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1  Introduction
Since the old, the oceans have been taken a lot of attention from human as they cover 
more than the three fourth of the earth surface. According to the United Nations report 
for oceans [1], 37% of the global population are living in coastal areas, between USA $
3–6 trillion/year is the estimated ocean-economy and 2900 million tonnes of oil are 
transported every year by sea. Unfortunately, over the last two decades, the marine life 
has facing an increasing number of challenges including marine debris, oil spills, loss 
of biodiversity, ice melting in polar regions, sea level rise, extreme weather events, dis-
placement, etc. Hence, the importance of monitoring the ocean activities, such as water 
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sampling and oceanographic data collection, appears. This monitoring will allows 
experts to better understand the marine life, help in preserving the natural resources by 
tracking the pollution and early notify of marine disasters.

1.1 � Problem statement

Recently, the ocean monitoring has taken a great attention from researchers and com-
munities thanks to the rapid development in remote sensing technologies. Indeed, 
such technologies mainly consist of acoustic sensor networks and IoT, mostly referred 
as acoustic underwater IoT (AUIoT), that allow users to collect detailed information 
about the oceans in a real-time manner. Basically, AUIoT consists of a set of acoustic 
sensors and vehicles that are deployed in a wide underwater areas and collecting data 
about salinity, pressure, temperature, speed of current flow, etc. Then, the collected data 
are sent to a sink, mostly a navigator, located on the water surface which, in its turn, 
forward the data to the offshore station for a later analysis and decision making. Sub-
sequently, the selection of the acoustic communication is due to the multi-path prop-
agation and the strong signal attenuation in underwater environments. However, the 
AUIoT networks provide much more challenges compared to terrestrial ones: (1) the 
densely deployment of sensors because of the wide ocean surfaces. (2) The big data col-
lection resulted from the periodic monitoring of the oceans. (3) The energy consump-
tion of acoustic communications is very high and it proportionally increases with the 
increase in the amount of data transmission and the distance to the sink. (4) The acous-
tic transmission has a small bandwidth with less reliability and quality of data. Therefore, 
integrating new data reduction and redundancy elimination techniques becomes an 
essential task for researchers in order to save the AUIoT energy and extend the network 
lifetime.

1.2 � Our contribution

In order to overcome the acoustic challenges, we propose a new data collection mech-
anism called LOGO that aims to minimize the data transmission in AUIoT networks 
and enhance their lifetime. LOGO relies on the cluster architecture and consists in two 
stages: local and global. Thus, the contribution of this paper is described as follows:

•	 At the local stage, LOGO allows each sensor to eliminate the redundancy between its 
data collected within each period, e.g. on-period, and among successive periods, e.g. 
in-period. Subsequently, LOGO proposes a state-based model that searches the sim-
ilarities among collected readings then removes on-period data redundancy. While, 
the in-period data redundancy is eliminated through an adaptive sensing model that 
reduces the data collection at each sensor according to the variation of the moni-
tored condition.

•	 The global stage allows the AUV to search the similarities among neighboring nodes 
in order to reduce the data transmission to the sink. This stage is based on two main 
algorithms: spatial-temporal node correlation and Kempe’s graph coloring.

•	 To assess the efficiency of LOGO, we conducted a set of simulations based on real 
underwater data collected by Argo project and the results are compared to other 
existing techniques.
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1.3 � Paper structure

The rest of the paper is organized as follows. Section 2 reviews the state of the art on the 
data reduction techniques in AUIoT. Section 3 describes the cluster based underwater 
architecture considered in our mechanism. Sections 3.3 and 3.4 detail the data reduc-
tion models proposed at the local and global stages, respectively, in our mechanism. Sec-
tion 4 reports the performance indicators and the obtained results. Finally, we conclude 
the paper and provide directions for future work in Sect. 5.

2 � Related works
Over the last two decades, underwater monitoring takes great attention from both 
industries and the community. On one hand, the industries try to integrate new technol-
ogies to help in the ocean monitoring and discovering the significant wealth lies under-
water. On the other hand, researchers aim to propose energy-efficient data collection 
techniques as well as try to overcome the challenges provided in AUIoT. In [2, 3], the 
authors give an overview on the remote sensing devices and IoT components fabricated 
by the industries and dedicated to underwater applications. While, the authors of [4, 
5] summarize the data reduction and energy conservation algorithms proposed by the 
research community for the AUIoT applications.

Some works such as [6–11] are dedicated to conserve the network energy by propos-
ing efficient cluster schemes and routing protocols. In [6], an energy-efficient adaptive 
clustering routing algorithm (ACUN) for AUIoT has been proposed. ACUN aims to 
optimize the lifetime of the cluster-heads by integrating a selection method based on 
the distance between CHs and the sink, the residual energy of the CHs and the size of 
the competitive radius. Accordingly, ACUN adopts a set of routing rules, either sin-
gle-hop or multi-hop, in order to balance the energies of the nodes. The authors of [7] 
introduce a fuzzy clustering scheme based on particle swarm optimization (PSO) that 
increases the AUIoT network lifetime. The proposed scheme designs a fitness function 
to select the CHs of clusters based on the remaining node energies and the communi-
cation range between nodes-CHs and CHs-sink. In [8], the authors propose a routing 
protocol called DVOR, e.g. distance-vector opportunistic routing, in order to reduce the 
data communication in AUIoT networks. Based on the distance vectors established by 
a query mechanism, DVOR achieves opportunistic forwarding by selecting the smallest 
hop counts towards the sink while avoiding communication void and long detour. The 
authors of [12] propose an energy-efficient cluster technique called FCMMFO that is 
based on fuzzy C-means (FCM) and moth-flame optimization method (MFO). Initially, 
FCMMFO determines the optima number of clusters according to elbow method, then 
it divides the networks into clusters based on FCM. Furthermore, an objective function 
based on MFO is defined in order to find the optimal locations of the CHs.

Some works such as [13–15] propose efficient data collection mechanisms using 
autonomous underwater vehicle (AUV). In [13], the authors propose an AUV-aided 
solution called a prediction-based delay optimization data collection (PDO-DC) 
algorithm aiming to reduce the data collection delay in AUIoT. First, PDO-DC uses a 
machine learning technique called Kernel Ridge Regression (KRR) in order to build 
and update the prediction to fit the collected data. Then, it proposes an AUV path 
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planning strategy based on the competition coefficient in order to reduce the num-
ber of visited nodes when collecting the data and thus, reduce the collection delay 
and avoid the packet loss. The authors of [14] propose a district partition-based data 
collection algorithm with event dynamic competition in AUIoT. The proposed algo-
rithm defines a metric called value of information (VoI) that determines the priority 
of the packet transmitted from each node. Then, the whole network is divided into 
subregions and an Q learning algorithm of reinforcement learning is proposed in 
order to determine the path of the AUV in each subregion. The authors of [16] pro-
pose a deployment-based system called AUV-OMN, that combines AUV and ocean 
monitoring network (OMN), for underwater data collection. First, AUV-OMN mod-
els sink nodes and AUV as a mixed integer optimization problem. Accordingly, a 
deployment scheme is designed to solve the formulated problem with the help of 
time division and NOMA access schemes.

The authors of [17–22] propose data collection mechanisms based on the statisti-
cal models and data reduction approaches. In [17], the authors propose two level 
transmission efficient mechanism dedicated to AUIoT based on clustering scheme. 
The first level is executed at the sensors and aims to filter its periodic data col-
lected using a data aggregation method. At the second level, an enhanced version of 
Kmeans adapted to ANalysis Of VAriance (ANOVA) with three statistical tests has 
been proposed. The authors of [18] propose a Sequential Lossless Entropy Compres-
sion (S-LEC) which organizes the alphabet of integer residues obtained from differ-
ential predictor into increased size groups. S-LEC codeword consists of two parts: 
the entropy code specifying the group and the binary code representing the index in 
the group. In [19], the authors are dedicated to reduce the data transmission at the 
CH under a cluster-based underwater network. The proposed technique uses two 
distance functions, e.g. Euclidean and Cosine, in order to search the data correla-
tion among neighboring nodes, thus removing the data redundancy, before sending 
the data to the sink. The authors of [23] propose a structure fidelity data collection 
(SFDC) technique dedicated to the cluster-based periodic applications in sensor net-
works. SFDC searches both spatial and temporal correlation between nodes, using 
distance functions and similarity metrics, respectively. Then, it exploits the depend-
encies to reduce the number of nodes required to work for sampling and data trans-
mission and prove that such reduction is bound to save energy.

Table 1 shows a summarization for each proposed technique in terms of the used 
technique, the implemented features, and the objective of the proposal. Indeed, 
despite the existing approaches offer good solutions for AUIoT, they mostly suf-
fer from several disadvantages: 1) Most of them are fairly complex, and difficult to 
implement efficiently due to the limited computational resources of most sensors. 2) 
Some of them compromise some aspects of sensed data such as temporal informa-
tion for the sake of energy saving. 3) Most focus on handling data at only one level of 
the network (e.g. sensor or CH). In this paper, we tackle a new trend with decreasing 
data transmission and saving sensor energy in the AUIoT and remote sensing tech-
nology. Our proposed mechanism consists of a set of low complexity techniques that 
eliminate data redundancy on two levels of the network and on several phases: on-
period, in-period and in-node.
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3 � Methods
In this section, we first present the network topology and the sensing collection model 
that we adapted in our mechanism. Then, we detail each of the local and global data 
collection phases in our mechanism applied respectively at sensor and AUV nodes.

3.1 � Cluster‑based AUIoT topology

In this paper, we consider a 3D cluster-based AUIoT topology in order to apply our 
mechanism (Fig. 1). In such topology, the sensors are scattered in the ocean in a 3D 
plane where each sensor has a fixed position and depth after its deployment. Then, 
the monitored zone is divided into subregions in which the sensors in each subregion 
form a cluster. Accordingly, an AUV is assigned for each cluster and is responsible to 
periodically collect the data from the sensors before moving up to the ocean surface 
and forward the data towards the sink, through a satellite communication. For the 
sake of simplicity, the sensors use the single-hop communication over acoustic chan-
nels during the data collection while the AUV uses the radio frequency during the 
transmission of data to the satellite.

3.2 � Periodic sensing monitoring

After their deployment and localization, the sensors start to monitor the target zone 
and update the sink with the desired information. Unfortunately, the data transmis-
sion is a highly cost operation in term of energy consumption [24, 25]. Thus, taking its 
limited energy power, the lifetime of the sensor will drastically decrease if all the col-
lected data are sent to the AUV. Hence, periodic sensing acquisition model has been 

Table 1  Summarize of state-of-the-art techniques

Reference Year Technique Features Architecture Objective

[19] 2013 Data transmission Distance functions Clustering Data reduction

[18] 2014 S-LEC Compression Distributed Data reduction

[23] 2015 SFDC Distance and similarity 
functions

Clustering Data reduction

[17] 2015 Data transmission Aggregation, Kmeans 
ANOVA

Clustering Energy conservation, 
information integrity

[6] 2019 ACUN Routing set Clustering Increase network 
lifetime

[7] 2019 Fuzzy clustering, PSO CH selection Clustering Increase network 
lifetime

[8] 2019 DVOR Query mechanism Distributed routing Reduce data commu-
nication

[13] 2019 PDO-DC KRR, path planning AUV-based Reduce collection delay, 
avoid packet loss

[14] 2019 Data collection VoI, path planning Subregions Determining best AUV 
path

[12] 2020 FCMMFO FCM, MFO Clustering Increase network 
lifetime

[16] 2020 UAV-OMN Optimization AUV-based Increase network 
lifetime

This work 2021 LOGO Data similarity, sens-
ing adaptation, node 
correlation

AUV + Clustering Data reduction, energy 
conservation, informa-
tion integrity



Page 6 of 22Baalbaki et al. J Wireless Com Network          (2022) 2022:7 

introduced in AUIoT applications with the aim to reduce the amount of collected and 
transmitted data from the sensors. Basically, in a periodic sensing monitoring, data 
are collected on a periodic basis where each period p is partitioned into time slots. 
At each slot t, each sensor node Ni captures a new reading ri then it forms, at the 
end of p, a vector of F  readings as follows: Ri = {r1, r2, . . . , rF } . After that, the sen-
sor will send its vector of data, e.g. Ri , to its appropriate AUV. For analysis purposes, 
we assume, in our mechanism, that the lifetime of each sensor is divided into a set of 
rounds, D = [D1,D2, . . . ,Dd] , where each round Di ∈ D consists of a set of P periods. 
Figure 2 shows the system design of our mechanism in which the lifetime of each sen-
sor is divided into rounds and the AUV receives a set of N reading sets coming from 
all its cluster members at the end of each period p.

Clusters

AUV

AUV

Sensors

Buoys

Satellite
Sink

Subregion 2Subregion 1
Fig. 1  Cluster-based 3D AUIoT topology

Fig. 2  System design of our mechanism
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3.3 � Local data collection at sensor

Obviously, the use of periodic monitoring model is a fundamental operation in AUIoT 
in order to ensure a reliable data collection and allow a better understanding of the 
underwater phenomena. However, this model produces a huge amount of data collec-
tion that consume most of the sensor energy during their transmission. Furthermore, 
replacing or recharging the sensor batteries is a very complicated mission and it is of 
high cost. Therefore, in order to conserve its energy and prolong its lifetime, the amount 
of data transmission from each sensor should be reduced without a loss of the collected 
information. This can be performed by eliminating the redundancy among the collected 
data either within the same period, e.g. on-period, or among periods in the same round, 
e.g. in-period. At the local stage, we propose two energy-efficient methods that allow to 
remove the data redundancy in both on-period and in-period on each sensor.

3.3.1 � On‑period data reduction method

Mostly, on-period redundancy happens due to the slow variation of the monitored con-
dition or when a small value is assigned to the slot time. This leads to increase the simi-
larity among readings in Ri and, consequently, it increases the redundancy among the 
data transmitted from the sensor. Thus, in order to overcome the on-period redundancy 
problem, we propose a divide-by-state method that allows to decrease the size of Ri by 
searching the similarities among successive readings.

Basically, the divide-by-state method is illustrated in Fig. 3. The blue curve represents 
the set of readings, e.g. Ri , collected during a period of size F  ; rmin and rmax indicate the 
minimum and maximum reading values in Ri . Then, we define a threshold α that allows to 
divide the readings in Ri into a set of reading ranges. Subsequently, the number of ranges 
equals to ( α + 1 ) and the set of ranges is indicated as G = {G1,G2, . . . ,Gα+1} ; the lower 
bound of the first range G1 is rmin while the upper bound of the last range Gα+1 is rmax . 
In our method, the readings belong to the same range are considered redundant. Thus, 
if two successive readings ri and rj belong to a range Gk then the first reading is only sent 
while the last one is removed. However, in order to maintain the integrity of the infor-
mation, we define a variable called occurrence, termed as O(ri) , that counts the number 
of similar readings according to a reading ri . Hence, our method will transform the initial 
reading set Ri to a reduced set R′

i in the form {(r1,O(r1)), (r2,O(r2)), . . . , (rk ,O(rk))} ; ri 
represents the first reading in each range and O(ri) is its occurrence to the next reading 

Fig. 3  Illustration of divide-by-state method
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state. It is important to notice that the accuracy of R′
i can be regulated by the expert 

according the value assigned to α which can be in [1,F ] ; 1 means that all readings are 
belonging to the same range [rmin, rmax] while F  indicates that all the collected data will 
send to the sink. Thus, more the value of α is, more the accuracy of sent data is.

Mathematically, Algorithm  1 shows the process of divide-by-state method which is 
applied locally on each sensor. The algorithm takes, as input, the on-period readings of a 
sensor along with the number of states and it returns the reduced set of readings R′

i . The 
process starts by adding the first reading, e.g. current reading, with occurrence of 1 to 
the set of final readings (lines 1-2). Then, for the next readings in Ri , they are added to R′

i 
if and only if their range is different from the current one, e.g. Gc (lines 4-9). Otherwise, 
the readings are considered to the previous one and they removed from Ri while adding 
the occurrence of the current one by 1 (lines 10–12).

3.3.2 � In‑period data reduction method

Obviously, the redundancy level among the collected data is highly dependent on the 
variation of the monitored condition. For instance, the monitoring of salinity or tem-
perature of an ocean will produce a high redundancy level because such conditions are 
slowly varying during the progress of periods. Thus, in-period data redundancy should 
be also eliminated in order to further conserve the sensor energy. In this section, we 
propose an adaptive sensing model that studies the data collected by a sensor during a 
round (Fig. 2) then adapts its sensing frequency according to the condition variation and 
its remaining battery level.

3.3.2.1 Condition Variation Study
At the end of each round, the sensor searches for the variation between readings 

in order to determine the dynamicity of the condition. Subsequently, if the varia-
tion is low then the condition is stable and the sensor must decrease its sampling 
frequency to avoid collecting redundant data, and vice versa. The condition variation 
is calculated according to the number of state change during the whole round; more 
the number of state change is more the monitored condition is dynamic. Obviously, 
the number of the state change will be less than the sum of the state change on each 
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period of the round because the readings collected during the end of a period and 
the begging of the next one can belong to the same range. In our method, the condi-
tion dynamicity, C(Di) , during a round Di ∈ D is calculated according to the following 
equation:

where |Divide-by-State(Di,α)| is the number of state change obtained by applying 
Divide-by-State algorithm on the whole round. C(Di) will take a value in [1%, 100%] 
where 1% and 100% indicates no and full state change, respectively. Therefore, in order to 
assess the value of C(Di) , we first define two thresholds Clow and Chigh , where Clow < Chigh , 
then we distinguish between three levels of condition variation:

–	 C(Di) ≤ Clow or low variation: this indicates that the monitored condition is slowly 
changing over the round which results in a high similarity among the collected data.

–	 Clow < C(Di) ≤ Chigh or medium variation: this indicates that the monitored condi-
tion is constantly changing over the time which leads to a certain level of redundancy 
among the collected data.

–	 C(Di) > Chigh or high variation: in which the monitored condition is quickly chang-
ing over the round.

3.3.2.2 Sensor Decision-Making for Sampling Adaptive
In addition to the condition dynamicity, the sensor takes into account another metric 

to adapt its sampling rate, e.g. the battery level. The idea is that when the battery level 
depletes less than a defined threshold then, the sensor must decrease its sampling rate 
in order to save its available energy but without affecting the accuracy of collected data. 
More formally, let consider that the initial energy of the sensor Ni prior to its deploy-
ment is Ei and its remaining energy at the end of a round Di is Er . Then, we define an 
energy threshold E where the sensor energy becomes crucial if it reaches this threshold.

Table 2 shows the decision made by the sensor to adapt its sampling rate based on 
the condition variation and the battery level. Subsequently, the new sampling rate 
is determined according to two thresholds: Lk∈L,M,H and Hk∈L,M,H indicating low 
(e.g. Ei ≤ E ) and high (e.g. Ei > E ) battery levels respectively. The letters L, M and 
H represent the condition variation if it is low, medium or high respectively, where 
LL < LM < LH and HL < HM < HH . Indeed, the new sampling rates in Table 2 are 
customized by the experts and depending on the application requirements. However, 
the table customization should respect the following rules:

(1)C(Di) =
|Divide-by-State(Di,α)|

P × F
× 100

Table 2  Sampling rate decision table

Battery level

Condition variation Ei ≤ E Ei > E

Low LL Hl

Medium LM HM

High LH HH
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–	 The sensor must decrease its sampling rate when the condition variation and the bat-
tery are in low levels. This can reduce the redundancy among the collected data and 
save the sensor energy without degrading the accuracy of the information.

–	 The sensor must increase its sampling rate when a high condition variation is 
detected. This leads to increase the reliability of the collected information.

3.4 � Global data collection at AUV

In AUIoT, the sensors are mostly scattered in a random way through aircraft or rocket 
due to the harsh or inaccessibility of most zones of oceans. This leads to a high level of 
spatial-temporal correlations between sensor nodes. Thus, when receiving the data sets 
from all sensors at the end of each period, the AUV can benefit from such correlations 
in order to eliminate the data redundancy among neighboring sensors, e.g. in-node data 
redundancy, before sending them towards the sink. Therefore, the periodic data trans-
mitted by the AUV will be reduced which will save its energy and facilitate the data anal-
ysis task of the end user. Let first assume that the AUV will periodically receive a set of 
data sets R′ = {R′

1,R
′
2, . . . ,R

′
n} , where n is the total number of sensors. Then, we propose 

an energy-efficient data reduction mechanism that allows the AUV to : first, search the 
spatial-temporal correlation among neighboring sensors; second, select a set of data sets 
based on the Kempe’s graph to send towards the sink instead of the whole datasets.

3.4.1 � Spatial node correlation

Spatial node correlation indicates that two or more sensors are geographically close in 
which there is an overlapping between their sensing ranges. This is mostly leads to a 
certain level of redundancy among their collected data. First, we use the Monte-Carlo 
method to determine the overlapping between two sensors followed by the Jaccard coef-
ficient to check if these sensors are spatial correlated or not.

3.4.1.1 Monte-Carlo (MC) Method
By definition, MC [26] is a special kind of computational algorithms that use the pro-

cess of repeated random sampling to make numerical estimations of unknown param-
eters. In the literature, one can find a lot of applications for MC in various domains 
including finance and business, physical sciences, engineering, computer graphics, com-
putational biology, etc.[27–29]. In order to find the spatial correlation among nodes, let 
assume that each sensor is defined by its position in the 3D plane and its sensing range 
as follows: ( Px,y,z , Sr ). Then, MC considers that the zone of interest is dividing into a 
fixed number of points distributed in equitable way in the plane with distance ∆ between 
every two points. Every point has its coordinates and it is covering by a sensor if the dis-
tance between them is less than the sensing range of the sensor. Thus, we define the set 
VNi containing all the points covered by the sensor Ni while |VNi | indicates the size of the 
set, e.g. the number of points.

Figure 4 shows an illustration of the MC method adapted in our mechanism to cal-
culate the spatial correlation between nodes. Based on the set VNi , we define the over-
lap sensing set, termed as VNi ,Nj , between two nodes Ni and Nj as the set of points 
in which their distance to both sensors is less than the sensing range Sr . Similarly, 
we assume that |VNi ,Nj | is the size of the point set, e.g. the number of points in VNi ,Nj . 
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Furthermore, more the size of point set VNi ,Nj is more the spatial correlation between 
nodes becomes. For instance, Fig. 4 shows that the spatial correlation between N1 and 
N2 is more than that between N2 and N3 because |VN1,N2 | = 5 > |VN2,N3 | = 2.

3.4.1.2 Jaccard Coefficient
After calculating the overlap sensing between every pair of nodes, the AUV uses the 

Jaccard function in order to determine the set of pairs having strong spatial correla-
tion among others. Typically, the Jaccard coefficient is used for gauging the similarity 
and diversity between sample sets. Thus, it has been used in a wide range of applica-
tion including community detection in social networks [30], document and web pages 
plagiarism [31], attack detection [32], market analysis [33], etc. In this paper, we use 
the Jaccard coefficient to measure the degree of spatial correlation, e.g. A , between 
nodes. Thus, two nodes Ni and Nj are considered spatial correlated according to the 
Jaccard coefficient if and only if:

where J ∈ [0, 1] is the Jaccard threshold defined by the application itself; 0 indicates that 
the overlap sensing does not contain any point while 1 means that all points covered by 
the first sensor are also covered by the second one.

3.4.2 � Temporal node correlation

The aim of the temporal correlation is to measure the similarity among data collected 
by neighboring nodes. Thus, by exploiting such correlation, the AUV can reduce the 
periodic number of sets in R′ sent to the sink and avoid sending repeated data to the 
end user. However, the received sets have different lengths which make the calcula-
tion of similarities between data is not a trivial task. In our mechanism, we focus on 
the Dynamic Time Wrapping (DTW) to determine the pairs of temporal correlated 
nodes. By definition, DTW is a measure of distance functions that evaluate the dif-
ference between two time series. Thus, less the value of DTW is obtained more the 
similarity between the sets is noticed. Furthermore, DTW has been proven as a good 
indicator to measure the difference between data collected in various domains [30, 
34, 35].

(2)A(Ni,Nj) =
|VNi ,Nj |

|VNi | + |VNj | − |VNi ,Nj |
≥ J

Fig. 4  Illustration of spatial-based correlation using Monte-Carlo method
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Indeed, our mechanism uses DTW in two steps in order to calculate the temporal 
node correlation between a pair of data sets R′

i and R′
j coming from the sensors Ni and Nj

:

–	 Cost matrix, M , calculation: the aim of this matrix is to reduce the overhead of 
the DTW distance calculation in the next step. M has a dimension of row and col 
where row equals to the length of R′

i and col equals to the length of R′
j . Subsequently, 

M[r][c] represents the element at the row index r ∈ [0, row − 1] and column index 
c ∈ [0, col − 1] . Then, the elements in M can be calculated as follows: 

 where rki (respectively, rkj ) is the kth reading in the set R′
i (respectively R′

j).
–	 DTW distance computation: after calculating the cost matrix, the AUV computes the 

DTW distance, referred as DTWD(R′
i,R

′
j) , between both sets. Algorithm 2 shows the 

process of the distance computation by taking, as input, both reading sets with their 
calculated cost matrix. First, we indicate indexes on the last row and column of the 
cost matrix and the initial distance is set to the element in such indexes (lines 1-3). 
In addition, we define a variable called iteration that indicates the number of steps 
needed to reach the first element in the matrix. Then, while the first element is not 
reached, the algorithm finds the minimum value of the three elements preceding the 
current element and adds to the distance (lines 6-7). Subsequently, the current row 
and column are set to those of the minimum element while incrementing the itera-
tion number (lines 8-10). Finally, the average distance in all steps is calculated and 
returned by the algorithm.

(3)

M[r][c]

=























|rr+1i − rc+1j | if r �= 0 and c �= 0
|rr+1i − rc+1j | + |rr+1i − rcj | if r = 0 and c �= 0
|rr+1i − rc+1j | + |rri − rc+1j | if r �= 0 and c = 0
|rr+1i − rc+1j | +min(|rri − rc+1j |,
|rr+1i − rcj |, |rri − rcj |) otherwise
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Thus, based on the Algorithm 2, the AUV considers that both sensors are temporal 
correlated if the DTWD between them is less than a defined threshold W as follows:

where W is a threshold defined by the application.

3.4.3 � Spatial‑temporal node correlation

In this section, we integrate both spatial and temporal correlation at the AUV over the 
data sets received at each period. Thus, in order to remove the in-node data redun-
dancy, the AUV finds the set of spatial-temporal correlated nodes for each sensor. Sub-
sequently, two sensors Ni and Nj are considered spatial-temporal correlated if they are 
geographically close and they generate redundant data at the same time according to the 
following condition:

3.4.4 � Final sets selection based on Kempe’s method

After determining all pairs of spatial-temporal nodes, the AUV selects a set of sensors 
to send their data to the sink instead of sending the whole data sets. We use the Kem-
pe’s method which is a graph coloring strategy developed by Kenneth Appel and Wolf-
gang Haken in 1976. Kempe’s method states that any graph, defined by its set of edges 
connected through a set of vertices, requires no more than a few colors—mostly four 
or five—to color its edges in a way that none of connected edges have the same colors. 
Thus, this method found its way into various fields such as graph theory (i.e. graph col-
oring), chemistry (i.e. connection between molecules), social network (i.e. user friend-
ships), etc. [36, 37]. In this work, the sensor nodes represent the edges of the graph and 
the spatial-temporal correlations among nodes indicate the vertices; two sensors are 
connected only if they are spatial-temporal correlated. Therefore, the selection of the 
final sent sets based on the Kempe’s method could be done according to the following 
steps:

–	 Stack order: this step pushes every node having less than β connected edges in a stack 
K then removes the node from the graph. β is a value determined by the experts 
depending on the number of nodes in the graph. Then, this step will be repeated 
until no more nodes are on the graph.

–	 Node coloring: in this step, we pop out the nodes back to the graph one by one. 
Whenever a node is popped out, it is colored by a new color that is not used in its 
connected nodes. At the end of this step, all the graph nodes are coloring using the 
minimum number of colors while having no connected nodes carrying the same 
color.

–	 Sets selection: the AUV selects the set of nodes having the following characteris-
tics to send their data sets to the sink: 1) they have the same color; 2) their number 
is greater than the other nodes with similar colors; 3) they have connections to all 

(4)DTWD(R′
i,R

′
j) = DTWD_Distance_Computation(R′

i,R
′
j ,M) ≤ W

(5)A(Ni,Nj) ≥ J and DTWD(R′
i,R

′
j) ≤ W
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other nodes on the graph. This selection can help in reduce the in-node redundancy 
among neighboring nodes while keeping a high level of data accuracy.

Figure 5 shows an illustration example for the selection of the final sets based on the 
Kempe’s method. We assume a graph of five connected nodes according to the spa-
tial-temporal correlations between them and we set the Kempe’s threshold β to 3. The 
stack order phase starts by selecting the node having less than 3 connections, e.g. N4 , 
and push it on the stack while remove it from the graph. Similarly, N3 is the next node 
to remove and push to the stack and this process continue until no more nodes are on 
the graph (last subfigure in Fig. 5a). After that, the node coloring phase starts by col-
oring the node N1 in a random color, e.g. red. Then, the node N5 popped out from the 
stack and it is colored by another color different from red, i.e. green. The process is 
repeated with the other nodes until no more nodes are on the stack. At the end of this 
phase, we obtain three sets of nodes with the same colors {N1,N4} , {N3,N5} and {N2} . 
Finally, the AUV randomly selects one of the first

and second set to send towards the sink because both meet the conditions of the 
sets selection phase.

4 � Results and discussion
We used real underwater data collected from the Argo project [38] in order to evaluate 
the performance of our mechanism. The Argo project deploys more than 3600 nodes 
over the global oceans. Each node collects salinity, temperature and velocity readings 
in the upper 2000 meters of depth. In this work, we are interested in data for 120 nodes 
distributed in the Indian ocean over an area of 5000× 5000× 5000 m3 . Then, the area 
is divided into two clusters: the first cluster contains 40 sensors with AUV1 and the sec-
ond cluster consists of 80 sensors with AUV2 . For the sake of simplicity, we focus, in 
our simulations, on the salinity readings collected by each node. We implemented our 
mechanism based on Java simulator and we compared the results to those obtained with 
the techniques proposed in [19], referred as EuDi, and SFDC in [23] used in AUIoT. 
Subsequently, we used a HPE laptop machine with a processor of 64-bit 8-core Intel 
i7-4800MQ CPU running at 2.7 GHz. In addition, the used RAM is 16 GB and the stor-
age capacity is 512 GB HDD. The machine runs Windows 10. Table 3 shows the configu-
ration of the parameters adapted in our simulation.

Fig. 5  Illustration of final set selection based on Kempe’s method, β = 3
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4.1 � On‑period data reduction study

Figure 6 shows the relevance of on-period stage proposed in our mechanism in terms of 
reducing the number of periodic readings sent from each sensor to its AUV, compared 
to EuDi and SDFC. The obtained results are dependent on the period size (Fig. 6a) and 
the number of states (Fig. 6b). First, we show that each technique gives similar results in 
both clusters, AUV1 and AUV2, because they apply distributed reduction techniques at 
the sensor level. Indeed, LOGO outperforms EuDi and SDFC in reducing the amount of 
data transmission to the AUVs in all cases. For instance, LOGO reduce up to 78% and 
73% of transmitted data in AUV1 and AUV2, respectively, compared to EuDi and reduce 
up to 81% and 78% of those in AUV1 and AUV2 compared to SFDC. Furthermore, the 
results of LOGO show the following observations: 1) the sensor sends less data when 
the number of states decreases. This is because the similarities among readings increase 
with the decrease in α . 2) The data transmission ratio from the sensor increases with the 
increase in the period size. This is because the transitions between states increase when 
F  increases thus the number of readings sent to the AUV will increase.

4.2 � In‑period data reduction study

Figure  7 shows the performance of in-period stage proposed in LOGO in terms of 
adapting the sampling rate of the sensor after each round. The results show that LOGO 
allows a sensor to dynamically adapt its sensing frequency according to the period size 
(Fig. 7a) and the number of states (Fig. 7b). Subsequently, the following observations are 
eminent: 1) the salinity readings in the Indian ocean are slowly varying and contains a 
high redundancy level; this can be clearly seen on the figures when the sensor adapts its 
sampling rate to the minimum compared to the original sensing frequency, e.g. period 
size. 2) During the last periods of its lifetime, the sensor collects less data than those 
during the first ones; this is due to the low battery level reached by the sensor thus, it 
decreases its sensing frequency in order to save more energy. 3) The sensor decreases its 

Table 3  Simulation environment

Parameter Symbol Values

Period size F 100, 300, 500 readings

Number of periods per rounds P fixed to 2

Number of states α 3%×F  , 4%×F ,

5%×F

Condition variation thresholds Clow , Chigh, 15% , 25%

Initial sensor energy Ei 5 mJ

Critical sensor energy threshold E Ei/2

Decision table thresholds LL ,LM ,LH 20% , 40% , 60%

HL ,HM ,HH 40% , 60% , 100%

Sensor sensing range Sr 500, 700, 900 meters

MC point distance ∆ 10 meters

Jaccard threshold J 0.3, 0.4, 0.5

DTWD threshold W 20

Kempe threshold β fixed to 4
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sampling rate when the period size or number of states decreases (for the same reasons 
mentioned in Fig. 6).

4.3 � Spatial‑temporal node correlation study

In this section, we study the performance of the spatial-temporal correlation method 
proposed in LOGO in terms of various values of tested parameters. Figure 8 shows the 
average number of spatial-temporal correlated pairs obtained at each period after apply-
ing our mechanism in each cluster. The obtained results confirm the behaviour of our 
mechanism in finding the correlated nodes which dependent on the number of nodes 
in the cluster. From on hand, the results show a significant number of obtained pairs 
in both clusters explaining the high level of redundancy existing between the collected 
data. On the other hand, the number of pairs increases with the increasing number of 
the cluster size. Furthermore, the results reveal the following observations:

–	 The number of correlated pairs increases when the size of the compared data sets 
decreases. This will happen if the period size (Fig.  8a) or the number of states 
(Fig. 8b) decrease.

–	 The number of pairs increases by increasing the spatial correlation between nodes. 
This can be done in two manners: first, by increasing the sensing range of the sensors 
(Fig. 8c), which increases the sensing overlap between nodes; second, by decreasing 
the Jaccard threshold (Fig. 8d) that makes more flexible the spatial correlation condi-
tion between sensors (see equation 4).
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4.4 � In‑node data reduction study

In this section, we study the performance of the in-node phase proposed in LOGO in 
terms of reducing the number of sets sent to the sink after eliminating the correlated 
ones. Subsequently, Fig. 9 shows the number of periodic transmitted data sets after 
applying Kempe’s graph method in our mechanism in comparison with EuDi and 
SFDC techniques. The results show that LOGO outperforms both EuDi and SFDC 
in terms of reducing the number of sets sent to the sink in all cases. Subsequently, 
it reduces up to 31% and 42% less sets in AUV1 and AUV2 respectively compared 
to EuDi and up to 37% and 46% less sets in AUV1 and AUV2 compared to SFDC. 
We can also show that LOGO remove more data sets when the number of correlated 
nodes increases. This confirms the relevance of our mechanism in eliminating more 
the redundancy when the similarity between data increases. Based on the results on 
Fig.  8, the following observations can be shown: 1) the AUV sends less number of 
data sets when the period size or the number of states decreases (Fig. 9a, b). 2) the 
AUV removes more redundant sets when the sensing range increases or the Jaccard 
threshold decreases (Fig. 9c, d).

4.5 � Data accuracy study

In this section, our objective is to study the accuracy of the three phases proposed in 
LOGO: on-period, in-period and in-node. Figure  10 shows an illustration example 
of the on-period phase applied over 100 readings collected during a period from a 
random sensor with a state number fixed to 3. The green curve represents the raw 
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data collected by the sensor while the yellow curve shows the selected readings sent 
to the AUV. First, we observe that the readings are highly redundant where they range 
between rmin = 35.63 and rmax = 36.29 . Then, thanks to on-period phase, the sensor 
selects a few set of readings indicating the change on the reading states to send to the 
AUV. This can highly preserves the integrity of the sent information while reducing 
the data transmission at the same time.

Figure 11 shows the accuracy the in-node phase applied at the AUV level after elim-
inating the redundant data sets, for a set of 12 periods. The data accuracy is calcu-
lated by dividing the number of missing readings over the whole readings received by 
the AUV during a period; a reading is indicated as missed reading if it appears in the 
sets received by the AUV but not in those sent to the sink. The results show that the 
missing readings range between 1% and 3.8% for AUV1 and between 1.9% and 5.2% for 
AUV2 which are negligible compared to the readings received by the sink. Thus, this 
percentage of missing readings will not affect the decision made by the experts.

4.6 � Further discussions

In this section, we give further consideration to our proposed mechanism while sum-
marizing the obtained results of LOGO and analyzing its performance regarding sev-
eral metrics and under various conditions.

From the data transmission reduction point of view, LOGO mechanism outper-
forms other techniques (especially EuDi and SFDC) in terms of reducing the amount 
of data collection and transmission (see Fig. 6). Subsequently, LOGO can reduce from 
56% to 78% compared to EuDi and from 64% to 81% compared to SFDC, depending 
on the period size and the number of states. Consequently, when the priority for the 
application is the reduction of the amount of data transmission in order to make less 
complex the analysis of data at the sink side, the LOGO mechanism becomes more 
suitable.

From the energy consumption point of view, divide-by-state and sampling rate 
adaptation algorithms proposed at the node level along with the set selection process 
proposed at the AUV level can largely reduce the energy consumption due the huge 
reduction in the data collection and transmission compared to other techniques (see 
Figs. 6 and 9). Consequently, LOGO can extend the sensor lifetime and ensure a long 
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time monitoring of the observed condition, which is a must requirement in underwa-
ter monitoring.

From the data accuracy point of view, LOGO ensures a high level of data integrity 
at both sensor and AUV levels, without any loss of information. Subsequently, the 
entire data loss in LOGO does not exceed 5.2% which is negligible compared to the 
amount of data received by the sink. This is because LOGO allows, on one hand, the 
sensor to provide real-time information to the sink whenever the monitored condi-
tion is changed, e.g. new state is detected, as well as it allows CH to only eliminate 
useless data and sending useful information tot eh sink.

Indeed, the selection of the threshold values and the processing complexity of 
LOGO at the AUV level are two main challenges facing our mechanism. On one hand, 
selecting the appropriate values of thresholds is very essential in our mechanism 
which highly affects the results. Indeed, we believe that threshold values should be 
determined by the decision makers or experts depending on the monitored features 
(e.g. water conditions). On the other hand, the processing complexity of LOGO at 
the AUV level is highly dependent on the distance computation of DTWD (e.g. Algo-
rithm 2) that affects the latency of data sent to the sink. Thus, it becomes essential to 
reduce the complexity of Algorithm 2 especially for critical monitored condition that 
require a fast delivery packet to the end-user. In order to overcome this problem, we 
believe that a pruning-based method should be inserted into Algorithm  2 thus, the 
number of pairs comparison will reduce (see Fig. 8) and the algorithm complexity as 
well.

5 � Conclusion
Until nowadays and although the great advancements in technologies, we know very 
little about the oceans, estimated less than 5% . Therefore, ocean exploration will take 
more and more attention from researchers and communities aiming to make a deep 
understanding of biological, chemical, physical, geological and archaeological aspects of 
the ocean. This explains the huge investments made in the AUIoT as one of the most 
important technologies to discover the oceans. In this paper, we proposed a data col-
lection mechanism called LOGO that aims to reduce the data transmission in AUIoT 
networks and enhance their lifetime. LOGO works in two levels, e.g. sensors and AUV, 
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and allows to remove the data redundancy existing in on-period, in-period and in-node 
phases based on a set of data reduction algorithms. To assess the efficiency of LOGO, we 
conducted a set of simulations based on real underwater data collected by Argo project 
and we compared the results to other existing techniques.

In the future work, we plan to enhance and extend LOGO in several ways. First, we 
plan to test our mechanism in real-case scenarios in order to validate its performance. 
Second, we seek to adapt our mechanism to take into account various types of under-
water data like images for target detection, video for discovering operations, etc. Finally, 
we plan to extend our mechanism to multivariate data collection where each sensor can 
monitor several conditions (like salinity, temperature, pressure, etc.) at the same time.
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