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1  Introduction
The rapid development of modern communication technology provides more advanced 
communication technology for the construction of the Internet of things [1, 2]. As 
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Noise and interference are the two most common and basic problems in wireless 
communication systems. The noise in wireless communication channels has the 
characteristics of randomness and impulsivity, so the performance of adaptive filter-
ing algorithms based on geometric algebra (GA) and second-order statistics is greatly 
reduced in the wireless communication systems. In order to improve the performance 
of adaptive filtering algorithms in wireless communication systems, this paper pro-
poses two novel GA-based adaptive filtering algorithms, which are deduced from 
the robust algorithms based on the minimum error entropy (MEE) criterion and the 
joint criterion (MSEMEE) of the MEE and the mean square error (MSE) with the help of 
GA theory. The noise interference in wireless communication is modeled by α-stable 
distribution which is in good agreement with the actual data in this paper. Simulation 
results show that for the mean square deviation (MSD) learning curve, the GA-based 
MEE (GA-MEE) algorithm has faster convergence rate and better steady-state accuracy 
compared to the GA-based maximum correntropy criterion algorithm (GA-MCC) under 
the same generalized signal-to-noise ratio (GSNR). The GA-MEE algorithm reduces the 
convergence rate, but improves the steady-state accuracy by 10–15 dB compared to 
the adaptive filtering algorithms based on GA and second-order statistics. For GA-
based MSEMEE (GA-MSEMEE) algorithm, when GA-MSEMEE and the adaptive filtering 
algorithms based on GA and second-order statistics keep the same convergence rate, 
its steady-state accuracy is improved by 10–15 dB, and when GA-MSEMEE and GA-MEE 
maintain approximately steady-state accuracy, its convergence rate is improved by 
nearly 100 iterations. In addition, when the algorithms are applied to noise cancella-
tion, the average recovery error of the two proposed algorithms is 7 points lower than 
that of other GA-based adaptive filtering algorithms. The results validate the effective-
ness and superiority of the GA-MEE and GA-MSEMEE algorithms in the α-stable noise 
environment, providing new methods to deal with multi-channel interference in wire-
less networks.
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multimedia communication technology becomes more mature, data information trans-
fer is faster, anti-interference ability is stronger, and data is more secure. The process of 
wireless communication is to transform the required information, including text, voice, 
video, etc., into digital signal [3, 4] under the packaging and conversion of baseband. 
Then, the digital signal is converted into waveform in the RF modulation center, trans-
mitted in the antenna after power amplifier and filter, and logistics distribution is carried 
out in the base station [5, 6]. After reaching the destination antenna, the filter extracts 
the original wave again, and then the wave is demodulated and decoded into the origi-
nal information form. In the process of wireless communication, the influence of noise 
in the channels needs to be considered. Filter, as a frequency selection and interference 
elimination device, can be said to be the channel of any information transmission, which 
is the key link of the mobile communication industry chain [7–9].

Compared with the traditional filter, the adaptive filter has stronger adaptability and 
better filtering performance. Adaptive filters have a strong effect on signal process-
ing, such as adaptive beamforming [10], acoustic echo cancelation [11, 12] and chan-
nel equalization [13]. As the core of adaptive filters, adaptive filter algorithms are the 
key to the development of filters. Among them, mean square error (MSE) has been the 
typical criterion of adaptive filtering algorithms. Owing to its simple structure and rapid 
convergence, the LMS algorithm has been applied in many fields [14–16]. Nevertheless, 
the performance of the LMS algorithm is not optimal, one problem is that the algorithm 
is vulnerable to the input signal, the other problem is the contradiction between step 
size and steady-state error. Subsequently, the NLMS algorithm was proposed to solve 
these problems by normalizing the power of the input signal [17]. However, when signals 
are disturbed by abnormal values such as impulse noise, the performance of the LMS-
type algorithm will be seriously degraded. Therefore, some robustness criteria have been 
proposed and successfully applied to adaptive filtering algorithms to deal with adaptive 
signal under impulsive noise, such as adaptive wireless channel tracking [18] and blind 
source decomposition [19]. Some typical robustness criteria include maximum corren-
tropy criterion (MCC) [20, 21], minimum error entropy (MEE) [22, 23] and generalized 
MCC [24]. They are insensitive to large outliers, which can effectively deal with impulse 
noise interference.

However, the current adaptive filtering algorithms only can be used for one-dimen-
sional signals processing. It is worth noting that combined with geometric algebra, these 
algorithms can be extended to higher dimensions, so that the correlation of each dimen-
sion can be considered in the process of analyzing problems, and the performance of 
algorithms can be effectively improved.

Geometric algebra (GA) gives an effective computing framework for multi-dimen-
sional signal processing [25, 26]. GA has a wide range of applications, such as image pro-
cessing [27, 28], multi-dimensional signal processing [29, 30] and computer vision [31, 
32]. Combined with this framework, Lopes et  al. [33] devised the GA-LMS algorithm 
and analyzed the feasibility of the algorithm. After that, Al-Nuaimi et  al. [34] further 
exploited the potential of the algorithm, which is applied for point cloud registration. 
However, the LMS algorithm extended to the GA space still has some limitations, such 
as its poor performance in non-Gaussian environment. Wang et  al. [35] deduced and 
proposed the GA-MCC algorithm, analyzing its performance in α-stable noise. The 
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results show that GA-MCC has good robustness, but there is still room for improvement 
in its convergence rate. Due to the superiority of MEE criterion over MCC criterion, the 
GA-MEE and GA-MSEMEE algorithms are proposed in this paper to improve the effec-
tiveness of existing GA adaptive filtering algorithms and expand the scope of application.

Our contributions are as follows. Firstly, according to the GA theory, the multi-dimen-
sional problem is transformed into mathematical description, represented by multi-
vectors. Secondly, the algorithms based on the MEE and MSEMEE are deduced in GA 
space. The original MEE and MSEMEE algorithms can be used for higher dimensional 
signal processing with the help of GA theory; finally, some experiments validate the 
effectiveness and robustness of the GA-MEE and GA-MSEMEE algorithms.

The rest of this paper is arranged as follows. Section  2 classifies and systematically 
reviews the existing studies on adaptive filtering algorithms. Section  3 briefly reviews 
the basic theory of geometric algebra and the traditional MEE and MSEMEE adaptive 
filtering algorithms, and gives the derivation process of the GA-MEE and GA-MSEMEE 
algorithms. The Experimental analysis of the two novel algorithms in α-stable noise 
environment is provided in Sect. 4. Section 5 concludes this paper.

2 � Related works
As an important branch of information processing, adaptive filtering algorithms have 
obtained great research results in real and complex domains, especially in signal pro-
cessing in non-Gaussian environment. Previously, Professor J.C. and his team proposed 
to use the error signal of Renyi entropy instead of the MSE. Minimum error entropy 
is capable of getting better error distribution according to [36]. Although MEE crite-
rion can obtain high accuracy, it does not take the mean factor into account, while the 
characteristics of MSE are just opposite to that of MEE. In this regard, B. Chen et  al. 
[36] proposed a joint criterion building up a connection between MSE and MEE by add-
ing the weight. In addition, recent studies have shown that MEE criterion is superior 
to MCC criterion and can be used for adaptive filtering [23] and Kalman filtering [22]. 
Therefore, G. Wang et al. [37] improved the MEE criterion and proposed the recursive 
MEE algorithm. In the complex domain, Horowitz et al. [16] proposed and verified the 
performance advantages of complex LMS algorithm. Qiu et al. [38] recently proposed 
Fractional-order complex correntropy algorithm for signal processing in α-stable envi-
ronment. These mature real and complex adaptive filtering algorithms are widely used 
in various fields [10–12, 39]. However, the real adaptive filtering algorithms cannot con-
sider the internal relationship of the signals of each dimension, and the complex filtering 
algorithms need to convert multi-dimensional signals into complex signals for process-
ing, respectively. Similarly, it cannot well describe the correlation between multi-dimen-
sional signals, which will cause some performance loss and application limitations.

Quaternion, as an extension of real and complex domains, was first proposed by Ham-
ilton and applied to the field of attitude control. Took et al. [40] successfully expressed 
multi-dimensional signals in meteorology in the form of quaternion, and proposed 
the quaternion least mean square (QLMS) and the augmented quaternion least mean 
square (AQLMS) algorithms. The research of the QLMS and AQLMS algorithms pro-
vides a theoretical basis for the development of quaternion adaptive filtering algo-
rithms. The quaternion distributed filtering, the widely linear quaternion recursive total 
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least squares, the widely linear power QLMS and the reduced-complexity widely linear 
QLMS algorithms are proposed one after another [41–44]. However, these algorithms 
are more suitable for Gaussian signals in linear systems. In order to make the quaternion 
adaptive filtering algorithms better used in signal processing in nonlinear channels and 
improve the universality of the algorithms, Paul et al. [45] further proposed quaternion 
kernel adaptive filtering algorithm via gradient definition and Hilbert space. The intro-
duction of quaternion tool paves the way for the research of adaptive filtering algorithms 
for 3D and 4D signals. However, the quaternion-based adaptive filtering algorithms can-
not be used in higher dimensional signal processing, and the quaternion-based methods 
will produce a lot of data redundancy and huge complexity.

Since geometric algebra can provide an ideal mathematical framework for the expres-
sion and modeling of multi-dimensional signals, some scholars have applied GA to 
adaptive filtering [46], feature extraction [26] and image processing [47]. GA-based 
adaptive filtering algorithms have attracted more and more scholars’ attention. Lopes 
and Al-Nuaimi et al. [33, 34] deduced the updating rules of the GA-LMS algorithm by 
using geometric algebra and applied them to 6DOF point cloud registration. Since the 
GA-LMS algorithm cannot achieve a good trade-off between the convergence rate and 
the steady-state error, Wang et al. [48, 49] proposed GA-based least-mean Kurtosis (GA-
LMK) and GA-based normalized least mean square (GA-NLMS) adaptive filtering algo-
rithms successively to make up for the deficiency of the GA-LMS algorithm. And then, 
in order to reduce the computational complexity of the GA-LMK algorithm, He et al. 
[50] continued to deduce and propose the GA-based least-mean fourth (GA-LMF) and 
least-mean mixed-norm (GA-LMMN) adaptive filtering algorithms. In order to further 
improve the performance of GA-based adaptive filtering algorithms in non-Gaussian 
environment, Wang et  al. [35] theoretically deduced geometric algebraic correlation 
(GAC) and proposed an adaptive filtering algorithm (GA-MCC) based on the maximum 
GAC criterion.

Most of these existing GA-based adaptive filtering algorithms are mainly to improve 
the performance of the filters in Gaussian environment. For non-Gaussian noise, espe-
cially the noise interference similar to that in wireless communication channels, the per-
formance of this kind of algorithms will be greatly reduced. How to optimize the existing 
GA-based adaptive filtering algorithms and improve their performance in non-Gaussian 
environment is a problem worth studying. Compared with MCC criterion, the MEE cri-
terion and the joint criterion (MSEMEE) have more advantages in non-Gaussian envi-
ronment. Hence, this paper extends these two criteria to the GA space and proposes 
novel GA-based robust algorithms. The α-stable distribution fits very well with the 
actual data, and is consistent with multichannel interference in wireless networks and 
backscatter echoes in radar systems. Therefore, the use of α-stable distribution to simu-
late non-Gaussian noise has more general significance.

3 � Methods
3.1 � Basic theory

Geometric Algebra contains all geometric operators and permits specification of con-
structions in a coordinate-free manner [47]. Compared with several particular cases of 
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vector and matrix algebras, complex numbers and quaternions, using geometric algebra 
can deal with higher dimensional signals.

Assuming that an orthogonal basis of Rn is {e1, e2, · · · , en} , the basis of Gn can be gener-
ated by multiplying the n basis elements (plus the scalar 1) via geometric product. The geo-
metric product of two basis elements is non-commutative, its property is defined as:

Given n = p+ q , the expression of the operation rule of orthonormal basis is:

Thus, the basis of Gn is:

The core product in GA space is geometric product. The expression of the geometric 
product of vector a and b is:

in which a · b represents the inner product, which is commutative, a ∧ b denotes the 
outer product, which is not commutative. According to their properties, the following 
expression can be obtained:

Suppose A is a general multivector in Gn , the basic element of Gn can be defined as:

which is made up of its s-vector part �·�s.
Actually, any multivector can be decomposed according to [51]:

In the operation of geometric algebra, the main properties used are as follows: 

(1)	 Scalar product: A∗B = �AB�0

(2)	 Cyclic reordering: �AB · · ·C� = �B · · ·CA�

(3)	 Clifford reverse: Ã �
∑n

s=0(−1)s(s−1)/2�A�s

(4)	 Magnitude: |A| �
√

A∗Ã =

√

∑

s |�A�s|
2

(1)eiej = eij = −eji = −ejei, i, j = 1, . . . , n, ∀i �= j

(2)eieij = eieiej = ej , i, j = 1, . . . , n, i �= j

(3)e2i =

{

1, 1 ≤ i ≤ p
−1, p+ 1 ≤ i ≤ n

(4)
{

1, ei, eiej , · · · , e1e2 · · · en
}

(5)ab � a · b+ a ∧ b

(6)
{

a · b = 1
2 (ab+ ba)

a ∧ b = 1
2 (ab− ba)

(7)A = �A�0 + �A�1 + �A�2 + · · · =
∑

s

�A�s

(8)B =

2n−1
∑

s=0

es
(

es ∗ B
)

=

2n−1
∑

s=0

es
〈

esB
〉

=

2n−1
∑

s=0

esBs
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3.2 � The related adaptive filtering algorithms

3.2.1 � The MEE algorithm

Professor J.C. and his research team proposed to replace MSE with the error signal of Renyi 
entropy in the training of supervised adaptive systems; this method uses a nonparametric 
estimator-Parzen window to estimate the probability density of a random variable directly 
from the sample points.

The Renyi entropy of the error sample is defined as:

where α is the order of entropy, and α > 0 , Vα(ek) is information potential. when α → 1 , 
Renyi entropy is equivalent to Shannon entropy. In addition, to keep the orientation con-
sistent with the LMS algorithm (minimization), select α < 1 . In this case, the minimum 
error entropy can be converted into minimizing the information potential.

Hence, for the traditional minimum error entropy (MEE) algorithm, its core expres-
sions are:

3.2.2 � The MSEMEE algorithm

The mean square error standard has good sensitivity. The minimum error entropy has a 
good error distribution, especially in the case of high-order statistics. Therefore, based 
on these two methods, a new performance index is proposed, which combines the 
advantages of each method to realize the synchronization effectiveness of sensitivity and 
error distribution.

The core expressions of the LMS algorithm are:

While the MSEMEE algorithm is the mixed of square power of LMS and information 
potential of MEE. Then the MSEMEE cost function is:

in which η is the mixing parameter and η ∈ [0, 1].
Then the corresponding gradient algorithm is:

(9)

Ha(e) =
1

1−α
log

∫

f αe (e)de

f αe (e) = E
[

f α−1
e (e)

]

≈ Vα(ek)

Vα(ek) =
[

1
L

∑k−1
i=k−L kσ (ek − ei)

]

α−1

(10)

J (n) = Vα(en)

w(n+ 1) = w(n)− µ







(1− α)

�

1
L

�n−1
i=n−L kσ (e(n)− e(i))

�

α−2

�

1
L

�n−1
i=n−L k

′
σ
(e(n)− e(i))(x(n)− x(i))

�







(11)J (n) = E
{

e2(n)
}

w(n+ 1) = w(n)+ 2µe(n)x(n)

(12)J (n) = E

{

ηe2(n)+ (1− η)Vα(e)
}
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3.3 � Problem formulation of adaptive filtering

Regarding the linear filtering model, its formulation involves the input signal of 
length L u(n) = [Un,Un−1, · · · ,Un−L+1]

T , the system vector to be estimated 
wo = [Wo1,Wo2, · · · ,WoL]

T , the weight vector w(n) = [W1(n),W2(n), · · · ,WL(n)]
T and 

the desired signal d(n):

In this research, we give some assumptions as follows: 

	(A1)	 The multivector valued components of the input signal u(n) are zero-mean white 
Gaussian processes with variance σ 2

s .
	(A2)	 The multivector valued components of the additive noise are described by α-sta-

ble processes. α-stable distribution is a family of four parameter distributions, 
which can be represented by S ( α,β , γ , σ ), in which α denotes the characteris-
tic index, which describes the tail of the distribution; β denotes the skewness, γ 
denotes the dispersion coefficient, σ denotes the distribution position.

	(A3)	 The noise vn , the initial weight vector wo , the input signal u(n) and the weight 
error vector �wn are uncorrelated.

3.4 � The proposed GA‑MEE algorithm

In this part, we deduce the GA-MEE algorithm with the help of GA theory [35]. In tradi-
tional algorithms, the cost function of MEE is expressed by information potential. When 
α ∈ (0, 1) , the minimum error entropy is equal to minimize the cost function. The GA-
MEE cost function can be obtained by rewriting formula (9) in the GA form.

in which E(i) = D(i)− D̂(i), D̂(i) = uHi wi−1 , L denotes the length of the sliding window, 
kσ (x) denotes the Gaussian kernel defined as kσ (x) = exp

(

− x2

σ
2

)

 , where σ is the kernel 

size.
Our algorithms keep the same direction as the LMS algorithm, which is opposite to that 

of the steepest-descent rule [48], yielding the adaptive rule based on GA:

(13)

w(n+ 1) = w(n)+ µ







2ηe(n)x(n)− (1− η)(1− α)

�

1
L

�n−1
i=n−L kσ (e(n)− e(i))

�

α−2

�

1
L

�n−1
i=n−L k

′
σ
(e(n)− e(i))(x(n)− x(i))

�







(14)d(n) = u(n)Hwo + vn =

L
∑

i=1

Ũn−i+1Woi + vn

(15)J (wi−1) = Vα(ei) =





1

L

i−1
�

l=i−L

kσ (E(i)− E(l))





α−1
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where B denotes a multivectors matrix. Choosing different B, we will get various types of 
adaptive filtering algorithm [48]. let B be the identity matrix here.

The derivative term ∂wJ (wi−1) in (10) can be calculated as:

where |E(i)− E(l)|2 is given by

According to formula (8), the differential operator ∂w can be expressed in another form. 
Thus, we obtain the new expression of ∂w:

in which ∂w,k is the common derivative from standard calculus and only relates to blade 
k , {γk} is the basis of Gn.

Similarly, given D̂(i) = uHi wi−1 , then D̂(i) can be expanded as follows according to (8):

Since ui and wi−1 are arrays with M multivector entries, they can be decomposed as fol-
lows by employing (8),

and

Plugging (21) and (22) back into (20),

(16)wi = wi−1 − µB[∂wJ (wi−1)]

(17)

∂wJ (wi−1) = ∂w





1

L

i−1
�

l=i−L

exp

�

−
|E(i)− E(l)|2

σ
2

�





α−1

=







1−α

Lασ 2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

��

α−2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

�

∂w|E(i)− E(l)|2
�







(18)

|E(i)− E(l)|2 = (E(i)− E(l)) ∗ (E(i)− E(l))̃

= E(i) ∗ Ẽ(i)− E(i) ∗ Ẽ(l)− E(l) ∗ Ẽ(i)+ E(l) ∗ Ẽ(l).

= |E(i)|2 + |E(l)|2 − 2�E(i)Ẽ(l)�

(19)∂w =

2n
∑

k=1

γk�γ̃k∂w� =

2n
∑

k=1

γk∂w,k

(20)D̂(i) = uHi wi−1 =

2n
∑

A=1

γA

〈

γ̃A

(

uHi wi−1

)〉

(21)uHi =

2n
∑

A=1

〈

uTi γA

〉

γ̃A =

2n
∑

A=1

uTi,Aγ̃A

(22)wi−1 =

2n
∑

A=1

γA�γ̃Awi−1� =

2n
∑

A=1

γAwi−1,A
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in which

Thus, the derivative term ∂w|E(i)− E(l)|2 in (17) can be calculated as:

According to (19), each term of equation (25) can be expanded:

in which

According to (24), the parts d̂i,A and d̂l,A in formula (27) can be expressed as:

From (27), ∂w,Dd̂i,A and ∂w,Dd̂l,A need to be calculated, according to (28), ∂w,Dd̂i,A can be 
unfolded as:

(23)

D̂(i) = u∗i wi−1 =

2n
∑

A=1

γA

〈

γ̃A

(

u∗i wi−1

)〉

=

2n
∑

A=1

γA

〈

γ̃A

(

2n
∑

B=1

uTB γ̃B

2n
∑

C=1

γCwC

)〉

=

2n
∑

A=1

γA

2n
∑

B,C=1

〈

γ̃A

(

uTB γ̃BγCwC

)〉

=

2n
∑

A=1

γA

2n
∑

B,C=1

�γ̃Aγ̃BγC�
(

uTBwC

)

=

2n
∑

A=1

γAD̂A

(24)D̂A =

2n
∑

B,C=1

�γ̃Aγ̃BγC�
(

uTBwC

)

,A = 1, · · · , 2n

(25)∂w|E(i)− E(l)|2 = ∂w|E(i)|
2 + ∂w|E(l)|

2 − 2∂w�E(i)Ẽ(l)�

(26)

∂w|E(i)|
2 =

(

∑2n

D=1 γD∂w,D

)(

∑2n

A=1 e
2
i,A

)

=
∑2n

A,D=1 γD∂w,De
2
i,A

∂w|E(l)|
2 =

(

∑2n

D=1 γD∂w,D

)(

∑2n

A=1 e
2
l,A

)

=
∑2n

A,D=1 γD∂w,De
2
l,A

∂w�E(i)Ẽ(l)� =
(

∑2n

D=1 γD∂w,D

)(

∑2n

A=1 γAei,A ∗
∑2n

A=1 el,Aγ̃A

)

=
∑2n

A,D=1 γD∂w,Dei,Ael,A

(27)

∂w,De
2
i,A = 2ei,A

(

∂w,D

(

di,A − d̂i,A

))

= −2ei,A

(

∂w,Dd̂i,A

)

∂w,De
2
l,A = 2el,A

(

∂w,D

(

dl,A − d̂l,A

))

= −2el,A

(

∂w,Dd̂l,A

)

∂w,Dei,Ael,A = ei,A
(

∂w,Del,A
)

+
(

∂w,Dei,A
)

el,A

= −ei,A

(

∂w,Dd̂l,A

)

−
(

∂w,Dd̂i,A

)

el,A

(28)
d̂i,A =

∑2n

B,C=1 �γ̃Aγ̃BγC�
(

uTiBwC

)

,A = 1, · · · , 2n

d̂l,A =
∑2n

B,C=1 �γ̃Aγ̃BγC�
(

uTlBwC

)

,A = 1, · · · , 2n
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in the same way,

Plugging (27), (29) and (30) into (26) yields

in the same way,

and

Plugging (31), (32) and (33) into (25) yields the following expression:

(29)

∂w,Dd̂i,A = ∂w,D





2n
�

B,C=1

�γ̃Aγ̃BγC�
�

uTiBwC

�





=

2n
�

B,C=1

�γ̃Aγ̃BγC�∂w,D

�

uTiBwC

�

=

2n
�

B,C=1

�γ̃Aγ̃BγC�δCDu
T
iB

(30)∂w,Dd̂l,A =

2n
∑

B,C=1

�γ̃Aγ̃BγC�δCDu
T
lB

(31)

∂w|E(i)|
2 = −2ei,A

(

∂w,Dd̂i,A

)

= −2

2n
∑

A,D=1

γDei,A

2n
∑

B,C=1

�γ̃Aγ̃BγC�δCDu
T
iB

= −2

2n
∑

A,D=1

ei,A

2n
∑

B,C=1

γD�γ̃Aγ̃BγD)u
T
iB

= −2

2n
∑

A,D=1

ei,AγD
〈

γ̃Au
H
i γD

〉

= −2

2n
∑

A=1

ei,AγD�γ̃DuiγA�

= −2

2n
∑

A=1

ei,AuiγA

= −2uiE(i)

(32)∂w|E(l)|
2 = −2ulE(l)

(33)

∂w�E(i)Ẽ(l)� = −

2n
∑

A,D=1

γD

{

ei,A
∑2n

B,C=1 �γ̃Aγ̃BγC�δCDu
T
lB+

(

∑2n

B,C=1 �γ̃Aγ̃BγC�δCDu
T
iB

)

el,A

}

= −

2n
∑

A=1

ei,AγD�γ̃DulγA� −

2n
∑

A=1

γD�γ̃DuiγA�el,A

= −ulE(i)− uiE(l)
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Finally, plugging (34) into (17), the gradient expression can be written as:

Then, plugging (35) into (16), we can obtain the GA-MEE updating rule:

in which µ denotes the step size.

3.5 � The proposed GA‑MSEMEE algorithm

In the same way, according to GA theory, we can obtain the GA-MSEMEE cost function 
as follows by rewriting formula (12) in the GA form.

where η is the mixing parameter and η ∈ [0, 1].
When we replace the mathematical expectation of the preceding and subsequent 

terms of equation (37) with instantaneous value and sample average, respectively, 
∂wJ (wi−1) can be expressed as:

The former term of formula (38) is equivalent to GA-LMS algorithm, and the latter term 
of formula (38) is to seek deviation guide to information potential. In order to keep the 
whole direction consistent (minimized), select α ∈ (0, 1) . According to (32), ∂w|E(i)|2 is:

According to (15) and (35), ∂wVα(ei) is:

Plugging (39) and (40) into (38), we can obtain the GA-MSEMEE updating rule:

(34)
∂w|E(i)− E(l)|2 = −2uiE(i)− 2ulE(l)− 2(−ulE(i)− uiE(l))

= −2uiE(i)− 2ulE(l)+ 2ulE(i)+ 2uiE(l)

= −2(ui − ul)(E(i)− E(l))

(35)

∂wJ (wi−1) = ∂w





1

L

i−1
�

l=i−L

exp

�

−
|E(i)− E(l)|2

σ
2

�





α−1

=







2(α−1)
Lασ 2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

��

α−2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

�

(ui − ul)(E(i)− E(l))
�







(36)wi = wi−1 + µ







2(1−α)

Lασ 2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

��

α−2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

�

(ui − ul)(E(i)− E(l))
�







(37)J (wi−1) = E

{

η|E(i)|2 + (1− η)Vα(ei)
}

(38)

∂wJ (wi−1) = ∂w

(

E

{

η|E(i)|2 + (1− η)Vα(ei)
})

= ∂w

(

η|E(i)|2 + (1− η)∂wVα(ei)
)

= η∂w|E(i)|
2 + (1− η)∂wVα(ei)

(39)∂w|E(i)|
2 = −2uiE(i)

(40)∂wVα(ei) =







2(α−1)
Lασ 2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

��

α−2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

�

(ui − ul)(E(i)− E(l))
�




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in which µ denotes the step size, η denotes the mixing parameter and η ∈ [0, 1].

4 � Results and discussion
This section carries out some experiments, analyzing the performance of the two novel 
algorithms in α-stable noise environment. First of all, in order to know how to select 
appropriate adjustable parameters for the GA-MEE and GA-MSEMEE algorithms, the 
experimental part analyzes the influence of these parameters (the kernel width σ , the 
order of entropy α and weight coefficient η ) on the mean-square deviation (MSD) learn-
ing curves in detail. Secondly, the GA-MEE and GA-MSEMEE algorithms are compared 
with other GA-based algorithms to verify their superiority. Finally, the algorithms are 
applied to multi-dimensional signal denoising in α-stable noise environment.

All MSD learning curves and the experimental data are averaged 50 independent runs. 
In this paper, initial weight vector ω0 denotes a 5× 1 multivector, and the length of the 
sliding window is L = 8 . The input signal and noise are shown in A1 and A2, α-stable 
distribution is given by S (1.5, 0, 1, 0) in the experiment. In addition, we use the general-
ized signal-to-noise ratio ( GSNR = 10 log

(

σ
2
s /γv

)

 ) to describe the relationship between 
the input signal and noise, σ 2

s  is the variance of input signal multivector, γv is the disper-
sion coefficient of noise.

4.1 � The performance of GA‑MEE and GA‑MSEMEE algorithms under different parameters

Herein, we discuss the effect of the parameters σ , η and α on the performance of the 
two novel algorithms for 4-dimension signals. The performance of the two novel algo-
rithms is estimated by the MSD, MSD = E

{

�w0 − w(n)�22
}

 . According to equation (36) 
and (41), the GA-MEE algorithm mainly involves the parameters σ and α , and the GA-
MSEMEE algorithm mainly involves the parameters σ , η and α . In the following experi-
ments, we select µGA-MEE = µGA-MSEMEE = 0.5 and GSNR = 0 dB for the GA-MEE and 
GA-MSEMEE algorithms.

4.1.1 � GA‑MEE algorithm

This section selects different parameters σ and α , then calculates the MSD of the GA-
MEE algorithm under different parameters. Table  1 displays the steady-state MSDs 
under different parameters ( σ and α ) of the GA-MEE algorithm.

(41)wi = wi−1 + µ







2ηuiE(i)+
2(1−η)(1−α)

Lασ 2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

��

α−2

�

�i−1
l=i−L exp

�

−|E(i)−E(l)|2

σ
2

�

(ui − ul)(E(i)− E(l))
�







Table 1  The steady-state MSD of the GA-MEE algorithm

α = 0.3 α = 0.5 α = 0.6 α = 0.7 α = 0.8

σ = 50 − 13.91 − 15.92 − 17.13 − 18.47 − 20.25

σ = 60 − 15.84 − 17.47 − 18.38 − 19.52 − 21.06

σ = 70 − 17.25 − 18.57 − 19.37 − 20.85 − 22.80

σ = 90 − 18.46 − 20.04 − 21.96 − 22.50 − 23.50

σ = 100 − 19.34 − 20.42 − 21.38 − 22.70 − 24.38
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To further instinctively analyze the effect of kernel width and order of entropy on the 
GA-MEE algorithm, the steady-state MSD taken as a function of kernel width and order 
of entropy is plotted in Fig. 1 for various values of the kernel width σ and the order of 
entropy α.

The tendency of steady-state values in respect of kernel width and order of entropy is 
clearly highlighted in Fig. 1. It can be obtained from Table 1 and the 3-dimensional dia-
gram that the steady-state MSD is smaller with both larger values of σ and α.

Figure  2 demonstrates the instantaneous MSDs of the GA-MEE under vari-
ous parameters. The GA-MEE1, GA-MEE2, GA-MEE3, GA-MEE4, and GA-MEE5 

Fig. 1  The steady-state MSD is taken as a function of kernel width and order of entropy

Fig. 2  The instantaneous MSDs of the GA-MEE under various parameters
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denote [ α = 0.3, σ = 50 ], [ α = 0.5, σ = 60 ], [ α = 0.6, σ = 70 ], [ α = 0.7, σ = 90 ] and 
[ α = 0.8, σ = 100 ], respectively. Since increasing two parameters at the same time 
leads to the decrease in steady-state value and slow convergence rate, it is difficult to 
determine the role of a single parameter in the performance of the GA-MEE. There-
fore, it is necessary to use the method of controlling variables.

Different parameter σ : The value of parameter α is setting as 0.6, and the values of 
parameter σ are setting as 50, 60, 70, 90, 100, respectively. Figure 3 shows the instan-
taneous MSDs of the GA-MEE under various σ . It can be seen from Fig. 3, as kernel 
width increases, the steady-state MSD decreases and convergence rate increases. But 
when the parameter σ exceeds a certain value, the convergence rate decreases gradu-
ally. So, the selection of σ should balance the steady-state MSD and convergence rate. 
In this group of experiments, its convergence rate is the best when σ = 70.

Different parameter α : The value of parameter σ is setting as 70, and the values of 
parameter α are setting as 0.3, 0.5, 0.6, 0.7, 0.8, respectively. Figure 4 demonstrates the 
instantaneous MSDs of the GA-MEE under various α . the steady-state MSD increases 
with the increase in the order of entropy α , and the convergence rate decreases obvi-
ously. So, the selection of α should balance the steady-state MSD and convergence rate.

4.1.2 � GA‑MSEMEE algorithm

From the experimental part of the GA-MEE algorithm, it is concluded that the greater 
the parameter α , the slower the convergence rate. In order to study the influence of 
parameters on the GA-MSEMEE algorithm, this section selects different parameters 
σ and η , to analyze the performance of the GA-MSEMEE when α = 0.8 . Table 2 dis-
plays the steady-state MSDs under different parameters ( σ and η ) of the GA-MSE-
MEE algorithm.

Fig. 3  The instantaneous MSDs of the GA-MEE under different σ
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To further instinctively analyze the effect of kernel width and weight coefficient on 
the GA-MSEMEE algorithm, the steady-state MSD taken as a function of kernel width 
and weight coefficient is plotted in Fig. 5 for various values of kernel width σ and weight 
coefficient η.

Figure 5 clearly shows the tendency of steady-state MSD in relation to kernel width 
and weight coefficient. It is shown as Table 2 and 3-dimensional diagram that the steady-
state value is smaller as σ becomes larger. However, from the numerical point of view, 
the influence of the weight coefficient η on MSD is not obvious.

Figure 6 shows the MSD learning curves of the GA-MSEMEE under various param-
eters, in which GA-MSEMEE1, GA-MSEMEE2, GA-MSEMEE3, GA-MSEMEE4, 

Fig. 4  The instantaneous MSDs of the GA-MEE under different α

Fig. 5  The steady-state MSD is taken as a function of kernel width and weight coefficient
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and GA-MSEMEE5 denote [ η = 9× 10−6, σ = 50 ], [ η = 8.5× 10−6, σ = 60 ], 
[ η = 8× 10−6, σ = 70 ], [ η = 7.5× 10−6, σ = 90 ] and [ η = 7× 10−6, σ = 100 ], respec-
tively. Since it is difficult to determine the role of a single parameter in the perfor-
mance of the GA-MSEMEE, it is necessary to use the method of controlling variables.

Different parameter σ : The value of parameter η is setting as 8.5× 10−6 , and the val-
ues of parameter σ are setting as 50, 60, 70, 90, 100, respectively. Figure 7 shows the 
instantaneous MSDs of the GA-MSEMEE under various σ . It is concluded from Fig. 7 
that as the kernel width becomes more larger, the steady-state MSD and convergence 
rate decrease gradually. Comprehensively considering the above two indicators, GA-
MSEMEE has better performance when σ = 70 in this group of experiments.

Different parameter η : The value of parameter σ is setting as 70. Since the values 
of parameters η are similar in Table 2, it is difficult to see the impact of these param-
eters on the MSDs of the GA-MSEMEE. Thus, we set the parameters η at large inter-
vals, which are: 7× 10−6, 7× 10−5, 7× 10−4, 8× 10−4 and 9× 10−4 . Figure  8 shows 
the instantaneous MSDs of the GA-MSEMEE under different η . As η increases by ten 

Table 2  The steady-state MSD of the GA-MSEMEE algorithm

η = 0.3 η = 0.5 η = 0.6 η = 0.7 η = 0.8

σ = 50 − 20.06 − 20.11 − 20.36 − 20.00 − 20.11

σ = 60 − 21.21 − 21.30 − 21.63 − 21.14 − 21.25

σ = 70 − 22.14 − 22.47 − 22.27 − 22.71 − 22.10

σ = 90 − 23.15 − 23.84 − 23.68 − 23.47 − 23.58

σ = 100 − 24.05 − 23.90 − 24.80 − 24.36 − 24.68

Fig. 6  The instantaneous MSDs of the GA-MSEMEE under various parameters
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times, the convergence rate becomes faster, the steady-state MSD gradually increases, 
and the robustness of the algorithm becomes worse. Therefore, the selection of weight 
coefficient should comprehensively compare the performance of three aspects. In this 
group of experiments, GA-MSEMEE has the best performance when η = 7× 10−5.

Fig. 7  The instantaneous MSDs of the GA-MSEMEE under different σ

Fig. 8  The instantaneous MSDs of the GA-MSEMEE under different η
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4.2 � Comparison of different GA‑based algorithms

In this part, we contrast the MSD learning curves of the two novel algo-
rithms to that of GA-LMS [33], GA-NLMS [49], GA-MCC [35] algo-
rithms under different GSNR. Their parameters are set as follows: 

µG A-LMS = 8 × 10−4,µG A-NLMS = 0.8,µGA-MCC = 0.5(σ = 40),µGA-MEE =
0.5(α = 0.1, σ = 90),µGA-MSEMEE = 0.5(α = 0.1, σ = 300, η = 0.0006)   , 
trying to make the convergence rate of each algorithm consistent. Figure 9 demonstrates 
the instantaneous MSDs of different algorithms.

As can be seen from Fig. 9, compared with GA-MCC, the GA-MEE has better steady-
state MSD and convergence rate, but its convergence rate slows down significantly with 
the decrease in GSNR. Compared with GA-based LMS-type algorithms, the GA-MEE 
has better steady-state MSD and robustness, but GA-MEE needs more iterations to con-
verge. The improved GA-MSEMEE algorithm solves this problem to a certain extent. 
The GA-MSEMEE always maintains superior convergence rate, good steady-state MSD 
and robustness under different GSNR.

4.3 � Application and multi‑dimensional signal analysis

In this part, the two novel algorithms are applied to signal denoising. In order to test their 
superiority in α-stable noise environment, we performed the following experiments.

Fig. 9  The instantaneous MSDs of different algorithms. a GSNR = 0 dB; b GSNR = −1 dB



Page 19 of 24Wang et al. J Wireless Com Network         (2022) 2022:38 	

Figure  10 demonstrates the denoising results of 4-dimension sig-
nal with GA-LMS, GA-NLMS, GA-MCC, GA-MEE and GA-MSE-
MEE when GSNR  =  0  dB. Their parameters are set as follows: µGA-LMS = 7×10−7,µGA-NLMS = 7×10−4,µGA-MCC = 0.5(σ = 200),µGA-MEE =
0.5(α = 0.8, σ = 300),µGA-MSEMEE = 0.5(α = 0.1, σ = 300, η = 2× 10−6

)   . 
As shown in Fig. 10, the GA-LMS, GA-NLMS and GA-MCC algorithms all need an 
adaptive process at the beginning of denoising, which the proposed algorithms do 
not need. Figure 11 shows the average 4-dimensional signal recovery errors of dif-
ferent algorithms with different GSNR. The recovery error of 4-dimensional signal is 

Fig. 10  The denoising results of 4-dimensional signal with different algorithms. a GA-LMS; b GA-NLMS; c 
GA-MCC; d GA-MEE; e GA-MSEMEE
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described by 
∥

∥u′ − u
∥

∥

2

2
 , which represents the norm square of the difference between 

the denoised signal and the clean signal.
What is more, it is worth noting that the two novel algorithms can be applied to 

higher dimensional signal processing. Figure 12 demonstrates the denoising results 
of 8-dimensional signal with GA-MEE and GA-MSEMEE when GSNR = 0 dB.

4.4 � Computational Complexity

The running time of different algorithms for 4-dimensional and 8-dimensional signal 
denoising is shown in Table  3. The experiments are carried out via MATLAB with 
Intel (R) Core (TM) i7-6500U 2.50GHz CPU and 4 GB memory.

Table  3 shows that the proposed algorithms in this paper have higher computa-
tional complexity. The reason for the higher computational complexity of GA-MEE 
algorithm is that it involves the calculation of minimum error entropy, which includes 
exponential operation of different error signals. The computational complexity of 
GA-MSEMEE is the highest, mainly because GA-MSEMEE algorithm is acquired by 
fusing MSE and MEE through a weight coefficient.

5 � Conclusions
Two novel GA-based algorithms GA-MEE and GA-MSEMEE are proposed, which are 
deduced from the MEE criterion and the joint criterion, respectively, combined with 
GA theory. The GA-MEE and GA-MSEMEE algorithms show strong robustness and 
high precision for high-order signal processing in α-stable noise environment. How-
ever, although the GA-MEE shows more robustness than other algorithms, its con-
vergence rate and sensitivity are low. The GA-MSEMEE can effectively compensate 

Fig. 11  The average 4-dimensional signal recovery errors of different algorithms
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Fig. 12  The denoising results of 8-dimensional signal with different algorithms. a GA-MEE; b GA-MSEMEE
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for the lack of the GA-MEE. The experiments demonstrate that the GA-MSEMEE 
achieves a good balance between robustness and convergence rate.

Due to the high accuracy and sensitivity of the GA-MSEMEE, the algorithm can 
also be applied to more aspects, such as signal prediction, which can be further stud-
ied. Moreover, how to reduce the computational complexity is also a major direction 
of further research.
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