS-2 methods, the average equation is obtained first, which 
is subtracted from all the equations, and will result in L new linear equations. The equa-
tions of the LLS-3 method can be expressed as

where

3.3  QP algorithm

In the presence of the measured noise on the range and angle measurements, Eq. (3) will 
not hold in general. We resort to the optimization method, and define the residual error 
as the objective function

where || · || denotes the Euclidean norm.
As mentioned in [32], the NLOS error is always positive and assumed to be much 

larger than the range measurement noise. Therefore, we can relax the nonlinear con-
straints of X ′ into linear constraints as shown as follows:

Rewriting (9) in matrix form, we have

where

Based on the above objective function and linear inequalities, we can build a QP opti-
mization problem, and it can be formulated as

Z2 =









c2 − c1 − r2 + r1
c3 − c1 − r3 + r1

...
cL − cL−1 − rL + rL−1









, H2 =









a2 − a1 b2 − b1
a3 − a1 b3 − b1

...
...

aL − aL−1 bL − bL−1









.

(7)Z3 = H3 · X

Z3 =









c1 − f − r1 + g
c2 − f − r2 + g

...
cL − f − rL + g









, H3 =









a1 − d b1 − e
a2 − d b2 − e

...
...

aL − d bL − e









d =
1

L

L
∑

i=1

ai, e =
1

L

L
∑

i=1

bi, f =
1

L

L
∑

i=1

ci, g =
1

L

L
∑

i=1

ri.

(8)min
X ′

||Z −H · X ′||2

(9)
x ≤ ri − ε + x1,−x ≤ ri − ε − x1

y ≤ ri − ε + y1,−y ≤ ri − ε − y1

(10)AiX
′ ≤ Bi, i = 1, · · · , L

Ai =







1 0 1
−1 0 1
0 1 1
0 −1 1






, Bi =







ri + x1
ri − x1
ri + y1
ri − y1
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The QP problem of (11) can be solved using the interior-point method [31].

3.4  Data fusion algorithm

From Eqs. (3) and (5)–(7), we know that only three OB scattering paths can obtain the 
estimated location of MS. If the number of multipath is larger than three, we can divide 
these measurements into different combinations. Each combination can obtain the 
intermediate estimate of MS. Finally, data fusion (DF) algorithm is utilized to fuse all the 
intermediate estimate. The key problem is how to measure the good or bad estimation 
of each combination. The simplest DF algorithm treated all the intermediate estimates 
as the same weight is to average all the estimated locations of MS. Thus, the algorithm 
is denoted as DF-LLS if the LLS is utilized to obtain the intermediate estimate of each 
combination, while it is denoted as DF-LLS-1 if the LLS-1 is utilized. In addition, the 
residual weighting algorithm [20] chooses the normalized residual as an indicator to fuse 
the intermediate estimate of each combination.

3.5  Cramer‑Rao lower bound (CRLB)

CRLB is the performance bound in terms of the minimum achievable variance 
provided by any unbiased estimators. The CRLB of our localization model can 
be easily obtained as the same method in [30]. Given the unknown parameters 
θ = [XT , ε, x′1 · · · , x

′
L, y

′
1 · · · , y

′
L]

T , the joint probability density function of the range and 
angle measurements is as follows:

The Fisher information matrix (FIM) with 2L+ 3 unknown parameters can be defined 
as

where [I(θ)]ij = −E[
∂2 ln p(r1,α1,β1···rL,αL,βL|θ)

∂θi∂θj
] , the expressions of them can be found in 

Appendix A.
The CRLB of variables in θ is the (i, i) entry of I−1(θ) , i = 1, . . . , L . If root mean square 

error (RMSE) is used as the performance criterion. The CRLB about the estimated loca-
tion of MS in terms of RMSE is given as

(11)
min
X ′

||Z −H · X ′||2

s.t. AiX
′ ≤ Bi, i = 1, . . . , L

(12)

p(r1,α1,β1 · · · rL,αL,βL|θ) =

L
∏

i=1

1
√

(2π)3(σ 2
nσ

2
ασ

2
β )

3
e
−

(ri−r0i −ε)2

2σ2n
−

(αi−α0i )
2

2σ2α
−

(βi−β0i )
2

2σ2
β

(13)I(θ) =











Ixx Ixy · · · Ixy′L
Ixy Iyy · · · Iyy′L
...

...
. . .

...
Ixy′L Iyy′L · · · Iy′Ly

′
L











(2L+3)×(2L+3)

(14)CRLB =
√

[I−1(θ)]11 + [I−1(θ)]22
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4  MB identification methods with hybrid OB and MB scattering paths
In dense multipath environment, there will be paths that are subject to the MB scat-
tering. The experiments in [33] show that the MB scattering path will have large atten-
uation and much lower signal strength on mmWave frequencies in comparison with 
the OB scattering path. As the mmWave technique is used for the next generation 
cellular networks, our localization model can be extended to abundant OB scattering 
paths with few MB scattering path. This section firstly presents the existing methods 
to detect and discard MB path with hybrid OB and MB scattering paths, then pro-
poses a novel method to identify the MB path. After the MB path is discarded, the 
remaining paths are utilized to estimate the location of MS by utilizing the proposed 
algorithms discussed in Sect. 3.

4.1  Statistical proximity test

A two-step detection scheme with the statistical proximity test (SPT) is used to detect 
and discard the MB scattering path [11]. The first step of the test is to find the cen-
troid of line of possible MS location for all the paths, which is defined as

where Zj
m = (x

j
m, y

j
m) is the point along each path, their mathematical expressions are 

shown as

The normalized weighting factor wj in (15) is defined as

It ranges between 0 and 1, a 10% weighting decision is stringent enough to provide a 
good calculation of the centroid C [11]. The second step is to calculate the normalized 
Euclidean distance between the midpoint of each path and the estimated centroid, 
which is formulated as

(15)
C=

1

3L

L
∑

j=1

3
∑

m=1

Z
j
m

wj>0.1

(16)

x
j
1 = x1 + rj × cos(βj), y

j
1 = y1 + rj × sin(βj)

x
j
3 = x1 − rj × cos(αj), y

j
3 = y1 − rj × sin(αj)

x
j
2 =

x
j
1 + x

j
3

2
, y

j
2 =

y
j
1 + y

j
3

2

(17)wj =

1
L

L
∑

i=1

ri/rj

L
∑

j=1

wj

(18)
δj =

||Z
j
2 − C||

L
∑

j=1

δj
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where δj is the normalized Euclidean distance between the j-th path of the BS and cen-
troid. It ranges between 0 and 1, and 20 percent of the maximum limit is set to be suf-
ficient to provide the correct rejection [11]. That means, the j-th path is decided as the 
MB path if δj > 0.2 , otherwise, it is the OB path.

The above SPT method has high ratio to reject the MB path with the experiment 
and simulation scenarios in [11]. However, if the experiment or simulation scenario 
is changed, it cannot work well as before. As shown in Fig.  3, when the Euclidean 
distance between the midpoint of the OB path and the centroid is almost the same 
as or larger than the Euclidean distance between the midpoint of MB path and the 
centroid, this method cannot correctly identify the MB path or mistakenly discard 
the OB path. In addition, it is difficult to decide whether the thresholds 0.1 and 0.2 
are suitable to compute the centroid C and discard the MB path in any experiments or 
simulation scenarios, respectively.

4.2  Kmeans clustering

In dense multipath environment, the propagation path is the OB or MB scatter-
ing. Different to SPT method, classification technique denoted as Kmeans clus-
tering [34] can be used to detect and discard the MB path. From our localization 
model, we know that each path is characterized by three parameters denoted as 
P(i) = (ri,αi,βi), i = 1, . . . , L . Kmeans clustering aims to partition the L path samples 
into sets S = {S1, S2} , where S1 is the subset of OB paths, S2 is the subset of MB path. 
And it proceeds in three steps:

(1) Initial Step

 Compute the squared Euclidean distance between two arbitrary paths and return the 
index of the two paths whose squared Euclidean distance is the largest.

Fig. 3 Scatterplot for the paths with simulation scenario. SPT can’t correctly identify the MB path is depicted
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 The initial means about sets S are set as µ0
1 = P(i0) and µ0

2 = P(j0).
(2) Assignment Step
 Assign each sample P(i), i = 1, . . . , L to the cluster Si, 1 ≤ i ≤ 2 whose mean has the 

smallest squared Euclidean distance, this is intuitively the nearest mean. It can be 
mathematically expressed as

 where t is the number of iterations.
(3) Update step
 When all the samples are assigned, the new means can be calculated to the centroids 

of the samples in the new cluster

 The algorithm goes back and forth between step 2 and step 3, and it has converged 
until no further change in the cluster assignments. In the end, this algorithm out-
puts the subset of S1 and S2.

4.3  Double identification algorithm

In general, when the signal experiences the MB scattering path, it travels more distance 
than the one that experiences OB scattering path. Therefore, the significant difference 
between the OB path and MB path is the range measurement. Moreover, as shown in 
Fig. 3, the midpoints of the OB paths almost lie in one zone, whereas the midpoint of 
the MB path lies in the other zone. This motivates us to adopt the simple classification 
method to identify the MB path. Based on the above two considerations, a novel double 
identification algorithm (DIA) is proposed, and it proceeds as three steps:

1. Range Identification

 Through calculating the average of the measured distance and dividing it by the 
measured distance of each path, we obtain a new value about each path. If this value 
is less than 1, it is the MB, otherwise, it is the OB.

2. Centroid Identification
 From (16), we can calculate the centroid of each path. The initial classification is 

achieved through selecting the centroid corresponding to the minimum measure-
ment distance as the OB, and the centroid to the maximum measurement distance as 
the MB. The Euclidean distances are calculated between the remaining centroid and 
the initial classification, respectively. Comparing this Euclidean distances with each 
other to determine whether it belongs to the OB or the MB, and then updating the 

(19)
D(i, j) = ||P(i)− P(j)||2, i, j = 1, . . . , L, i �= j

[i0, j0] = arg max
i,j

(D(i, j))

(20)
S
(t)
k = {P(i) :

∥

∥

∥
P(i)− µ

(t)
k

∥

∥

∥

2
≤

∥

∥

∥
P(i)− µ

(t)
j

∥

∥

∥

2
∀j, 1 ≤ j ≤ 2}, k = 1, · · · , L

(21)µ
(t+1)
i =

1

|S
(t)
i |

∑

P(j)∈S
(t)
i

P(j), i = 1, 2
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centroid of the OB and the MB. Repeating this process until all the centroid has been 
allocated, the sets of the OB and MB are obtained.

3. Incorporation
 The final set of the MB is obtained by performing the set intersection of the two MB 

sets that obtained from step1 and step 2, and the rest is the OB set.

5  Simulation results and discussion
This section presents simulation results to evaluate the performance of the proposed 
localization algorithms in dense multipath environment. Figure 4 shows the distribution 
of the MS and BS with the OB and MB NLOS propagation paths, as well as the locations 
of MS, BS, and scatterers. As the same methods in [9–13], we can produce the TOA/
AOD/AOA measurement data from (1), then the estimated location of MS is obtained 
with our proposed methods. The performance criteria are the Root Mean Square Error 
(RMSE) of the MS location estimate, which can be calculated as

where M is the number of Monte-Carlo simulations, and (x̂i, ŷi) is the estimated location 
of MS in the i-th Monte-Carlo simulation. It is doubt that a different distribution of scat-
terer may lead to different results. However, we change the coordinates of the scatterer, a 
little change happens in the figures, but the same conclusion can be obtained.

5.1  Performance comparison with OB scattering paths

The simulation scenario is shown in Fig. 4, five OB scattering paths are considered. The 
LLS-based algorithms, QP algorithm and DF-based algorithms shown in Sect.  3 are 
compared. Moreover, in order to illustrate the effect of the synchronization error on 
CRLB, we denote the CRLB of our localization model as CRLB-S, whereas the CRLB 
in [19] is denoted as CRLB-NS. The effect of the standard deviation of range and angle 
measurements, i.e., σn , σα , and σβ , as well as the synchronization error Δt, on the RMSE 
of the proposed localization algorithms are examined. The angle measurements are 
assumed to have the same standard deviation σα = σβ , and all the simulation results are 
obtained through 5000 independent runs. Figure 5 shows the effect of the synchroniza-
tion error Δt on the localization accuracy when σα = σβ = 10 and σn = 5 m . As the Δt 

(22)RMSE =

√

√

√

√

1

M

M
∑

i=1

(x̂i − x)2 + (ŷi − y)2

Fig. 4 Simulation scenario. The position of BS and MS, as well as scatterer are given
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gets larger, the RMSE of the proposed algorithms remain unchanged. It is demonstrated 
that the proposed algorithms can deal with the effect of the synchronization error. Fig-
ure 6 depicts the effect of σα = σβ on RMSE when σn = 5 m and �t = 1 µs . The RMSE 
of our proposed algorithms slightly increases as the increase of σα = σβ . Figure  7 
shows the effect of σn when  σα = σβ = 10 and �t = 1 µs . The same conclusion can be 
obtained as Fig. 6, the RMSE of all the proposed algorithms increase as σn gets larger. 
From Figs. 5, 6 and 7, we can get some observed results. The performance of the LLS is 
the same as the QP, while the LLS-1, LLS-2, and LLS-3 also have the same performance. 
Due to the low computational complexity, we select LLS and LLS-1 as the comparison. 
The LLS-1 has the highest localization accuracy, followed by LLS, and then DF-based 

Fig. 5 RMSE versus the synchronization error in OB scattering environment. LLS, LLS-1, LLS-2, LLS-3, QP, DF, 
CRLB-S are presented in Sect. 3, whereas the CRLB-NS and Rwgh are presented in [19] and [20], respectively. 
The plot is obtained when σα = σβ = 1

0 and σn = 5 m

Fig. 6 RMSE versus the standard deviation of angle measurement in OB scattering environment. LLS, LLS-1, 
LLS-2, LLS-3, QP, DF, CRLB-S are presented in Sect. 3, whereas the CRLB-NS and Rwgh are presented in [19] 
and [20], respectively. The plot is obtained when σn = 5 m and �t = 1 µs
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algorithms. It is demonstrated that DF-based algorithm cannot improve the localization 
accuracy for our localization scenario. The reason is that the combination of DF-based 
algorithm may have low localization accuracy to degrade the overall performance. Fig-
ures 5, 6 and 7 also show the CRLB performance against different parameters, i.e., σn , 
σα , σβ , and Δt. It clearly shows that the CRLB increases greatly with the presence of the 
synchronization error. The derived CRLB increases greatly as the increase of σn , σα , and 
σβ , whereas it stays the same as the increase of Δt. The effect of the number of multipath 
on RMSE for the different localization algorithms is shown in Fig. 8. It is clearly indi-
cated that the proposed algorithms have the relatively high localization accuracy when 
there are five OB scattering paths. As the number of OB path increases, there is few 

Fig. 7 RMSE versus the standard deviation of range measurement in OB scattering environment. LLS, LLS-1, 
LLS-2, LLS-3, QP, DF, CRLB-S are presented in Sect. 3, whereas the CRLB-NS and Rwgh are presented in [19] 
and [20], respectively. The plot is obtained when σα = σβ = 1

0 and �t = 1 µs

Fig. 8 RMSE versus the number of multipath in OB scattering environment. LLS, LLS-1, LLS-2, LLS-3, QP, DF, 
CRLB-S are presented in Sect. 3, whereas the CRLB-NS and Rwgh are presented in [19] and [20], respectively. 
The plot is obtained when σα = σβ = 1

0 , σn = 5 m and �t = 1 µs
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performance improvements, whereas the localization accuracy is declined greatly as it 
decreases. This can explain why the DF-based algorithms cannot improve the localiza-
tion accuracy. Moreover, when there is only four OB paths, the QP has comparatively 
higher localization accuracy in comparison with other algorithms. That indicates the QP 
is suitable for the scenario with a small number of multipath.

5.2  Performance comparison with hybrid OB and MB scattering paths

This section first compares the MB identification performance of three algorithms shown 
in Sect. 4, and then presents the RMSE comparison of different algorithms. The simula-
tion scenario is shown in Fig. 4, five OB and one MB scattering paths are considered.

5.2.1  The identification performance comparison

To demonstrate the capability of our proposed DIA algorithm, two other algorithms 
denoted as SPT and Kmeans are chosen to be compared. Since the OB path may be iden-
tified as the MB path, two indicators called “Exact” and “with Extra Path” are used to 
measure the identification performance. “Exact” represents only MB path is identified 
and no OB path is mistakenly identified as MB path, whereas “with Extra Path” repre-
sents the MB path is identified together with some OB paths are identified as the MB 
path. Figures 9, 10 and 11 show the effect of the synchronization error, angle deviation 
and range deviation on the identification ratio of MB path. Some observed results are 
shown that the synchronization error and angle deviation do not affect the identification 
performance of MB path, whereas the identification ratio of MB path decreases as the 
increase in range deviation. The SPT is almost impossible to correctly identify the MB 
path, especially when the synchronization error is large. The proposed DIA “with Extra 
path” can identify the MB path with one hundred percent, but “Exact” DIA demonstrates 

Fig. 9 The identification performance versus the synchronization error. Three algorithms kmeans, SPT and 
DIA are compared. “Exact” represents only MB path is identified, whereas “with Extra Path” represents the MB 
path is identified but with other OB paths. The plot is obtained when σα = σβ = 1

0 and σn = 5 m
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that some OB paths are mistakenly judged as the MB path. In addition, comparing with 
the SPT and the Kmeans, the DIA has the highest identification ratio of MB path.

5.2.2  The RMSE performance comparison

According to the conclusions in Sect. 5.1, two algorithms LLS and LLS-1 are selected 
to combine with the MB identification algorithms. The effect of σn , σα , σβ , and Δt on 
the RMSE are examined with hybrid OB and MB scattering paths. Figure 12 depicts 
the RMSE of different algorithms about the different Δt, it shows that the DIA-based 

Fig. 10 The identification performance versus the standard deviation of angle measurement. Three 
algorithms kmeans, SPT and DIA are compared. “Exact” represents only MB path is identified, whereas “with 
Extra Path” represents the MB path is identified but with other OB paths. The plot is obtained when σn = 5 m 
and �t = 1 µs

Fig. 11 The identification performance versus the standard deviation of range measurement. Three 
algorithms kmeans, SPT and DIA are compared. “Exact” represents only MB path is identified, whereas 
“with Extra Path” represents the MB path is identified but with other OB paths. The plot is obtained when 
σα = σβ = 1

0 and �t = 1 µs
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algorithms have the best localization accuracy, due to the correct identification of 
MB path. Because of the lowest ratio of MB identification, the performance of the 
Kmeans-based algorithms are the worst. These are consistent with the previous simu-
lation results. When the Δt is very small, the SPT-based algorithms have compara-
tively higher localization accuracy. However, the localization accuracy significantly 
increases as it increases. Figures  13 and 14 show the effect of angle deviation and 
range deviation on different algorithms, respectively. The same conclusion can be 
obtained that the DIA-based algorithms perform the best, followed by SPT-based, 
then the Kmeans-based. As the angle deviation and range deviation get larger, the 

Fig. 12 RMSE versus synchronization error in hybrid OB and MB scattering environment. Three algorithms 
kmeans, SPT and DIA are used to discard the MB path, and then LLS or LLS-1is applied to estimate the 
position of MS when σα = σβ = 1

0 and σn = 5 m

Fig. 13 RMSE versus standard deviation of angle measurement in hybrid OB and MB scattering environment. 
Three algorithms kmeans, SPT and DIA are used to discard the MB path, and then LLS or LLS-1 is applied to 
estimate the position of MS when σn = 5 m and �t = 1 µs
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RMSEs of both DIA-based and SPT-based algorithms increase slightly. However, the 
Kmeans-based algorithms remain unchanged.

6  Conclusion
In this paper, the synchronization error was introduced into the hybrid TOA/AOD/AOA 
measurement model, four LLS algorithms, one QP algorithm and DF-based algorithms 
with one BS were proposed in OB scattering environment. Moreover, the DIA was pro-
posed to identify the MB path in hybrid OB and MB scattering environment. Simulation 
results demonstrated: (1) In OB scattering environment, the LLS had the same localiza-
tion accuracy as the QP, while the LLS-1, LLS-2, and LLS-3 also had the same localization 
accuracy. Moreover, DF-based algorithms could not improve the localization accuracy. 
Further, the LLS-1 had the highest localization accuracy, followed by LLS, and then DF-
based algorithms. (2) In hybrid OB and MB scattering environment, the DIA could cor-
rectly identify the MB path in comparison with the SPT and Kmeans algorithms, and the 
RMSE comparison further proved the validity of our proposed algorithm. (3) The standard 
deviation of range and angle measurements could affect the performance of our proposed 
algorithms, whereas the synchronization error had little effect about them. However, due 
to the limitation of experimental conditions, our conclusions were based on the simulation 
results. In the next step, we will focus on the experimental data to verify these conclusions.

Appendix A
Suppose the range and angle measurements are mutually independent, the joint prob-
ability density function of the range and angle measurements is shown in (12). We first 
perform two order differential calculation about the variables of θ , and then compute its 
expected value. Thus, the elements of I(θ) can be derived as follow:

Fig. 14 RMSE versus standard deviation of range measurement in hybrid OB and MB scattering environment. 
Three algorithms kmeans, SPT and DIA are used to discard the MB path, and then LLS or LLS-1 is applied to 
estimate the position of MS when σα = σβ = 1

0 and �t = 1 µs
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where
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