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Full list of author information sequentially manufacturing cars on an assembly line. The CSP is a well-established

is available at the end of the problem, subject to the paint batching constraints to decrease the energy consump-

icl . ) o
articie tion for color changeovers and production rate constraints in the assembly shop to

ensure a smooth usage of car options. However, the existing solution algorithms to this
problem do not take into account the block batches, which desires a consecutive pro-
duction batch of cars requiring a certain option. This requirement often occurs when
specialized labor time window is short in the customized car production scenario,

and renders additional complexities to the traditional car sequencing problem. In this
paper, we present a novel model to deal with these constraints and simultaneously
generate the sequencing and replenishment decisions. Besides, we develop two math-
heuristic algorithms to solve the proposed large-scale CSP. The presented heuristics

are on the basis of relax-and-fix procedures, fix-and-optimize procedures and adaptive
variable neighborhood search. To solve the large-sized instances (commercial solv-

ers, i.e, Cplex, cannot obtain a feasible result within 1 h), we design and implement a
reinforced parameter tuning mechanism to dynamically select the parameter values, so
as to speed up the search process. The proposed models and heuristics are tested on
representative instances generated from the benchmark in the literature (CSPLib), as
well as large-sized instances generated from real-world cases. We report on extensive
computational experiments and provide basic managerial insights into the planning
process.
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1 Introduction

The traditional car sequencing problem firstly proposed by [28] tackles the problem that
occur when scheduling cars with various car options in a single assembly line and is
addressed through converting position, time and/or technical requirements into discrete
0-1 options [27, 37]. The assembly line normally consists of series production shops,
including weld shop, paint shop and assembly shop. As one of the primary sources of
air emissions of regulated chemicals, the paint process generates volatile organic com-
pounds (VOCs), hazardous air pollutants (HAPs) and others. As pointed by [12], the
production process generates both solid and hazardous and solid waste, including
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chemicals (i.e., chlorine bleach) to clean the paint lines and application equipments
(sprayers), disposal parts and waste paint due to overspray. Hence, from an environ-
mental and energy saving perspective, the paint batching constraints are considered to
reduce the color changes in the paint shop [5]. A contradicting constraint arising in the
assembly shop, however, intends to level the production of different cars, so as to main-
tain a proper production speed and usage of car options [25].

Particularly in the auto industry changing from mass standardization production to
mass customization production, each car is composed of a different set of accessories/
options, i.e., engines, tires, roofs, etc. With the advent of Internet of Things and cyber-
netic technologies, the fixture becomes more and more complex to assemble a specific
set of options to the car bodies.As mentioned by [40], such problems often occur in the
make-to-order and/or just-in-time environment. The setup time of changing from one
complex fixture to another one is time-consuming and might disorganize the production
rhythm. Hence, to reduce the number of setups and the corresponding total setup times,
company tends to consecutively process cars with the same option, especially for options
that only a few fixture can handle. Motivated by this practical requirement, we introduce
block constraints, which define a subsequence with a fixed length for a specific option. If
there is a changeover from other options to this option, then the following ones must be
the same options as well, until the next changeover to another option.

One drawback of block production is the violation of level production requirement,
which entails a smooth usage of the parts (options) in the assembly process. In the
assembly shop, parts are normally delivered to the assembly line at a pre-specified fre-
quency and speed. Most of the existing literature tackles this issue by maintaining a con-
stant usage rate of the parts at each position of the sequence and penalize the weighted
violations. However, this method neglects the processing time of different options, i.e.,
the installation of an engine takes around half an hour, while the installation of a sunroof
only requires a few minutes. In this paper, we create a time-related evaluation approach
to incorporate the processing time of each option. We argue that the new method would
more accurate to describe the practical situation than the traditional one and hence be
used to streamline the entire manufacturing process.

The contributions of this paper are threefold: Firstly, we extend the classical car
sequencing problem to incorporate several novel modeling challenges arising in the con-
text of the car industry, which have not yet been considered in the existing literature
of CSP. A mathematical formulation is presented for the proposed scheduling problem;
secondly, we develop two math-based heuristics with data-driven VNS to solve the prob-
lem; finally, we present extensive computational tests in the car industry and highlight
several managerial suggestions.

The structure of this paper is planned as follows. Section 2 presents the literature
reviews about relevant academic work on car sequencing problem including the solution
approaches. Section 3 describes the scheduling problem and derives the formulation.
Two math-heuristic algorithms that include data-driven variable neighborhood search
(VNS) are presented in Sect. 4 to efficiently solve the proposed problem. Our computa-
tional experiments are reported in Sect. 5, where we illustrate the efficiency of the pro-
posed solution approach, and describe the system implementation and its benefits to the
company. The conclusion and future research directions are pointed out in Sect. 6.
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2 Literature review

2.1 Solutions approaches for CSP

Among the first attempts to study the car sequencing problem (CSP), [28] describes
it as generating a full sequence of cars on a single assembly line, so as to install car
options (e.g., leather seats, engines, tires) on them. Several specific options are
required by each of the cars assembled through the line. To avoid the potential con-
flicts arising from many consecutive cars requiring the same option, a maximum load
ratio is adopted for some options [42]. This requirement may describe the so-called
by p/q ratio constraints: Any successional g cars could consist of p cars maximum
demanding a specific type of options. The objective of the car sequencing problem is
to identify a complete sequence of cars that does not violate the maximum load ratio
constraints for every subsequence or a full sequence with minimum constraints viola-
tion costs. The CSP has been proven to be NP-hard by [24]. A number of approaches
have been developed for the CSP problem. The evaluations of these algorithms are
normally based on CSPLib [13], a benchmark library for the car sequencing problem.
The abovementioned approaches include the ones that searching for exact solutions
and those searching for approximately optimal solutions.

[7] solved the CSP with a constraint programming language with the result is either
a car sequence that assures the satisfaction all the option constraints, or a failure
implying that no such sequence exists. A constraint programming approach for CSP
was proposed by [4]. They consider two types of constraints: hard constraints that
must be satisfied, and soft constraint that can be violated at a cost. Later, [35] sug-
gested several heuristics impelling a pruning rule, to speed up the solution approach.
[1] proposed an integer programming model for CSP, based on a binary variable indi-
cating the car-position assignment. [17] developed an MILP formulation for CSP with
soft capacity constraints, by using additional binary variable deciding if a car-posi-
tion assignment satisfies the capacity constraints. A first dedicated branch and bound
algorithm to solve CSP was proposed by [8]. Other exact approaches, i.e., beam search
algorithms, were proposed by [2] and [15].

Apart from the complete approaches, non-exact methods, such as metaheuristics,
have been proposed aiming at fast search for near optimal solutions. [20] proposed
the first greedy approach for the car sequencing problem. Later, [16] evaluated six
greedy heuristic approaches for the CSP. [32] suggested a local search approaches to
address the car sequencing problem and suggested an inversion operator (i.e., insert
a car from any position in the sequence to another position) to increase the search
efficiency. Another specially relevant operator is the swap operator (i.e., change the
positions of any two cars) [14]. The capabilities and potentials of large neighbor-
hood search technique for solving CSP were firstly investigated by [29]. Among the
first attempts of applying ant colony optimization algorithms to CSP, [37] proposed
a dynamic sum of utilization rate and argue that ant colony algorithm is slightly supe-
rior to local search for small computation time, whereas both algorithms provide
comparable solution quality for large computation time. [17] also developed an ant
colony optimization (ACO) approach for CSP, which associates with a local search
technique which is used to speed up the search process constructed by ants. [39] pro-
pose a large neighborhood search (LNS) based on mixed integer programming (MIP)
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and substantially improved the solution qualities. For recent solution approaches of
CSP, we refer to the review paper [36].

2.2 Extensions to CSP model

One of the extensions to the car sequencing problem that obtains a lot of interests by
the researchers is the ROADEF2005 challenge suggested by RENAULT [37]. Apart from
capacity constraints arising in the assembly shop in the traditional CSP, the challenge
introduces paint batching constraints in the paint shop and two classes of capacity con-
straints with different priorities in assembly shop. This extension is specially relevant to
our study, as it introduces the same type of constraints that is used to incorporate usage
restrictions of hazardous materials. Several contributions focus on the (meta-)heuristics
approaches of this version of CSP, such as tabu search [6, 44], local search [10, 11] and
variable neighborhood search [31]. The comparison of four heuristics is given in [23].

Another variation of the classical CSP is so-called extended CSP, proposed by [3, 33].
They introduced a minimum number of operations requirement into the production
sequences. Hence, the extended CSP aims at the finding out the trade-off between the
capacity overload and under-load. A GRASP approach is proposed by [3] to solve this
problem extension. [27] extend the CSP with partial demand, and implement and com-
pare several constructive heuristics. [38] consider restoration in the CSP and generate
a look-ahead approach to solve a large scale problems. [21] study failure probabilities
in the CSP and propose a sampling-based adaptive large neighborhood search heuris-
tic. [34] tackle variable station space in the CSP and propose branch & cut algorithm to
solve the proposed problem.

The abovementioned practical matters need additional modeling and computation
efforts. We extend the classical car sequencing problem by introducing extra block vari-
ables and processing time computations. The block production requirement has been
discussed in several literature streams, i.e., supply chain scheduling (SCS) [18], produc-
tion-routing [41] and production scheduling-vehicle routing problem (PS-VRP) [26].
Based on our knowledge, this is the first attempt to model this constraint into the car
sequencing problems.

Because of the NP-hardness of the proposed problem, we design and implement two
math-heuristic approaches to effectively and efficiently tackle the problem. The first one
is a constructive heuristic that is capable of fast generating a solution with acceptable
quality based on a relax-and-fix approach; the second one is an improvement heuristic
that can significantly improve the solution process. The overall technical accomplish-
ment is embed into a decision support system and deployed in a car manufacturer pro-
ducing business cars. The experimental tests show that our solution approaches are
efficient in solving large sized instances and is capable of improving the company’s cur-

rent manufacture efficiency.

3 Problem statement and formulation

A mixed-integer linear programming (MILP) is applied to depict and analyze the pro-
posed car sequencing problem (CSP) with block batches. Extra 0—1 decision variables
are proposed to denote the starting position of each block batch. The problem involves
a production stage with a single production line environment, which processes the cars
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consecutively. At the production stage, the cars are sequentially processed through weld-
ing shop, paint shop and assembly shop at the same production rhythm. Each shop con-
sists of a series of work stations, where the accessories are assembled to the car bodies
according to the bill of materials (BOM). As the stop of the production process incurs a
large amount of energy waste, the inventory of the accessories at each station should be
enough to satisfy the production requirements. We consider cars R = {1,2,--- ,N}to be
processed consecutively on work stations M = {1,2,--- , M}. Each car requires a subset
of options O; C O and each option 0 € O should be processed on a dedicated work sta-
tion. For options o with block productions, J, denotes the number of blocks required by
option o and f; is the length of each block. The operating time for each option o relies on
the number of accessories required and the technical difficulties.

The planning horizon 7 ={1,2,---,T} starts from the time when the first car
in the sequence enters the production line, and ends at the time when the last car in
the sequence leaves the production line. As the production rhythm is unchanged, the
car bodies move from one station to the next at the end of each time period ¢. The car
sequence also must comply with several capacity constraints of each shop, i.e., lim-
ited solvent consumption for cleaning paint guns and maximum number of consecu-
tive usage of certain accessories. Thus, restrictions are represented by a parameter tuple
Po»qo: any successional g, cars may contain at most p, cars requiring option o. There-
fore, the production sequence must comply with the work station configurations such
that conducted processing does not influence the number of cars manufactured in the
same time unit, which is described by the industry popular JPH (Job per Hour) indicator.

The remaining notations of our problem are as follows:

Sets and parameters

M set of work stations

N set of cars

(@] set of options

Po * qo capacity constraints of option o

Kio (=1)if cari € Nrequires optiono € O

Yom operating time of option 0 on machine m

Jo number blocks of option o

fo number of cars required in each block of option o
Cot coefficient of option 0 consumed at time period t
€5 average consumption rate of option o

T material quantity required by option o

Ao coefficient of capacity constraint violation of option o
B an arbitrary large number

Decision variables

Xij (=1) if car i is operated on the jth position of the production sequence

Uosj (=1) if the first car of s-th block of option o is scheduled on the jth
position of the production sequence

Yot consumption of accessories of option o at time period t

Zo number of capacity constraint violations of option o

jim the starting time of the process of car i in position j starts on work

station m
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The mathematical formulation of the problem reads as follows:
Zzoao + Z Z()/otcot — € x 1) (1)
o o t

The objective (1) is aim to minimize the total constraints violation and non-level option
consumption cost.
s.t.

3.1 Capacity violation
Constraints (2) calculate the total quantity of capacity violations of option o.

jt+qo—1
Z Z xikKiOSPO_ZO)V0601j=1;2)”';n_q0+1 (2)
i k=)

3.2 Car-machine assignment
Constraints (3) and (4) make sure that each position is allocated to exactly one car, and

each car is produced on exactly one position.

> xy=1Yj=12-- ,N 3)
i

le']' =1L,VieN
j

3.3 Block production
Constraints (5) imply that for each option o, there are J, blocks.

N—fo+1 J,
3 toj=JpYoeO (5)
j=1 s

Constraints (5) impose that the number of cars between the first cars of any two blocks
should be at least f, + 1, so as to separate different blocks.

H1topyj, — H2Uopuyjs <fot1

L . , 6
V10 S O)MLMZ € {1121' . 1N _fo + l}yﬂl < U2,J]1,]2 f]m]l <J2 ( )
Constraints (7) make sure that each car scheduled in the block has option o.
jHfo—1
Z Z XikKio Zf;)ugsjyv;o € O,S = ]07j = 1;2;' o ¢N __ﬁ) + 1. (7)
i k=)

3.4 Option consumption
Constraints (8) calculate the start time of producing car i on station m
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Cjjm = Qrj—1,m + Z Yom¥rj—1Kros Vi, € Nyj =2,3,-++ ,N,m € M )

o

Constraints (9) impose a schedule coincide with the sequence: For each car i, the start
time of the process on station m + 1 should be later than the finish time of the process
on mth station .

jjm < Wyjmy1,Vi € Nyme M,j=1,2,--- N (9)
Constraints (10) present the relations between variable x and o

®jjm < Bxjj,Vie Nyme M,j=1,2,--- ,N (10)
Constraints (11) calculate the consumption of option o at time period ¢.

Yot = Z KioTo, YO € O, t €T

ioj, M=t

4 Solution approach

Solving the stand-alone CSP is known to be NP-hard [24]. Hence, the integrated car
sequencing and inventory management problem is also NP-hard. Due the large com-
putation burden, most studies adopt metaheuristics to solve the problem. For instance,
tabu search (TS) and variable neighborhood search (VNS) algorithms are frequently
applied to solve the problem.

Usually, commercial softwares including CPLEX or Gurobi can only generate poor-
quality solutions for large-sized instances of this integrated problem, because of a great
number of binary and integer variables. A more specific solution method is needed to
tackle this issue. We propose one constructive heuristic and one destructive heuristic
that are both capable of solving the problems. The first heuristic is a constructive heu-
ristic based on a relax-and-fix procedure, and the second one is an fix-and-optimize
destructive heuristic combining variable neighborhood search and proximity search
techniques.

4.1 A constructive heuristics
Inspired by the work of [30], the structure of the formulation in Sect. 3 indicates that
relax-and-fix heuristics could efficiently solve the scheduling problem. In this approach,
the original problem could be iteratively decomposed into some smaller ones, which are
partially relaxed subproblems. Since the size of the subproblem (the amount of variables)
is reduced significantly, the computation time needed could also be reduced. Firstly, all
the binary variables are divided into several subsets. During the iterative searching pro-
cess, the variables of only one of these subsets are remained to be binary, and the rest are
changed to be any real number. Then the acquired small-sized problem could be solved
to (near) optimality and the 0-1 variables are remained at their current values. Repeat
this procedure until all the 0-1 variables are fixed.

The decomposition strategies of the binary variables determine the complexities of
the subproblems [9]. We adopt an index-based decomposition strategy in this study:
The variables are grouped by cars index, which relates the all the binary variables.
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Specifically, 7/ denotes the subset of car indices the corresponding binary variables are
fixed at their current value, N represents the subset of car indices the corresponding
variables are relaxed to be any real number , and A defines the subset of car indices
the corresponding variables are optimized. All the subsets are gradually updated based
on the solution of each subproblem. Let X;; be the solution at each iteration. The smaller
problem (IT*!) to be addressed in the next step is defined by introducing the following
constraints: x;; = %;j,i € N7; x;; € RY,i € N7; x; € {0,1},i € N°. The first constraint
defines the 0—1 variables that have been previously solved and fixed during the current
iteration, the second constraint describes the 0—1 variables that are relaxed, and the 0-1
variables to be solved during the current iteration are defined in the last constraint.

In light of [22] and [43], we use a decomposition pattern with overlapping car index
sets (AV? and NY). Specifically, only a subset of the solved solution are fixed. We use two
parameters x and ¥ to achieve this strategy, where yx is the number of car indices with
integrality requirements and b is the number of car indices whose variables are fixed. By
imposing x < v, we select a car indices from the solved ¥ car indices. The heuristic pro-
cedure is summarized by Algorithm 1.

Algorithm 1 A constructive heuristic
1: Input: x, 93
2 NP =g, N°={i§, - i}, N" = {i}, | i, e N\ N°}
3: while N° # & do

4 Calculate TT5!

5 Tij = ii]‘

6: NI =NTU{ig,Ng,---,i9}

7: /\/Oz{t%+l7~~7i;,i§7-~~7iz)}
8 NT=NT\{i, i)

9: end while

4.2 An improvement heuristic
We introduce an improvement heuristic with an adaptive VNS procedure in this sub-
section. The VNS procedure has been widely used to solve large mixed integer linear
programming problems [43]. In this procedure, firstly we generate a feasible solution
and iteratively separates the binary variables from the current solution into two groups.
The binary variables in the first group are fixed at their current value and the rest will
be optimized in each iteration. Note that binary variables are no longer relaxed in
this procedure; therefore, a feasible solution is generated at each iteration. Similar to
the relax-and-fix heuristic, the decomposition strategy is crucial to the solution qual-
ity and calculation efficiency [19]. In this study, we decompose the variables according
to a combination of cars N and periods 7 to keep sufficiently large solution space in
each iteration. The subproblem IT°2 to be solved is acquired by imposing constraints:
Xij = Xij» Yor = Jot»i € Nt e TY, %ij» Yor € {0,1},i € Nt € T°, where N and T/
include the variables whose values are fixed, and N/? and 7 represent the subsets of N/
and 7, indicating the variables that will be optimized.

In the VNS framework, the solution space is to systematically examined in the follow-
ing. Firstly, the incumbent solution is partially fixed according to a predefined structure,
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and then the neighborhood of the current solution is explored by MILP solver. If an
improvement is found, VNS will repeat these two steps; otherwise, the VND continues
with the next neighborhood structure and explores the corresponding solution space.
Note that the moving to the next neighborhood structure is conducted only after a pre-
specified number of no improvements. In case of all structures being examined without
finding an improved solution, a local optimum is identified.

To speed up the search process, we propose a reinforced parameter tuning mechanism
to determine the indices of cars and periods. Specifically, the probabilities of selecting
any cars and periods are initialized to 1 and will be adjusted based on two parameters,
namely recency and frequency. Recency represents the number of times the correspond-
ing cars and periods has been selected, while frequency is the number of iterations since
they were last used. The probability of being selected is the weighted average of these
two parameters. Let A and ybe the number of cars and periods fixed in each iteration,
respectively. The proposed heuristic is described in Algorithm 2.

Algorithm 2 An improvement heuristic approach

I: Given: P = {(\,y)}

2: Initial solution generation: CS
3: BS=CS

4: while P # @ do

5. Set N°and7? and T° according to selected (), )
6 for num=0 to MI do

7 Run IT%2 on solver

8 Update CS

9 if SS < BS then
10: Tij = jij: Yot = Yot
11: BS=CS
12: num = 0
13: end if
14: Update N °andT°
15: num-+-+
16:  end for

17:  Delete (A, ~y) from P

18:  if Maximum CPU time exceed then
19: Stop the while loop

20:  end if

21: end while

22: Return BS

where BS stands for best solution upon the current iteration, CS represents the cur-
rent solution, num means the maximum number of no-improvement iterations and MI
is the maximum total iterations.

5 Results

The model and algorithms are coded in Visual Studio 2015 Enterprise with CPLEX (ver-
sion 12.8), and the computations are conducted on a Lenvo ThinkStation P720 with
six Intel Core 2.4-G processors and 16 GB RAM, equipped with macOS Catalina. All
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instances are run on CPLEX with formulation for 3600 seconds (s), and the obtained
solutions serve as lower bound to compare the algorithms.

5.1 Instance generation

In this section, we evaluate the efficiency of the proposed solution approaches; a series
of instances are created based on the benchmark library of CSP problem CSPLib [13]
and dataset from a company producing commercial vehicles. The number of cars ranges
from 100 to 1000 with an increment of 200, and each class takes the value of the number
of options from (3, 10). The number of work station takes value from {100, 200, 300}.
In total, we have 600 instances. The values of capacity constraints p,, g, are randomly
selected from {(4,6), (5,8), (4,8)}. The unitary inventory cost and material quantity
requirements by option are randomly selected from the interval [10, 50].

5.2 Parameter setting

The solution approaches consist of two stages: The first stage is initial solution genera-
tion, using a relax-and-fix constructive heuristic; the second stage improves the solu-
tions from the first stage by either a branch-and-cut algorithm utilized in the Cplex
solver or a fix-and-optimize algorithm.

For the constructive heuristic, the value of x determines the scale of the subproblem
generated in each iteration, while v decides the range of the search processing. Note
that the solution quality is mainly determined the first iteration since only this subprob-
lem is technically the real relaxation of the original problem. One can use a higher value
of x to achieve a better solution quality, however, at the cost of more computational
expenses. The experimental results reveal that for low values of x (i.e., < 3), reasonable
solutions are obtained fast. However, it is still not possible to guarantee their quality,
especially for instances of large-sized instances. Finally, the parameters used are as fol-
lows, x = 5,% =4 and 10 s for each iteration (in total 60 s) with a trade-off between
efficiency and accuracy.

For the improvement heuristic, the neighborhood structure based on (2, y) is impor-
tant for the efficiency of the fix-and-optimize heuristic. It serves as a strategy either
allows an expensive search on a large scale of the solution space, or a dedicated search
within a small solution space. Preliminary experiments show that parameter A is the
major factor influencing the quality of the solution. To maintain a reasonable-sized sub-
problem, we consider structures with small A values. Through experiments, the adopted
neighborhood structure is by combining values A € {3,5,9,7}and y € {3,4}.

5.3 Results analysis
The heuristic algorithms introduced above are used to solve the instances generated in
Sect. 5.1. The approach comprises two stages: generating an initial solution with a lim-
ited CPU time of 5 s and improvement with time limit 60 s. B&C stands for the branch-
and-cut algorithm imbedded in CPLEX, R&F represents the relax-and-fix heuristic, and
F&O refers to the fix-and-optimize improvement heuristic. The solution generated by
CPLEX serves as the threshold to calculate the optimality gap.

In the first stage, we utilize either B&C or R&F approach (with the parameters valued
in previous sections to obtain the initial solution. The percentages of optimality gap of
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each instance are presented in the first three columns of Table 1. We observe that the
B&C algorithm cannot provide a feasible solution when the number of cars exceeds 300.
Algorithm R&F can generate a feasible for all instances in the limited time and can pro-
vide a better solution among the solved instances.

In the second stage, both F&O and B&C are applied to improve the initial solution. For
instance, in Fig. 1, “R&F-B&C” denotes that the initial result is calculated by the relax-
and-fix algorithm, and then improved by the fix-and-optimize heuristic. Overall, the
attribute of the initial result has a positive impact on the improvement efficiency, and
R&F + F&O outperforms other algorithm combinations. R&F outperforms B&C in gen-
erating better initial solutions, with an average optimality gap 893.5 for solved instances
and also leads to better final solutions. As shown in column 4 and 6, both B&C and F&O
can significantly improve the initial solution generated by B&C. Note that for instances
with 300, 400 and 500 cars, B&C + B&C has difficulties in finding the first feasible solu-
tion in 3 s, but is capable of providing a feasible solution within 60 s. We observe that
in column 5 and 7, F&O provides better final solutions than B&C. For instances with
less than 200 cars, F&O is able to provide near optimal solutions (gap less than 1%). For
instances with larger number of cars, F&O can also generate affordable solutions with a
short CPU time. The overall optimality gap among all instances is 8.72%.

We take the instances with 200 cars to illustrate the computational efficiency of our
heuristic approaches. As we can observe in Fig. 1, F&O significantly improves the ini-
tial solution in the first 10 s, then it becomes time-consuming to search for the globally
optimal solution. The B&C has a similar performance on the same set of instances, but is
outperformed by F&O in the search efficiency and solution quality.

We further compare the solution quality of our approaches with other up-to-data solu-
tion approaches. The test bed is a subset of the classical car sequencing instances from
[29] and [39]. Table 2 includes the characteristics of these instances. Note that these
instances have more configurations compared with the instances in Sect. 5.1, and are
therefore much more computationally expensive.

The comparative solution approach is a large neighborhood search (LNS) proposed in
[39], consisting of mixed integer programming (MIP) and ant colony algorithm (ACO),

Table 1 Optimality gap for the heuristic approaches

Instance size  Initial solution Initial solution & improvement

R&F (%) B&C(%) B&C-B&C(%) R&F-B&C(%) B&C-F&O (%) R&F-F&O (%)

100 867 1521 5.85 4.79 2.57 047
200 920 1627 98.69 86.64 45.01 0.98
300 1735 - 24513 88.11 - 241
400 2462 - 43544 103.03 - 252
500 2678 - 696.67 134.08 - 541
600 3126 - - 14574 - 1034
700 3633 - - 159.06 - 15.23
800 3905 - - 158.03 - 21.36
900 3966 - - 211.83 - 2844
1000 4785 - - 250.92 - 32.09

Average 1574 2807.7 296.36 134.23 48.21 8.72
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Fig. 1 Optimality gap for instances with n = 200 The gaps between the solutions returned by the four
combination of heuristics, BRC+F&O, R&F+F&O, B&C+B&C and R&F+B&C, and the threshold value returned
by CPLEX

Table 2 The classical car sequencing instances

# Cars # Options # Config. p/q ratios

100 5 17-30 1/(2,3,5), 2/(3,5)
300 5 19-26 1/(2,3,5), 2/(3,5)
500 7 21-22 1/(2.3,5),3/(4,5)

with a window size equal to the least common multiplier (LCM) of the subsequences
sizes of the options. The parameter setting of this so-called LNS (MIPACO-LCM) algo-
rithm is determined as in [39].

For the sake of fair comparison, we run the experiments 30 times to obtain statisti-
cally valid results and each experiment terminate when the solution quality does not
improve any more (for 100 iterations). The results are presented in Table 3, where B-UB
stands for best upper bound (feasible solution); M-UB is the mean of the value of 30
upper bounds; SD is the standard deviation associated with the mean value; Gap is cal-
culated as (MeanUB — MeanLB)/MeanLB. The values of the mean of lower bound for
these instances are given in [39].

The first column shows the problem instance. The next four columns show the results
for LNS(MIPACO-LCM) in [39]. The last four columns summarize the results for
R&F + F&O.

Comparing the mean of best solutions found, we observe that our heuristic obvi-
ously outperforms the LNS algorithms. Our approach is capable of finding a better
solution in most of the instances. Regarding instance 100-35, our approach is only
slightly worse than LNS, but the best solution obtained is still better (208.11 vs.
208.94). Similar observations are found for instances 300-62 and 500-88. Observing
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Table 3 A comparison of LNS and R&F 4 F&O on 30 runs

(2022) 2022:26

Instance LNS (MIPACO-LCM) R&F + F&O

Instance B-UB M-UB SD Gap (%) B-UB M-UB SD Gap (%)
100-22 252.04 25571 1.88 9.59 253.66 253.66 0.00 833
100-35 208.94 210.17 0.78 5.80 208.11 211.30 133 593
100-64 232.84 234.65 1.03 535 23215 232.74 0.79 4.22
100-77 166.32 169.13 1.28 11.93 16743 163.05 0.00 7.64
100-82 22503 229.18 207 10.71 226.06 222.85 0.00 7.38
100-94 168.93 17348 220 13.59 167.36 169.77 2.04 10.95
300-08 548,57 548.57 0.00 13.14 54922 521.64 1.01 9.38
300-14 712.59 712.59 0.00 558 71347 71493 0.56 6.22
300-53 665.57 669.34 0.70 15.30 642.64 642.64 0.00 5.14
300-56 467.53 467.70 093 11.89 451.04 452.73 045 841
300-62 72848 733.61 261 817 71945 741.03 277 9.22
300-78 51741 517.41 0.00 10.63 521.69 523.64 045 11.95
500-14 617.25 617.25 0.00 26.04 582.37 582.37 0.00 21.38
500-27 1398.77 1398.77 0.00 11.51 1385.62 1385.62 0.00 10.64
500-65 735.80 735.80 0.00 24.78 719.32 719.32 0.00 2032
500-74 672.28 672.28 0.00 17.94 648.02 648.02 0.00 14.04
500-79 127454 1278.98 2.03 563 1243.16 1284.07 1.55 6.04
500-88 1057.46 105746 0.00 13.33 1023.35 1016.77 2.01 938
The observed best mean value of upper bound for each instance is marked as bold

Table 4 Results of the algorithm with fifteen months of real-world data

Problem Manual method R&F + F&O

n 0 m p,go Viocost Opncon Viocost Opncon Costsv(%) Optgap (%) CPUtime/(s)
200 18 80 46 876 12.12 847 12.63 9.21 261 1.75

200 22 80 46 1132 10.83 1095 11.37 10.33 792 1.82

200 22 80 57 918 11.51 901 11.88 8.74 577 1.93

200 22 75 46 1315 9.60 1274 1161 11.35 8.01 207

200 20 80 46 916 11.29 874 11.90 5.89 591 1.15

400 22 80 36 779 12.82 771 13.12 5.74 2.62 520

400 22 70 46 824 12.25 817 12.39 6.38 3.68 532

400 22 80 46 785 12.38 761 12.56 4.81 257 5.22

400 16 80 24 741 13.52 731 13.52 514 261 5.10

400 22 80 46 897 10.84 852 11.97 8.67 573 535

600 19 80 46 892 11.90 850 12.59 749 5.66 11.74

600 20 65 48 853 12.31 842 12.41 6.32 4.75 11.10

600 22 80 46 922 11.32 897 12.13 6.91 6.83 11.08

600 22 80 35 1235 11.76 1195 1191 9.77 8.94 11.66

600 21 80 46 1201 11.73 1175 12.17 9.36 9.91 11.31
Avg 95240 11.75 92547 12.27 774 557 6.12

the results in columns SD, we find that our approach is more stable in generating

solutions with a smaller value of deviation.

It is also interesting to observe that our approach has similar performance as LNS

on different instances. Both of them find high-quality results on instances 100-35,

Page 13 of 17
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100-64, etc., and have solutions with relatively large gaps on instances 500-14, 500-65,
etc. This is due to the fact that both approaches use MIP formulations in searching for
the next feasible solution. The drawback is the uncertain search efficiency for large
instances because of large number of 0-1 and integer variables.

5.4 System implementation and evaluation
In this section, we describe the implementation of a decision support system with inte-
grated heuristic approaches, and the benefits to the company using such DSS.

We started working on this problem with the car manufacturing company in 2020.
At that time, the company has already utilized an enterprise resource planning (ERP)
system to deal with the production and inventory planning problem. However, this sys-
tem is lack of optimization-based decision-making capability to provide daily operation
instructions. The production and inventory decisions were made mainly with non-opti-
mization tools and expert experience.

The main purpose of the collaboration with the company was to streamline their deci-
sion-making process and replace their old planning procedures by automatic DSS with
advanced solution approaches. The DSS was developed in Microsoft Visual C++ 2015
environment. The algorithms were coded in C++ with IBM ILOG CPLEX concert tech-
nology (version 12.8) and were run on top of their information system developed in a
Java environment.

The company’s previous method was developed a couple of years ago by a consult-
ing agency. That method treats production and inventory as separate problems. The
logic used to generate production planning is a greedy algorithm, which prioritizes the
production requirements and adjusts the production schedules based on such priority
preference. Their method is straightforward and has been used for a number of years.
However, such a heuristic requires a lot of planning experiences which is difficult to be
quantified and systemized. Considering the complexity of the problems, we believe that
our integrated approach could outperform their manual method.

We conducted comparison experiments to evaluate the benefits of our integrated
approach. The real-world instances generated in Sect. 5.1 are used as the test bed and
heuristic R&F + F&O is adopted. The main parameters (1, 0, m, p, : q,) of 15 instances of
real-world production and inventory data are shown in Table 4, where each row repre-
sents one specific production and inventory planning. Note that the value of m (number
of work stations) is not the same across different instances, due to the ordinary mainte-
nance requirements on the stations.

Table 4 describes the solutions of the experiments. “Vio cost” represents the constraint
violations costs. “Opn con” means the non-level option consumption cost. “Cost sv”
means the total cost savings acquired by the heuristic approach compared with compa-
ny’s current manual method. The results returned by the R&F-F&O heuristic are given
in columns 8 and 9. For comparison, the improvement on total cost made by the R&F-
F&O heuristic is summarized in column 10. We observe that our heuristic approach can
save 7.74% of the total cost. Besides, the optimality gap between the final result and the
threshold result is given in column 11, and the average percentage value is 5.57. The last
column of this table is computation time (CPU) of the R&F + F&O heuristic when the
solution does not improve anymore.
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Form Table 4, we observe that our heuristic would improve the production plan-
ning by reducing the cost of constraint violations, from an average of 953 to 926 (2.8%
decrease), and increase inventory turnovers by an average of 4.4%. Our algorithm
is capable of improving the constraint violation cost and inventory turnovers in all
instances, which are the key demand for the company. The results also indicate that our
heuristic approach could improve the constraint violation costs in almost each of these
15 instances and reduce total cost by an average of 7.74%. Compared with the generated
large instances, our algorithm can find a satisfiable solution in 12 s. Thus, using our heu-
ristic could improve the current method.

6 Conclusion
In this paper, we extend the classical CSP by addressing block batch constraints, which
has been frequently encountered in the auto industry in practice. Especially for manu-
factures changing from mass standardization to mass customization, the large cumu-
lative setup times of frequently changed fixtures often disturb the normal production
rhythm. Besides, the block production also deteriorates the level production require-
ments, which deserves a more dedicated evaluation method of non-level production
cost, so as to better tune the production sequence. We propose a new mixed-integer
linear programming (MILP) formulation to tackle the proposed issues. Aware of the
NP-hardness, we develop two math-heuristic algorithms to handle the large-scale prob-
lems efficiently. The first one is a constructive heuristic that is capable of fast provid-
ing acceptable solutions in a limited computation time. The acquired solution can also
be used as the starting point for the second improvement heuristic, which incorporates
a data-driven adaptive variable neighborhood search to produce high-quality solutions
to real-life-size instances within acceptable runtimes. Extensive computational experi-
ments are reported, and several managerial insights into the planning process are given.
In the future, it would be interesting to consider other practical constraints in the car
production process, i.e., mixed-line production structure, car sequencing with limited
buffers. Obviously, the incorporation of extra constraints would increase the difficul-
ties of solving the complex problem. Hence, more advanced solution algorithms are
deserved to be thoroughly studied.
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