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1 Introduction
With the progress of modern technology, e.g., Internet of things (IoT) [1–3], data com-
munication [4], artificial intelligence (AI) [5–8] and cloud computing [9, 10], the research 
on marine exploration and other related fields is gradually increasing, the stealth of 
underwater targets seems to be improving, and the radiated energy is getting lower and 
lower. This makes the weak underwater signal sensing in the marine environment a com-
plex problem perplexing the development of underwater acoustics, especially for the 
weak signal of unknown frequency [11, 12]. At the same time, due to the variability of 
the marine environment, the signal received by the underwater sensing equipment not 
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only contains the weak signal radiated by the target but is also accompanied by the solid 
marine background noise, which leads to the degradation and distortion of the acous-
tic signal and the decline of the communication quality [13, 14]. Through the deriva-
tion of the central limit theorem, underwater acoustic noise can be briefly described as 
Gaussian noise [15], so most of the current studies choose the Gaussian noise model for 
discussion. However, in the actual marine environment, few active will dominate in a 
specific frequency range, and there is random non-Gaussian impulse noise in the signal, 
which has more severe tailing than Gaussian noise. When using Gaussian noise to simu-
late and design the algorithm, it will have a significant impact on the performance of the 
sensing system [16–19]. Therefore, it is necessary to study the underwater acoustic noise 
model and underwater weak signal sensing method.

In the study of marine noise, the noise interference of the underwater environment 
often contains intense pulses, which do not conform to Gaussian distribution [20–22]. 
Non-Gaussian noise does not have Markov characteristics, which is very difficult to 
deal with in the research of weak signal sensing [23]. Albeverio, Kondratiev and oth-
ers extended HIDA’s theory to the case of non-Gaussian [24–26]. Fan and others used 
the statistical characteristics of high-order accumulation to analyze ocean noise [27] in 
2018, but this method cannot fully describe the characteristics of non-Gaussian. Later, 
after analysis by Lu, Nikias, Li and others, it was found that in addition to Cauchy, Lévy 
and Gaussian processes, the probability distribution has an unstable closed form [28]. 
Recently, Lévy noise has been one of the research hotspots of non-Gaussian noise analy-
sis. Just as Gaussian noise can be regarded as the generalized time derivative of Brown-
ian motion, Lévy noise can also be regarded as the generalized time derivative of the 
Lévy process, and it is a basic stationary independent incremental random process. Lévy 
distribution is a generalized form of Gaussian distribution. It is a typical non-Gaussian 
noise with a long tail, discontinuous jump and infinite separability. It can maintain the 
natural noise process’s generation mechanism and propagation conditions. The Lévy 
noise model established by Lévy distribution can describe many symmetrical or asym-
metric noises with different impulsivity by controlling the selection of different param-
eters [29, 30]. It has more substantial applicability and great significance to describe the 
influence characteristics of underwater environmental noise interference [31]. There-
fore, selecting the Lévy model parameters in different application scenarios is also one of 
the research objects of this paper.

In terms of weak underwater signal sensing methods, some classical signal process-
ing methods become difficult to apply due to the increasingly low signal-to-noise ratio of 
signals received by underwater equipment. For example, wavelet transform will have the 
problem that the basis function cannot be effectively selected [32]. Although stochastic 
resonance can realize the sensing of weak signals, it cannot accurately perceive signals with 
large amplitude and frequency, and there is the problem of how to select parameters [33] 
effectively. At present, scholars worldwide have shown great interest in chaos theory. In the 
1990s, chaos theory began to be used for signal sensing. In order to solve the problems of 
high signal-to-noise ratio threshold and limited sensing bandwidth, coupled Duffing oscil-
lator algorithm [34] appeared, coupling Duffing oscillator and Van der Pol Duffing oscilla-
tor algorithm [35], bidirectional ring coupling Duffing oscillator transient synchronization 
breakthrough method [36], etc. These algorithms improve the solution speed to a certain 
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extent, but there is still a problem that the unknown frequency signal with a low signal-to-
noise ratio is complex to perceive [37–44].

This paper proposes an underwater position sensing method that is more suitable for 
weak signals in a complex ocean environment to solve the above problems. The main 
contributions of this paper are as follows:

• Lévy noise model is proposed to describe the underwater natural environment, and 
an analysis and estimation method is provided to select better parameters.

• Aiming at the sensing problem of weak underwater signal with unknown frequency, 
and improved dual-coupled Duffing oscillator signal sensing method based on 
scale change and variable step size is proposed. This method has better resistance 
to intense noise, better adaptability to impact noise, higher sensing efficiency, more 
intuitive sensing results, and a lower threshold.

• An underwater weak signal sensing system with unknown frequency is designed 
and established. The system can better sense multi-frequency signals under the Lévy 
noise model. The feasibility and superiority of the sensing system established in this 
paper are verified by using the actual underwater acoustic data.

2  Related work
2.1  Lévy noise model

The Lévy process was proposed by the French mathematician Paul Lévy to study the 
generalized central limit theorem. It is a random process with independent and fixed 
increments, indicating that the movement of a point and its continuous displacement 
are random [45]. The difference between two disjoint time intervals displacement is 
independent. The displacement and displacement in different time intervals of the same 
length have the same probability distribution. It can be regarded as a continuous-time 
simulation of random walk. Lévy noise also called alpha noise obeys the theory of stable 
alpha distribution. The only distribution satisfies the generalized central limit theorem, 
and a square law attenuates its tailing. The expression of the characteristic function of 
Lévy noise [46] is as follows:

In (1), α ∈ (0, 2] is the characteristic index, which determines the decay rate of the dis-
tribution tail. When α = 1 , it is Cauchy distribution. When α = 2 , it is the Gaussian dis-
tribution, and the mean value is µ , the variance is 2σ 2 . When α  = 2 , the mean value 
is µ , but the variance does not exist. β ∈ [−1, 1] is the skew parameter. When β = 0 , 
the graph is symmetrical, and when β is a positive number, The graph tilts to the right; 
on the contrary, the graph tilts to the left, σ > 0 is the scale parameter, which deter-
mines the degree of dispersion of the distribution concerning µ and µ ∈ R is the position 
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parameter. The left and right translation can be achieved by adjusting the value of µ . 
Rfal-Weron proved the expression of Lévy distribution random variable. In (2), V obeys 
the uniform distribution in the interval (−2π , 2π) , W follows the exponential distribu-
tion with the mean value 1, Sαβ and Bαβ is as follows:

Under the conditions of β = 0 , σ = 1 and µ = 0 , the Lévy distributions corresponding 
to different α feature indices are shown in Fig. 1.

It can be seen from Fig. 1 that the smaller the value α , the stronger the impact of noise 
interference. When α = 2 , the noise interference has almost no impact. At this time, the 
Lévy noise degenerates into white noise.

2.2  Intermittent chaotic oscillator sensing system

2.2.1  Intermittent chaos of single Duffing oscillator

At present, in sensing weak signals with unknown frequency, the commonly used 
method is to use the intermittent chaotic characteristics of the chaotic system. Using 
the phase change of chaotic oscillator to sense weak periodic signal requires a slight 
frequency difference between the signal to be measured and the decision power in the 
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1+ β2tan2
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Fig. 1 Time-domain distribution map of live noise corresponding to different feature index α
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established chaotic sensing system. This frequency difference will lead to chaos and peri-
odic intermittent chaos in the sensing system. Intermittent chaos uses the immunity of 
chaotic oscillator to noise and the sensitivity to weak signal disturbance to sense peri-
odic noise signals with unknown frequency.

Make the signal input into the single Duffing oscillator chaos sensing system as f(t), 
f (t) = Acos[(ω +�ωt)+ ϕ] , �ω is the frequency difference between the signal input 
into the chaotic sensing system and the periodic force between the chaotic system, 
�ω ≪ ω , ϕ is the phase difference. At this time, the state equation of single Duffing 
oscillator system can be expressed as [41, 47, 48]:

where γ is the critical chaotic threshold, and the total dynamic force of the single Duffing 
oscillator system is:

where A ≪ γ , therefore, θ(t) is small enough, so its effect on the dynamics of the chaotic 
system can be ignored. This analysis shows that:

• If �ω = 0 , the real influential parameter for the motion state of the system is the 
phase difference ϕ . When there is π − arccos( A

2γ ) ≤ ϕ ≤ π + arccos( A
2γ ) and 

P(t) ≤ γ , the chaotic sensing system will still be in a chaotic state. If ϕ does not meet 
this condition, the system will quickly change to a large-scale periodic state.

• If �ω  = 0 , then L(t) will deviate from γ with T = 2π
�ω

 as the period. In this state, the 
system will enter a regular intermittent chaotic state, which is manifested as the state 
of chaotic sensing system. The chaotic state and large-scale periodic state appear in 
a stable, regular and periodic alternating manner. The sensing of weak signals with 
unknown frequency is based on this.

• If the value of �ω is too large, the system policy power of the chaotic sensing sys-
tem will change too fast so that the system cannot respond quickly. When there is 
a large difference between the frequency of the weak signal to be measured and the 
system policy power, even if the signal amplitude input to the sensing system is large 
enough, the system will not have phase transition and regular, stable and periodic 
intermittent chaotic motion.

From the above analysis and discussion, it is found that the method of using the 
intermittent chaos theory of chaotic oscillator to sense the weak periodic signal of 

(5)
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position frequency is scientific and effective. Through the simulation, it is found that 
in the single Duffing oscillator chaotic sensing system, when 

∣∣�ω
ω

∣∣ ≤ 0.03 , the output 
sequence of the system is shown in Fig. 2a, and it is observed that Fig. 2a is an obvious 
intermittent chaotic state. When 

∣∣�ω
ω

∣∣ > 0.03 , the timing diagram of system output 
cannot be judged as intermittent chaotic state, as shown in Fig. 2b.

2.2.2  Intermittent chaos of double coupled Duffing oscillator

Make the signal to be measured to be input into the dual-coupled Duffing oscillator 
chaos sensing system as f(t), f (t) = Acos[(ω +�ωt)+ ϕ] , �ω is the frequency differ-
ence between the signal to be measured input into the chaotic sensing system and the 
periodic force between the chaotic system, �ω ≪ ω , ϕ is the phase difference. At this 
time, the state equation of dual-coupled Duffing oscillator system can be expressed as:

where f (t) = Acos(ω̇t + ϕ) , ω̇ = ω +�ω . When 
∣∣�ω

ω

∣∣ ≤ 0.08 , the output sequence of 
the system is shown in Fig.  3a, which is an obvious intermittent chaotic state. When 

(9)
{
ẍ(t)+ kẋ(t)− x(t)+ x3(t)+ d[y(t)− x(t)] = γ cos(ωt)+ f (t)

ÿ(t)+ kẏ(t)− y(t)+ y3(t)+ d[x(t)− y(t)] = γ F cos(ωt)+ f (t)

Fig. 2 The output sequence of the single Duffing oscillator system

Fig. 3 The output sequence of the dual-coupled Duffing oscillator system
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∣∣�ω
ω

∣∣ > 0.08 , the timing diagram of the system output cannot be judged as an intermit-
tent chaotic state, as shown in Fig. 3b.

3  Methods
3.1  Parameter analysis and estimation of Lévy noise model

The Fokker-Plank equation corresponding to equation (10) is:

where A(x) = ax − bx3 + S(x) , B(x) = D . Since equation (11) is a transcendental equa-
tion, it cannot be solved directly, but the approximate number of equation (11) can be 
calculated using the finite difference method. The following equations can be obtained 
by using the fourth-order Runge--Kutta method.

where �t is the step size, Fi(i = 1, 2, 3, 4) are:

The numerical solution of the Lévy noise model obtained according to the above method 
is shown in Fig. 4, where α = 1.5 , β = 0 , D = 0.1.

Next, the influence of various parameters of Lévy noise model is further analyzed, 
including Lévy noise intensity D, stability index α and deflection parameter β.

Figure  5 shows the curve of probability density function Pst(v) of Lévy noise model 
with different noise intensity, where α = 1.1 , β = 0 . When the noise intensity D = 0.1 , 
the image of Pst(v) has two peaks, which indicates that there are two steady states in the 
process of particle motion, that is, the left peak and the right peak of the image. With 
the increase of noise intensity D, the image of Pst(v) gradually changes from two peaks 
to a single peak structure with only one peak, which indicates that the noise intensity D 
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in Lévy noise model can induce the phase transfer of particle system motion. When the 
noise intensity D is smaller, the movement of particles is more affected by the traction of 
the signal, and its density curve is relatively smooth. When the noise intensity D grad-
ually increases to D = 0.3 , the particles gradually concentrate on one side of the zero 
point. When the noise intensity D increases to D = 0.5 , the particles are gradually une-
venly distributed on both sides of the zero point. This phenomenon is analyzed from the 
microscopic point of view, that is, when the noise intensity D < 0.3 , because the excita-
tion intensity of the external noise is not enough, the energy obtained by the particles 
for motion is not enough make them cross the potential barrier. These particles can only 
move back and forth in a potential well, so the particles can only concentrate on one side 
of the zero point as for whether to move in the left potential well or the right potential 
well mainly depends on the combined force of the signal traction received by the parti-
cle at zero and the interference of external noise. When the noise intensity D = 0.5 , the 
moving particles are strongly excited by the noise to obtain enough energy to jump over 
the potential barrier from one potential well to another. The noise will affect the change 
of particles, so the particles will not be symmetrically distributed on both sides of the 
zero point.

Fig. 4 The Lévy noise model

Fig. 5 The particle probability distribution of the system output under the excitation of different noise 
intensity D 
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Figure  6 shows the curve of probability density function Pst(v) of Lévy noise model 
with different stability index, where D = 1 , β = 0 . When α = 1.1 , the image of Pst(V )has 
two peaks. However, when the characteristic index αgradually increases, the left peak of 
Pst(V )image gradually decreases, and the right peak gradually increases. When α = 1 , 
the left peak of Pst(v) disappears, and the image of Pst(v) gradually changes from two 
peaks to a single peak structure with only one peak. This also shows that the character-
istic index α in the Lévy noise model can induce particle system motion phase transfer. 
From the microscopic point of view, the barrier height is low when α is small. At this 
time, although the energy obtained by the particles is small, they can cross the barrier by 
their energy. With the gradual increase of characteristic index a, the height of the poten-
tial barrier is also increasing. Therefore, particles need to obtain certain energy from 
noise to cross the potential barrier. If the noise intensity D does not change, particles 
cannot cross the potential barrier.

Figure 7 shows the curve of probability density function Pst(v) of Lévy noise model with 
different deflection parameters. When β = −1 , the image of Pst(v) has and only has one 
peak. The function has two peaks as the skew parameter β increases from − 1 to 0. This 
indicates that the skew parameter β of the Lévy noise model can induce the phase transfer 

Fig. 6 The particle probability distribution of the system output under the excitation of different stability 
index α

Fig. 7 The particle probability distribution of the system output under the excitation of different deflection 
parameter β
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of particle system motion. When the skew parameter β increases further, the right peak of 
Pst(v) begins to decrease slowly. On the contrary, the left peak of Pst(v) begins to rise slowly. 
When the skew parameter β increases to β = 1 , the right peak of Pst(v) disappears and the 
left peak continues to rise. The phenomenon is analyzed from a microscopic point of view. 
With the increase of the deflection parameter β , the potential barrier height that the parti-
cles need to cross is smaller. When the deflection parameter β = −1 , the potential barrier 
height that the particles need to cross is very high. When the energy cannot be obtained 
through the external excitation noise, the particles cannot cross the potential barrier and 
can only move back and forth on one side. With the increase of the deflection parameter 
β , the barrier height decreases, and less energy is required for particles to enter from one 
potential well to the other. Through the above research and analysis, it can be found that the 
establishment of the Lévy noise model requires a good selection of three parameters: char-
acteristic index α , deflection parameter β , and Lévy noise intensity D. In general, it is con-
sidered that the underwater environmental noise is unbiased, and the position parameter 
is 0. Therefore, when constructing the underwater Lévy noise model, we only need to pay 
attention to the characteristic index α and Lévy noise intensity D of Lévy noise to generate a 
more applicable Lévy noise model to describe underwater noise.

In this regard, this paper quotes the method of literature [49], to estimate the charac-
teristic index α and the noise intensity D of the Lévy noise model:

where E(|X |ρ) is the fractional low-order moment, and ρ is the order, 

C(ρ,α) =
2ρ+1τ

(
ρ+1
2

)
τ

(
−ρ
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)
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√
πτ

(
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2

)  , −1 < ρ < α ≤ 2 . Let Y = lg |X |E(Y ) < +∞ , the moment 

generating function is:

Since Y is only related to α except for the first moment, the first two finite logarithmic 
moments are listed as:

Let t = 1 , then �0 = −0.5772 and �1 = 1.6449 are obtained. The estimated value can be 
obtained from the above formula:
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To test the effectiveness of the estimation method, the Chambers-Mallows-Stuck (CMS) 
method is used to generate the Lévy noise with α = 1.5 , D = 1 , and the parameters of α , 
D are estimated. The estimated results are shown in Figs. 8 and 9:

where n represents the number of estimates, Figs. 8 and 9 show that values of α and 
D are obtained, respectively, as 1.5026 and 1.1664; the estimated variance is 0.0034 and 
0.0046, respectively. It proves that the method can estimate the parameters of interfer-
ence noise in the actual underwater information sensing environment.

3.2  Improved signal sensing method based on the scale transformation of the variable 

step‑size intermittent chaotic differential dual‑coupled Duffing oscillator

3.2.1  Improved signal sensing method of intermittent chaotic dual‑coupled Duffing oscillator

It is found that the combination of two oscillators in this paper has more robust stability 
than the coupling of two oscillators in theory so that the sensing of chaotic signals from 
the two oscillators can be better than that from the coupling of two oscillators in theory. 

Fig. 8 Estimation of characteristic index α

Fig. 9 Estimation of noise intensity D 
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Moreover, the differential timing chart of the sensing system coupling two pairs of cha-
otic oscillators will make the sensing results more intuitive and easier to judge. When the 
sensing system is in a large-scale periodic state, the differential timing diagram will display 
a closed curve with relatively regular amplitude. When the sensing system is in a chaotic 
state, the differential timing diagram will show the irregular peak diagram with a large 
amplitude swing, which will be more conducive to observing the state of the chaotic sens-
ing system. Therefore, the improved dual-coupled Duffing oscillator model is proposed in 
this paper:

where F represents the dynamic coefficient of the periodic policy. The dual-cou-
pled Duffing oscillator model contains two pairs of Duffing oscillators. The difference 
between the two pairs lies in the difference of the dynamic coefficient of the periodic 
policy, and other parameter conditions are exactly the same. Next, input the same signal 
to be tested into the system:

where f (t) = f cos(ω̇t + ϕ) , ω̇ = ω +�ω . Through the simulation, it is found that in 
the intermittent chaotic sensing system, when 

∣∣�ω
ω

∣∣ ≤ 0.9 , the sequence diagram output 
by the intermittent chaotic sensing system is shown in Fig. 10, which can be judged as 
an obvious intermittent chaotic state, while when 

∣∣�ω
ω

∣∣ > 0.09 , the sequence diagram 
output by the intermittent chaotic sensing system is shown in Fig. 11, which cannot be 
judged as an intermittent chaotic state.

3.2.2  Improved signal sensing method based on the scale transformation of the variable 

step‑size intermittent chaotic differential dual‑coupled Duffing oscillator

Although the signal sensing method of the intermittent chaotic dual-coupled Duffing oscil-
lator improves the speed and accuracy of a certain SNR ratio and threshold solution, it still 
cannot solve the problem of estimating the unknown frequency signal parameters and the 
high SNR ratio threshold [50]. In this paper, combining the theoretical knowledge of scale 
transformation and variable step-size method, an improved signal sensing method based 
on the scale transformation of the variable step size intermittent chaotic differential dual-
coupled Duffing oscillator is proposed. The sensed unknown signal frequency’s estimated 
result is more accurate, the SNR ratio threshold is lower, and the calculation overhead is 
smaller.

(20)






ẍ1 + cẋ1 − x1 + x31 + k(x1 − x2) = f cos(ωt)

ẍ2 + µ(1− x32)ẋ2 + x2 + k(x2 − x1) = f cos(ωt)

ÿ1 + cẏ1 − y1 + y31 + k(y1 − y2) = Ff cos(ωt)

ÿ2 + µ(1− y32)ẏ2 + y2 + k(y2 − y1) = Ff cos(ωt)

(21)






ẍ1 + cẋ1 − x1 + ax31 + k(x1 − x2) = f cos(ωt)+ A cos(ω1t)+ η(t)

ẍ2 + µ(1− x32)ẋ2 + x2 + k(x2 − x1) = f cos(ωt)+ A cos(ω1t)+ η(t)

ÿ1 + cẏ1 − y1 + ay31 + k(y1 − y2) = Ff cos(ωt)+ A cos(ω1t)+ η(t)

ÿ2 + µ(1− y32)ẏ2 + y2 + k(y2 − y1) = Ff cos(ωt)+ A cos(ω1t)+ η(t)
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where ξ is the influencing parameter of the chaotic oscillator; the other parameters of 
the two pairs of Duffing oscillators are the same. By generating the differential timing 
diagrams x1(t)− x2(t) of the two pairs of Duffing oscillators to observe whether the sig-
nal has been sensed, the timing diagram should be regular. The change of ξ will not affect 
the waveform, only the magnitude of the phase difference. When ξ = 1 the phase dif-
ference disappears, and the two pairs of oscillators are the same. At this time, they will 

(22)






¨x1(t)+ k ˙x1(t)− x1(t)+ x31(t)+ d
�
y1(t)− x1(t)

�
= Fcos(ωt)+ Acos(ω1t)

¨y1(t)+ k ˙y1(t)− y1(t)+ y31(t)+ d
�
x1(t)− y1(t)

�
= Fcos(ωt)+ Acos(ω1t)

¨x2(t)+ k ˙x2(t)− x2(t)+ x32(t)+ d
�
y2(t)− x2(t)

�
= ξ · Fcos(ωt)+ Acos(ω1t)

¨y2(t)+ k ˙y2(t)− y2(t)+ y32(t)+ d
�
x2(t)− y2(t)

�
= ξ · Fcos(ωt)+ Acos(ω1t)

Fig. 10 Differential sequence diagram of intermittent chaotic state

Fig. 11 Differential sequence diagram of chaotic state
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degenerate into ordinary dual-coupled Duffing oscillators. In this paper, through many 
experiments, the final choice of ξ = 1.001 has obtained a more intuitive effect.

In this paper, the fourth-order Runge--Kutta method is used to analyze the Duffing 
vibrator sensing system numerically. Through calculation, when the frequency differ-
ence range of intermittent chaos is 

∣∣�ω
ω

∣∣ < 0.09 , the system is in the state of intermit-
tent chaos. Comparing the intermittent chaotic frequency difference range of the three 
methods, we can get that the method proposed in this paper can better sense the step 
size, which makes the use of the variable step-size method more meaningful and can 
more easily realize the signal sensing of unknown frequencies. The intermittent chaotic 
sequence diagram of the method proposed in this paper is shown in Fig. 12:

Next, apply variable step size on the basis of the above. Change the solution step length 
of the solution process, and convert the signal into the corresponding discrete sequence 
of the built-in driving force of the sensing system. By observing the system output x1(t) 
timing diagram and x1(t)− x2(t) differential timing diagram to determine whether the 
sensing is successful. Let the angular frequency of the built-in signal of the sensing sys-
tem be ω For the signal to be measured with an angular frequency of ω1 , the conven-
tional system solution step is the interval of the built-in driving force sequence of the 
sensing system, the sequence interval of the signal to be sensed is Ts(Ts = 1

fs
 , fs is the 

sampling rate of the signal). The sensing result is only related to the sampling rate and 
has nothing to do with the step length. Therefore, the built-in driving force sequence 
interval of the sensing system can be changed until the system is adjusted to an intermit-
tent chaotic state, thereby completing signal sensing.

The total strategy term of equation (15) is Fcos(ωt)+ Acos(ω1t) and 
ξFcos(ωt)+ Acos(ω1t) . When the system is in an intermittent chaotic state, set the 
built-in driving force sequence interval to ω̇

sωfs
 , ω̇ = ω +�ω , s ∈ (0.91, 1.09) . This is 

equivalent to changing the signal to be measured by �ω
ω

 times on the time axis, so that 
the relative angular frequency with the built-in signal becomes 1 : 1. Under this con-
dition, the influence of the signal under test on the output phase of the system is 
equivalent to a signal with the same frequency as the built-in driving force. This 
means that the improved algorithm for the built-in signal angular frequency ω can 
transform the step size to make the signal under test whose frequency is not in the 

Fig. 12 The output sequence of improved method
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range of (0.91, 1.09)ω , and it can also make the sensing system appear intermittent 
chaotic. When the variable step size method is applied, the two strategy items are dis-
cretized as follows:

At this time, reconstruct a new chaotic oscillator sequence with length n and a common 
ratio 

∣∣ω+�ω
ω

∣∣ satisfying 
∣∣�ω

ω

∣∣ < 0.09 . The sequence is expressed as:

Bring the oscillator array into (12) to find the critical chaotic state frequency difference 
threshold of the sensing system under the current chaotic oscillator array, and adjust the 
built-in driving force sequence interval an = 2π sn

sωfs
, (n = 1, 2, . . . ,N ) and observe the 

system output timing diagram, if the frequency difference between the built-in driving 
force and the signal meets the standard of intermittent chaos, the sensing system will 
appear intermittent chaos. The specific steps are shown in Fig. 13.

When two adjacent built-in driving force sequence intervals are in an intermittent 
chaotic state, the existence and frequency range of the signal to be measured can be 
determined. When the noise intensity is too high, the state of the Duffing oscillator’s 
sensing system will be significantly affected by the noise, which will cause the system 
to enter the wrong chaotic state, and make the weak signal sensing wrong, as shown 
in Fig. 14.

Therefore, this paper adopts the method of calculating the standard deviation σs 
of the input signal and automatically scales the signal under test superimposed with 
noise through the standard deviation. First, collect a piece of input signal f(t) of length 
N, calculate the standard deviation of the sampling sequence σ 2

s = Ex2 − E2x , and set 
a target standard deviation value σsd based on this. Then calculate the standard devia-
tion of the collected signals once and construct the scale conversion factor k = σsd

σs
 . If 

(23)





Ln1 = Fcos

�
nω̇
sfs

�
+ Acos

�
nω̇
fs

�

Ln2 = ξ · Fcos
�
nω̇
sfs

�
+ Acos

�
nω̇
fs

�

(24)ω1 = 1, ω2 =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ω1, ω3 =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ω2, . . . ,ωn =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ωn−1

Fig. 13 The specific steps of the chaotic sensing system
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k < 1 , multiply the sampled signal by k to obtain the transformed sample sequence, 
and then send it to the signal sensing system. Let the strategy term after the equa-
tion be U(t) = A

σsd
σs
cos(ω1t) . The system expression using scale transformation is as 

follows:

The parameters shown in Fig. 15 are added to the sensing system after the scale trans-
formation is introduced, and the output state is shown in Fig.  16. It can be seen that 
the anti-interference ability of the sensing system against noise is significantly improved 
after the scale conversion is added. The sensing SNR ratio threshold is obviously reduced.

4  Experiment and analysis
In order to describe the actual marine environment more effectively, this paper first uses 
the Chambers-Mallows-Stuck (CMS) method to generate Lévy noise with D = 1 , The val-
ues of α are 1.5, 1.8 and 2. Under the interference of the Lévy noise model, an intermittent 
chaotic signal sensing system based on the improved scale transform intermittent chaotic 

(25)






¨x1(t)+ k ˙x1(t)− x1(t)+ x31(t)+ d
�
y1(t)− x1(t)

�
= Fcos(ωt)+ U(t)

¨y1(t)+ α ˙y1(t)+ αy21(t)
˙y1(t)+ y1(t)+ d

�
x1(t)− y1(t)

�
= Fcos(ωt)+ U(t)

¨x2(t)+ k ˙x2(t)− x2(t)+ x32(t)+ d
�
y2(t)− x2(t)

�
= ξFcos(ωt)+U(t)

¨y2(t)+α ˙y2(t)+ αy22(t)
˙y2(t)+ y2(t)+ d

�
x2(t)− y2(t)

�
= ξFcos(ωt)+U(t)

Fig. 14 The wrong chaotic state of the chaotic sensing system

Fig. 15 The scale transformation flow chart
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variable step size dual-coupled Duffing oscillator is established. The simulation proves the 
efficiency and superiority of the sensing system. Finally, to verify the effectiveness of the 
actual application of the method in this paper, the underwater acoustic data of a reservoir in 
Sichuan are used for the experiment.

4.1  Sensing results of each intermittent chaotic sensing system

4.1.1  Single Duffing oscillator

Firstly, the sensing performance of intermittent chaos sensing system based on single Duff-
ing oscillator under the background of Lévy noise is studied and analyzed. Create a new 
chaotic oscillator column with the common ratio of q = 1.03 , and then use the frequency 
scanning to sense the weak signal of unknown frequency to be measured. The range that 
each oscillator in the oscillator column can scan is 0.01ω ≤ |�ω| ≤ 0.03ω . When there is 
intermittent chaotic state between two adjacent oscillators, the frequency range of the sig-
nal to be measured can be determined immediately. Through the experimental analysis in 
the previous section, it is found that when 

∣∣�ω
ω

∣∣ ≤ 0.03 , the intermittent chaos sensing sys-
tem of single Duffing oscillator can accurately show the phenomenon of intermittent chaos. 
Select appropriate parameters to enable the system to accurately show intermittent chaos. 
At this time, �ω = ±0.03ω is selected as the common ratio to build a group of chaotic 
oscillator columns with a length of:

When the frequency of the weak signal of the period to be measured is not available, in 
order that the chaotic system can finally reflect the frequency range of the signal to be 
measured, first replace each item of formula 26 with formula 25 for calculation, then find 
the appropriate critical chaotic threshold through experiments, calculate and obtain the 
value of γ , and judge it through the timing diagram output by the intermittent chaotic 

(26)

ω1 = 1, ω2 =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ω1, ω3 =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ω2, . . . , ωn =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ωn−1

Fig. 16 Intermittent chaos sensing system with scale conversion
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sensing system of single Duffing oscillator. When intermittent chaos occurs in adjacent 
oscillators, the frequency of the signal to be measured can be limited.

Let the signal to be measured be f (t) = A cos(10t)+ η(t) , η(t) represent the Lévy 
noise with characteristic index α = 1.5 , deflection parameter β = 0 and noise intensity 
D = 0.1 . Input the signal to be measured into the intermittent chaos sensing system of 
single Duffing oscillator, and adopt the above sensing method. After multiple experi-
mental sensing, when the chaotic oscillator is in ω77 and ω78 , the time sequence diagram 
output by the system is a clear intermittent chaos state, the angular frequency ω of the 
signal to be measured is estimated to be ω77+ω78

2 = 9.883991 , and the deviation rate is 
about 1.1% . The sensing results are shown in Fig. 17.

When the amplitude of the signal to be measured is A = 0.37 , the output of the sin-
gle Duffing oscillator intermittent chaos sensing system is an obvious intermittent chaos 
phenomenon, which shows that the intermittent chaos sensing system can successfully 
sense the signal to be measured with unknown frequency under Lévy noise at this time. 
When the amplitude of the signal to be measured is A < 0.37 , the system cannot output 
a relatively stable intermittent chaos phenomenon. Therefore, under this condition, the 
signal to be tested with unknown frequency cannot be sensed successfully. Through fol-
lowing formula 27, it can be calculated that the minimum signal-to-noise ratio of the 
signal to be measured with unknown frequency that the system can sense at this time is 
7.6192 dB.

where X(ω) is the Fourier transform of the system output, ωc+and ωc−are the upper 
boundary cutoff frequency and lower boundary cutoff frequency of intercepting the sys-
tem output signal, ω0 ∈ [ωc+ ,ωc−].

4.1.2  Dual‑coupled Duffing oscillator

Secondly, the sensing performance of intermittent chaos sensing system based on dual-
coupled Duffing oscillator under the background of Lévy noise is studied and ana-
lyzed. Through the experimental analysis in the previous section, it is found that when 

(27)SNR = 10 lg

�
Psignal

Pnoise

�
= 10 lg




lim

�ω→0

� ω0+�ω

ω0−�ω
X
2(ω)dω

� ωc+
ωc− X2(ω)dω − lim

�ω→0

� ω0+�ω

ω0−�ω
X2(ω)dω





Fig. 17 The intermittent chaotic single Duffing vibrator sensing system
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∣∣�ω
ω

∣∣ ≤ 0.08 , the intermittent chaos sensing system of single Duffing oscillator can accu-
rately show the phenomenon of intermittent chaos. Select appropriate parameters to 
enable the system to accurately show intermittent chaos. At this time, �ω = ±0.08ω is 
selected as the common ratio to build a group of chaotic oscillator columns with a length 
of:

When the frequency of the weak signal of the period to be measured is not available, 
in order that the chaotic system can finally reflect the frequency range of the signal to 
be measured, first replace each item of formula (28) with formula (27) for calculation, 
and then calculate the values of x1 and x2 after finding the appropriate critical chaotic 
threshold through experiments, and judge by coupling the x1, 2 sequence diagram and 
x1 − x2 differential sequence diagram output by the Duffing oscillator intermittent cha-
otic sensing system, When intermittent chaos occurs in adjacent oscillators, the fre-
quency of the signal to be measured can be limited. Let the signal to be measured be 
f (t) = A cos(10t)+ η(t) , η(t)represent the Lévy noise with characteristic index α = 1.5 , 
deflection parameter β = 0 and noise intensity D = 0.1 . Input the signal to be measured 
into the intermittent chaos sensing system of single Duffing oscillator, and adopt the 
above sensing method. After multiple experimental sensing, when the chaotic oscillator 
is in ω29 and ω30 , the time sequence diagram output by the system is a clear intermit-
tent chaos state, the angular frequency ω of the signal to be measured is estimated to be 
ω29+ω30

2 = 9.6896 , and the deviation rate is about 3.1% . The sensing results are shown in 
Fig. 18.

When the amplitude of the signal to be measured is A = 0.096 , the output of the 
single Duffing oscillator intermittent chaos sensing system is an apparent intermit-
tent chaos phenomenon, which shows that the intermittent chaos sensing system 
can successfully sense the signal to be measured with an unknown frequency under 
Lévy noise at this time. When the signal amplitude to be measured is A < 0.096 , the 
system cannot output a relatively stable intermittent chaos phenomenon. Therefore, 
the signal tested with an unknown frequency cannot be sensed successfully under 

(28)

ω1 = 1, ω2 =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ω1, ω3 =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ω2, . . . , ωn =
∣∣∣∣
ω +�ω

ω

∣∣∣∣ωn−1

Fig. 18 The intermittent chaotic dual-coupled Duffing oscillator sensing system
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this condition. Through following formula 27, it can be calculated that the minimum 
signal-to-noise ratio of the signal to be measured with an unknown frequency that 
the system can sense at this time is − 3.3649 dB.

4.1.3  Our sensing system

Next, the sensing performance of intermittent chaos sensing system based on dual-
coupled Duffing oscillator under the background of Lévy noise is studied and ana-
lyzed. Let the signal to be measured be f (t) = A cos(10t)+ η(t) , η(t)represent the 
Lévy noise with characteristic index α = 1.5 , deflection parameter β = 0 and noise 
intensity D = 0.1 . After generating the above-mentioned Lévy noise model, take 
an = 2π sn

sωfs
 as the solution step size of the sensing system, and Aσsd

σs
cos(ω1t)+ η(t) as 

the input signal, η(t) is the generated Lévy noise. The specific steps of the intermit-
tent chaotic signal sensing system based on the scale transformation variable step 
size dual-coupled Duffing oscillator established in this paper are as follows: 

1. Use the scale transformation method to pretreat the signal.
2. Adjust the parameters of the intermittent chaotic signal sensing system of the varia-

ble-step dual-coupled Duffing oscillator, and set F = 0.789 , ω1 = 1rad/s , α = 1.001 , 
d = 0.2.

3. The processed signal Acos
(
ω1

σsd
σs
t
)
+ η(t) s input into the sensing system as the 

input signal, the frequency is set to 1 kHz, and the initial solution step is set to 
an = 2π sn

sωfs
 , n = 1, 2, . . . ,N .

4. Adjust the solution step length and observe the x1(t)− x2(t) timing diagram output. 
If the sensing system has an intermittent chaotic state between two adjacent steps an 
and an+1 , then it indicates that the signal has been sensed, otherwise return 2.

5. If the signal has been sensed, the angular frequencies ωn and ωn+1 corresponding 
to solution step size are an and an+1 can be calculated by ωn = snrad/s , then the 
angular frequency of the sensed signal ω̈ = ωn+ωn+1

2 rad/s . Using the above sensing 
method, after many experimental tests, when the step size is a39 and a40 , the timing 
diagram output by the system is in a clear intermittent chaotic state, the angular fre-
quency ω of the signal to be measured is estimated to be ω39+ω40

2 = 9.9946 ,, and the 
deviation rate is 0.054% . The sensing results are shown in Fig. 19.

When the amplitude of the signal to be measured is A = 0.010 , the output of the 
single Duffing oscillator intermittent chaos sensing system is an apparent intermit-
tent chaos phenomenon, which shows that the intermittent chaos sensing system 
can successfully sense the signal to be measured with an unknown frequency under 
Lévy noise at this time. When the signal amplitude to be measured is A < 0.010 , the 
system cannot output a relatively stable intermittent chaos phenomenon. Therefore, 
the signal tested with an unknown frequency cannot be sensed successfully under 
this condition. Through following formula 27, it can be calculated that the minimum 
signal-to-noise ratio of the signal to be measured with an unknown frequency that 
the system can sense at this time is − 23.9254 dB.
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4.2  Sensing performance analysis of our system

4.2.1  Influence of coupling coefficient on our sensing system

Under normal circumstances, the higher the coupling strength of the system, the 
stronger the synchronization between the oscillators. D in formula (18) represents 
the coupling coefficient. In order to further compare the noise immunity and stabil-
ity of the coupling system corresponding to different coupling coefficients, the con-
cept of standard deviation is introduced:

Calculate the standard deviation of different coupling coefficients d under different noise 
backgrounds, as shown in Tables 1 and 2:

It can be seen from Tables 1 and 2 that as the intensity of noise changes, the stand-
ard deviation of the sensing system gradually changes for any system, the smaller 
the standard deviation, the stronger the stability of the system. According to the 
research in the above table, this paper chooses the coupling coefficient d = 0.2 in 
order to obtain the optimal performance of the system.

4.2.2  Influence of Lévy noise impact on our sensing system

The signal to be measured f (t) = Acos(10t) is superimposed with different Lévy noise 
η(t) and then input into three systems for sensing. From Fig.  15a, it can be seen that 
the single Duffing vibrator and the dual-coupled Duffing vibrator have weaker sensing of 
weak signals under the background of strong impact Lévy noise (α = 1.5, 1.8) and have 
the weak noise immunity. The sensing system established in this paper can clearly sense 
the weak signal under the strong impact of Lévy noise (α = 1.5, 1.8) and has strong anti-
interference (Fig. 20).

(29)σ =

√√√√ 1

N − 1

N∑

t=1

[xn(t)− x0(t)]
2

Fig. 19 The intermittent chaotic single Duffing vibrator sensing system
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4.2.3  Multi‑frequency signal sensing performance

In actual underwater signal sensing, multiple signals will be sensed. We change the input 
signal to 0.01cos(10t)+ 0.01cos(20t) , and the Lévy noise takes α = 1.5 , respectively, 
(η(t)) . The sensing results are shown in Figs. 21 and 22.

From Figs.  21 and 22, the sensing system established in this paper can show inter-
mittent chaos when sensing two signals of different frequencies. The signals of the two 
frequencies are sensitive, so it cannot be determined that the signal can be sensed. 
Therefore, the method proposed in this paper has obvious advantages in sensing 
unknown signals in multiple frequency bands.

When the solution step size is a39 and a40 , the corresponding sizes of f39 and f40 are 
9.87 Hz and 10.08 Hz, respectively, and then the judgment frequency of the sensing sys-
tem established in this paper is f10 = 10 Hz. When the solution step size is a51 and a52 , 
the corresponding sizes of f51 and f52 are 19.77 Hz and 20.10 Hz, respectively, and the 
sensing system judges the frequency of the signal is f20 = 20 Hz. When frequencies are 
10 Hz and 20 Hz, the calculation error rate is less than 0.03% , that is, it can obtain the 
frequency of the signal to be sensed more accurately under the interference of a strong 
noise environment.

4.2.4  Actual underwater acoustic data sensing

Figure  23 shows the low-frequency underwater data collected by a reservoir in 
Sichuan Province, China. In order to facilitate the analysis, the actual underwater 
acoustic data were sampled again at a sampling frequency of 1 kHz. After obtaining 
the underwater acoustic signal data, the normalization operation was carried out and 

Table 1 The standard deviation of different coupling coefficients d under different noise 
backgrounds ( D = 1)

d/α α = 1.5 α = 1.8 α = 2

d = 0 1.906 1.057 1.054

d = 0.1 1.095 1.039 1.034

d = 0.2 1.039 0.972 0.96

d = 0.3 1.056 0.988 0.977

d = 0.4 1.068 1.004 0.996

d = 0.5 1.082 1.022 1.015

Table 2 The standard deviation of different coupling coefficients d under different noise 
backgrounds ( D = 0.5)

d/α α = 1.5 α = 1.8 α = 2

d = 0 1.058 1.054 1.052

d = 0.1 1.053 1.034 1.032

d = 0.2 0.987 0.955 0.947

d = 0.3 1.003 0.974 0.968

d = 0.4 1.019 0.994 0.99

d = 0.5 1.035 1.014 1.011
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then sent to the sensing system based on this paper. From Fig. 23, it can be found that 
there is strong impulsive noise underwater and strong broadband interference noise 
at many moments, which is more consistent with the Lévy noise generated by simula-
tion, which shows that it is reasonable and appropriate to use Lévy noise to describe 
underwater environmental noise.

Figure 24 is the power spectral density diagram of the signal. It can be observed that 
the approximate signal frequency is about 10 Hz. In order to sense the actual signal, 
we set the initial solution step size is an = 2π sn

sωfs
 , s = 1.06 and input the actual signal 

into the sensing system established in this paper to obtain the result as shown in 
Fig. 25:

In Fig.  25, the step size of the sensing system is a39 and a40 , it shows an obvious 
intermittent chaotic state. The corresponding magnitudes of f39 and f40 are 9.87 Hz 
and 10.08 Hz, respectively, and the system judges that the frequency of the signal 
which to be sensed at this time is f10 = 9.99 Hz. When the frequency of the signal to 
be measured is 10 Hz, the calculation error rate is less than 0.02% . Our sensing system 
is more accurately under the interference of a strong natural environment. It verifies 

Fig. 20 Our sensing system

Fig. 21 The sensing result of the first segment of the multi-frequency signal
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the effectiveness and scientificity of the sensing system established in this paper in 
practical applications.

5  Results and discussion
The signal sensing results of each chaotic system established under the background of 
Lévy noise are summarized in Table 3.

The signal frequency estimation results of each chaotic system established under 
the background of Lévy noise are summarized in Table 4.

Since the sensing method proposed in this paper can change the common ratio to 
form a new solution step size and sensing bandwidth, the number of solution steps is 
reduced, thereby reducing the amount of calculation better. The data of each sensing 
system are shown in Table 5.

It can be seen from Table  5 that the number of solving steps and the amount of 
calculation of the sensing system established in this paper are obviously the smallest. 
Through Tables  3, 4 and 5, it is found that under the Lévy noise with characteris-
tic index α = 1.5 , deflection parameter β = 0 and noise intensity D = 0 , the sensing 

Fig. 22 The sensing result of the second segment of the multi-frequency signal

Fig. 23 Actual underwater acoustic data
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deviation rate of single Duffing oscillator intermittent chaotic sensing system for weak 
signals with unknown frequency is 1.1% , the minimum signal amplitude that can be 
sensed is A = 0.34 , and the lowest sensing signal-to-noise ratio is 7.61920; the sensing 
deviation rate of the coupled Duffing oscillator intermittent chaotic sensing system 

Fig. 24 Power spectral density diagram

Fig. 25 The sensing result of the actual underwater acoustic data

Table 3 Signal sensing results of intermittent chaotic systems under the Lévy noise with 
characteristic index α = 1.5 , deflection parameter β = 0 and noise intensity D = 0.1

Method Minimum signal amplitude (V) Minimum 
SNR ratio 
(dB)

Single Duffing oscillator A = 0.340 7.61920

Double Duffing oscillator A = 0.096 − 3.3649

Ours A = 0.010 − 23.9254
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for weak signals with unknown frequency is 3.1% , the minimum signal amplitude that 
can be sensed is 0.096, and the minimum sensing signal-to-noise ratio is − 3.3646 dB; 
the sensing deviation rate of our sensing system for weak signals with unknown fre-
quency is 0.054% , the lowest signal amplitude that can be sensed is A = 0.010 , and the 
lowest sensing signal-to-noise ratio is − 23.9254 dB. Finally, through the experiments 
in the previous section, it is found that the sensing scheme proposed in this paper has 
a certain immunity to the impact of Lévy noise and noise of different intensities; it 
can successfully and accurately obtain the frequency of multi-frequency weak signal 
to be measured, and the estimation error is 0.33% , which has strong system stability.

6  Conclusions
This paper has proposed a Lévy noise model to describe the underwater natural envi-
ronment under substantial interference for the underwater information sensing task. It 
describes the actual underwater environment more accurately and provides an analysis 
and estimation method to select better parameters; aiming at the sensing problem of the 
unknown frequency signal under the Lévy noise, this paper has proposed an improved 
dual-coupled Duffing oscillator signal sensing method based on the variable step-size 
method and scale transformation. The method has better resistance to intense noise, 
better adaptability to all kinds of impact noise, higher sensing efficiency, more intuitive 
sensing results, and lower SNR ratio threshold; under the interference of Lévy noise, the 
improved dual-coupled Duffing oscillator signal sensing system based on variable step 
size intermittent chaos has established. A large number of simulation experiments show 
the effectiveness and superiority of the system. The lowest SNR threshold is − 23.9254 

Table 4 Signal frequency estimation results of intermittent chaotic systems under the Lévy noise 
with characteristic index α = 1.5 , deflection parameter β = 0 and noise intensity D = 0.1

Method Actual frequency (Hz) Estimation frequency Estimation 
error rate

Single Duffing 10 9.8840 3.1%

Double Duffing 10 9.6896 1.1%

Ours 10 9.9946 0.054%

Table 5 Data of each sensing system

Method Common ratio Number of solving 
steps

Sensing bandwidth

Single Duffing oscillator 1.01 282 (1.00, 1.01)ω

1.02 197 (0.99, 1.02)ω

1.03 98 (0.98, 1.03)ω

Double Duffing oscillator 1.05 68 (0.97, 1.05)ω

1.06 60 (0.96, 1.06)ω

1.07 57 (0.95, 1.07)ω

Ours 1.06 60 (0.96, 1.06)ω

1.07 57 (0.95, 1.07)ω

1.08 35 (0.94, 1.08)ω
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dB. The error rate of frequency estimation is 0.33% . Finally, experiments are carried out 
with actual underwater acoustic data to verify the effectiveness and scientificity of the 
sensor system established in this paper in practical application.
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