
Variable pilot assisted channel estimation 
in MIMO‑OFDM system with STBC and different 
modulation modes
Qun Wu, Xiao Zhou, Chengyou Wang and Hai Cao*    

1  Introduction
Orthogonal frequency division multiplexing (OFDM) system is characterized by its 
robustness to the multipath induced inter-symbol interference (ISI) [1, 2]. Foschini 
et  al. [3, 4] proved that antenna diversity can be exploited to significantly enhance 
channel capacity by using multiple antennas at both transmitter and receiver. 
Recently, space time block coding (STBC) and space time block decoding (STBD) 
have been proposed as an efficient way to achieve this capacity improvement for the 
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multiple input multiple output-OFDM (MIMO-OFDM) system, which is recognized 
as the promising technology for 5G and 6G mobile communications.

In MIMO-OFDM systems, like STBC-based transmit diversity system, chan-
nel state information (CSI) [5] is required for coherent detection and decoding. CSI 
can be obtained in two categories. The one does not require pilots, and the other is 
based on pilots which are known beforehand at the receiver. In STBC MIMO-OFDM 
systems, symbols are transmitted from different antennas simultaneously, and the 
received signal is the superposition of these signals. The designed pilot sequence is 
orthogonal among transmitting antennas [6]. Optimal pilot sequences were proposed 
in [7, 8] for MIMO-OFDM systems. Chern et al. [9] proposed a new pseudo random 
cyclic postfix-OFDM system, but the disadvantage is that the cyclic postfix sacrifices 
the frequency bandwidth. Del Peral-Rosado et al. [10] proposed an optimal placement 
of the pilot subcarriers about the mean square error (MSE) of the least square (LS) 
channel estimation for single input single output-OFDM systems. Younas et al. [11] 
proposed the MIMO-OFDM system based on adaptive LS channel estimation method 
with pilot aided sequences in the correlated time varying channels. It simplifies the LS 
channel estimation by utilizing the proposed pilot construction, which avoids matrix 
inversion. Linear minimum mean square error and singular value decomposition 
channel estimation methods are widely utilized in multi-user MIMO-OFDM systems 
[12, 13], but they inevitably bring many matrix calculations in frequency domain.

For virtual multiple input single output-OFDM systems, Wang et al. [14] proposed 
an efficient resource allocation method to provide high transmission throughput. 
The base station allocates subcarriers to transmit node with the highest magnitude 
of channel frequency response (CFR) on the subcarriers. In time varying channels, 
Youssefi et  al. [15] proposed a new approach to achieve optimal training sequences 
(OTS) in terms of minimizing the MSE for spectrally efficient MIMO-OFDM sys-
tems. The OTS are equal powered and spaced, and orthogonal positioned. However, 
in practical OFDM based systems with low pass filter, to avoid the transmitted signals 
being distorted, the subcarriers that fall in the roll-off region of the filter are usually 
not used, which are often referred to as virtual subcarriers [16, 17]. The existence of 
virtual subcarriers breaks the equal spaced property of conventional pilot sequences 
and the system performance can be increased. Kenarsari-Anhari et  al. [18] formu-
lated the power allocation as linear programming problem in coded OFDM systems. 
Wang et al. [19] proposed a low complexity power allocation method in the coopera-
tive OFDM networks which greatly improves the system throughput. The equivalent 
channel power gain is calculated and the power among each subcarrier is allocated 
through Lagrange optimization method. In MIMO-OFDM systems, the frequency 
resources are very valuable and sparse. To improve the reliability of communica-
tion and spectrum efficiency, the paper proposes a variable pilot sequence assisted 
channel estimation method in MIMO-OFDM system, which suppresses the ISI and 
inter-carrier interference (ICI) in time and spatial distribution effectively. Our main 
contributions are as follows: (1) We propose a method that can change the pilot inser-
tion interval according to the modulation order of the signal, which can flexibly utilize 
spectrum resources and flexibly select the pilot amplitude. (2) We combine STBC and 
variable pilot method, which can be applied to different modulation schemes, such as 
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binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 8-phase shift 
keying (8PSK), 16-quadrature amplitude modulation (16QAM), and 64-quadrature 
amplitude modulation (64QAM). (3) Simulation results are provided to demonstrate 
the effectiveness and superiorities of the proposed method and it show that the pro-
posed variable pilot assisted channel estimation method has 1–2 dB signal-to-noise 
ratio (SNR) gains for bit error rate (BER) performance of MIMO-OFDM systems.

The remainder of this paper is organized as follows. The MIMO-OFDM system model 
is presented in Section 2. Section 3 introduces variable pilot assisted channel estimation. 
Section 4 illustrates simulation results and comparison analysis. Section 5 concludes the 
paper.

2 � MIMO‑OFDM system model
Figure 1 illustrates the 2 × 2 MIMO-OFDM system model, at the transmitter, the input 
bits are grouped and mapped according to a pre-specified constellation modulation 
scheme, which likes BPSK, QPSK, 8PSK, 16QAM, and 64QAM [20] that the modula-
tion order ε is 1, 2, 3, 4, and 6, respectively. The higher order modulation mode is, the 
more bits an OFDM symbol carries and the more information the MIMO-OFDM sys-
tem transmits. That is, higher order modulation improves the transmission efficiency of 
MIMO-OFDM. In this paper, the modulation order of 1, 2, 3, 4, 6 is considered in the 
MIMO-OFDM system. However, high order modulation causes a problem that phase 
interference occurs during symbols demodulation among different constellation points, 
resulting in demodulation errors among some signals. However, the combination of 
STBC and OFDM technology overcomes the disadvantage effectively.

2.1 � System model

Figure 2 illustrates pilot allocation in time, frequency, and space in STBC MIMO-OFDM 
system. Due to the superimposed noise on the signals and pilots in the time, frequency, 
space domains, and the mutual interference among the transmitting and receiving 
antenna pairs, there induces inevitable mistakes among the transmitting and receiving 
signals. These mistakes are reduced by different modulation methods and pilot intervals. 
After constellation modulation, the modulated symbols are sent to space-time encoder. 
After STBC in the transmitter, the comb type pilots are inserted with fixed intervals of 
subcarriers. As shown in Fig.  1, the inverse fast Fourier transform (IFFT) converts S1 
and S2 from frequency domain to time domain, denoted as s1 and s2 , respectively. The 
time domain signals can be expressed as:
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Fig. 1.  2 × 2 MIMO-OFDM system model
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 where α = 1, 2 is the index of transmitting antennas, N  is length of IFFT, k is the index 
of subcarriers.

At receiver, the received frequency domain signals can be expressed as:

 where β = 1, 2 is the index of receiving antennas, W (k) is the additive white Gaussian 
noise (AWGN) of the wireless channels. After removing the cyclic prefix (CP), the time 
domain received OFDM signals are transformed into frequency domain by fast Fourier 
transform (FFT), which can be expressed as:

 In the receiver of MIMO-OFDM system, the frequency domain symbols are decoded 
in STBD decoder. The signals at multiple receiving antennas are decoded using CSI 
provided by the channel equalizer. Therefore, channel equalizer is a critical module of 
MIMO-OFDM systems. At last, the binary information bits are obtained after the BPSK, 
QPSK, 8PSK, 16QAM, and 64QAM constellation demodulation.

2.2 � STBC and STBD

According to Alamouti criterion, the space-time coded signals are allocated to two anten-
nas. After STBC [2], the transmitted OFDM codeword is expressed as:

(1)sα(n) =
1√
N

N−1
∑

k=0

Sα(k)e
j2πkn
N , 0 ≤ k ≤ N − 1,

(2)Y β(k) =
2

∑

α=1

Hα,β(k)Sα(k)+W (k), 0 ≤ k ≤ N − 1,

(3)Y β(k) =
1√
N

N−1
∑

n=0

yβ(n)e
−j2πkn

N , 0 ≤ n ≤ N − 1.

(4)S =
[

S(i) −S(i + 1)∗

S(i + 1) S(i)∗

]

,

Fig. 2  Pilot allocation in time, frequency, and space in STBC and STBD of MIMO-OFDM system
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 where i denotes the ith OFDM symbol; (·)∗ denotes the conjugation operation. Accord-
ing to Eq. (4), the transmitting OFDM symbol on the first transmitting antenna is 
expressed as:

Correspondingly, the transmitting OFDM symbol on the second transmitting 
antenna is expressed as:

 Diversity gains can be obtained by using STBC technology at the transmitter. STBC is a 
key technology to improve the reliability of MIMO-OFDM systems.

According to the estimated CFR, the OFDM symbols after STBD in the receiver can 
be expressed as:

Simplifying Eq. (7), we can obtain:

 where Ŝ(i) is the ith symbol after STBD; Y β(i)(β = 1, 2) is the ith symbol received by 
the βth receiving antenna; Ĥα,β(α = 1, 2, β = 1, 2) is the estimated CFR between αth 
transmitting antenna and βth receiving antenna.

3 � Variable pilot assisted channel estimation
3.1 � Various comb‑type pilot sequences

The comb pilot interval can be selected according to the frequency selectivity or time 
selectivity of the fading environment. When the total subcarrier number N = 2048 , 
there are six options for pilot interval n, which are 2, 4, 8, 20, 50, and 100, respec-
tively. Figure 3 shows the optional comb type pilot, where (a–d) represent comb type 
pilot x1 , x2 , x3 , and x4 , respectively. Assuming the pilot matrix is a = [

√
2.3, −

√
2.3] , 

the light blue circle represents the pilot signal with a1 =
√
2.3 , and the brown circle 

represents the pilot signal with a2 = −a1 = −
√
2.3 . The element value in a changes 

according to the variation of fading channels, the transmitted symmetric pilot matrix 
x is denoted as:

(5)S1 = [ S(i) −S(i + 1)∗ ].

(6)S2 = [ S(i + 1) S(i)∗ ].
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∗
2,2(i)

Y 1(i)Ĥ
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 where the first kind of comb type pilot in x is x1 , the second kind of comb type pilot is 
x2 , the third kind of comb type pilot is x3 , and the fourth kind of comb type pilot is x4.

Supposing the transmitting OFDM symbols on each data subcarriers are 
ei(1 ≤ i ≤ Nd) and Nd denotes the number of transmitting OFDM symbols, which 
means ei = [e1, e2, e3, · · · , eNd

] . Under comb type x1 insertion, and pilot interval 
n = 2 , the symmetric matrix of the transmitting OFDM symbols on four consecutive 
subcarriers �m are denoted as:

 where m is the number of symmetric matrices in 2 × 2 MIMO-OFDM systems. The 
transmitting pilots on subcarriers are A and B . The transmitting OFDM symbols on four 
consecutive subcarriers are s4m−3 , s4m−2 , s4m−1 , and s4m , respectively. When m = 125 , 
the seventh and eighth line in matrix �m is all zero.

(9)x =


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Fig. 3  Variable comb type pilots x1 , x2 , x3 , and x4  
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3.2 � Small scale propagation in MIMO‑OFDM system

Under Rayleigh fading channel [21], the coherence time tc of MIMO-OFDM system is 
defined as:

 where fd is the Doppler frequency shift, and fd is expressed as [22]:

 where v is the speed of mobile station and � is the wavelength. When the Doppler fre-
quency shift fd is 20 Hz, 60 Hz, 80 Hz, 120 Hz, 160 Hz, and 180 Hz, respectively, the 
corresponding coherence time tc is 4.4762 × 10−4  s, 4.9736 × 10−5  s, 2.7976 × 10−5  s, 
1.2434 × 10−5  s, 6.9941 × 10−6  s, and  5.5262 × 10−6  s, respectively. As fd increases, 
tc decreases gradually, and the multipath channel will experience deep fading. Table 1 
shows the corresponding relation between fd and tc in AWGN channel. Figure 4 illus-
trates large scale propagation and small scale propagation of MIMO-OFDM  systems. 
When fd increases, it induces time selective propagation. The time selective propaga-
tion includes large-scale propagation and small-scale propagation. To suppress the ISI 

(11)tc =
9

16πf 2d
,

(12)fd = v

�
,

Table 1  The corresponding relation between fd and tc in AWGN channels

fd (Hz) tc (s)

0.01 1.7905 × 103

0.05 71.6197

0.1 17.9049

0.2 4.4762

20 4.4762 × 10−4

60 4.9736 × 10−5

80 2.7976 × 10−5

Large scale propagation

Small scale propagation

time

amplitude

0

Fig. 4  Large scale propagation and small scale propagation of MIMO-OFDM system
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which is caused by small-scale propagation, the pilots are inserted in comb type manner 
through the subcarriers in the frequency domain with variable pilots.

4 � Simulation results and comparison analysis
In MIMO-OFDM system, the transmitted signal and received signal are independent of 
each other, thus the probability of signal interference caused by AWGN or multipath 
is greatly reduced. The theoretical analysis would be verified through simulation. The 
simulation is performed in static AWGN channel and it adopts five kinds of modulation 
modes. The comb type pilots x1 , x2 , x3 , and x4 are inserted in the proposed MIMO-
OFDM systems, and the parameters of MIMO-OFDM system are shown in Table 2.

The BER curve of the system could be drawn by making the statistics of BER for every 
OFDM frame under different SNR. In the statistical process of BER, the bit stream of 
each frame output by the constellation symbol demodulation module is compared with 
the bit stream contained in each frame transmitted, and the error bits are demodulated 
and accumulated to obtain the sum of the cumulative number of error bits per frame. 
And then the number of error bits in all transmitted OFDM data frames is accumulated, 
and the total number of bits transmitted in all transmitted OFDM data frames is cal-
culated. The whole process that antenna transmit signals and antenna receive signals is 
cyclic, and the total number of error bits is obtained. With a certain fixed SNR, the cal-
culated BER of the MIMO-OFDM system is denoted as:

 where Nu is the number of error bits in the uth OFDM frame under the condition that 
the maximum number of cycles is L . Assuming that the MIMO-OFDM system transmit-
ter transmits equal data bits in each OFDM transmitted in each frame is equal, and Nt 
represents the number of bits transmitted in each OFDM frame.

Figure  5. shows BER performance of QPSK modulated 2 × 2 MIMO-OFDM system 
under AWGN with comb type pilot x1 insertion. As shown in Fig. 5, the n = 2 BER curve 
has the worst performance; n = 4 BER curve is the second; n = 8 BER curve is the third; 
n = 20 , n = 50 , and n = 100 BER curves nearly all have better BER performance. For 
example, at the target rBER = 10−3 , n = 50 BER curve outperforms n = 2 BER curve 
2.15 dB SNR gains.

(13)rBER =
∑L

u=1Nu

LNt
,

Table 2  Parameters of MIMO-OFDM system

Parameters Specifications

Modulation mode BPSK/
QPSK/8PSK/16QAM/64QAM

System model MIMO-OFDM

Transmitting antenna number 2

Receiving antenna number 2

CP length (subcarriers) 512

IFFT length (subcarriers) 2048

Pilot interval n 2, 4, 8, 20, 50, 100

Pilot insertion type Comb type
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Fig. 5  BER performance of QPSK modulated 2 × 2 MIMO-OFDM system under AWGN with comb type pilot 
x1 insertion

Fig. 6  BER performance of 8PSK modulated 2 × 2 MIMO-OFDM system under AWGN with comb type pilot 
x3 insertion
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Figure 6. shows BER performance of 8PSK modulated 2 × 2 MIMO-OFDM system 
under AWGN with comb type pilot x3 insertion. As shown in Fig. 6, the n = 2 BER 
curve has the worst performance; n = 4 BER curve is the second; n = 8 BER curve is 
the third; n = 20 BER curve is the fourth; n = 50 BER curve is the fifth; and n = 100 
BER curve has the best performance. At the target rBER = 10−3 , the SNR gap between 
n = 4 BER curve and n = 100 BER curve is 1.1 dB.

Figure 7. shows BER performance of 16QAM modulated 2 × 2 MIMO-OFDM sys-
tem under AWGN with comb type pilot x2 insertion. As shown in Fig. 7, n = 2 BER 
curve has the best performance; n = 4 BER curve is the second; n = 8 BER curve is 
the third. It can be seen that n = 20 , n = 50 , and n = 100 nearly all have better BER 
performance. At the target rBER = 10−3 , n = 8 BER curve outperforms n = 4 BER 
curve about 0.8 dB SNR gains.

Figure  8. shows BER performance of 64QAM modulated 2 × 2 MIMO-OFDM 
system under AWGN with comb type pilot x4 insertion. As shown in Fig.  8, n = 8 , 
n = 20 , n = 50 , and n = 100 near all have better BER performance. At the target 
rBER = 10−4 , n = 20 BER curve outperforms n = 2 BER curve 2.4 dB SNR gains. In the 
paper, it is recommended that the optimal pilot interval value of P in the proposed 
variable pilot assisted MIMO-OFDM system is P ∈ [8, 100].

Fig. 7  BER performance of 16QAM modulated 2 × 2 MIMO-OFDM system under AWGN with comb type 
pilot x2 insertion
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5 � Conclusion
This paper studies a variable pilot assisted channel estimation method in STBC MIMO-
OFDM system with different modulation modes. The variable pilot patterns are pro-
posed to estimate the transmitted OFDM symbols by effectively allocate comb type pilot 
sequences through the frequency subcarriers. The proposed variable pilot patterns work 
well for MIMO-OFDM systems. The novelty of the paper is that it saves the spectrum 
resources by using STBC and variable pilot insertion intervals. Moreover, the perfor-
mance of MIMO-OFDM systems is improved as can be observed from the simulation 
results. In the future, we will apply the proposed variable pilot assisted channel esti-
mation method in cognitive MIMO-OFDM systems [23, 24], ultra-wideband MIMO-
OFDM systems [25], China multimedia mobile broadcasting MIMO-OFDM systems 
[26], massive MIMO-OFDM systems [27, 28], and underwater acoustic OFDM systems 
[29].

Abbreviations
AWGN: Additive white Gaussian noise; BER: Bit error rate; BPSK: Binary phase shift keying; CFR: Channel frequency 
response; CP: Cyclic prefix; CSI: Channel state information; FFT: Fast Fourier transform; ICI: Inter-carrier interference; IFFT: 
Inverse fast Fourier transform; ISI: Inter-symbol interference; LS: Least square; MIMO: Multiple input multiple output; MSE: 
Mean square error; OFDM: Orthogonal frequency division multiplexing; OTS: Optimal training sequences; P/S: Parallel to 
serial; QPSK: Quadrature phase shift keying; SNR: Signal-to-noise ratio; STBC: Space time block coding; STBD: Space time 
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Fig. 8  BER performance of 64QAM modulated 2 × 2 MIMO-OFDM system under AWGN with comb type 
pilot x4 insertion
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