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1  Introduction
Link prediction is a fundamental research issue of complex network analysis [1]. It has 
been used in many applications, such as friend recommendation in social networks [2], 
product recommendation in e-commerce [3], completion of knowledge maps [4], inter-
actions between proteins, and recovery of missing reactions in metabolic networks [5]. 
Existing works predict link via the similarities of nodes: The higher similarity two nodes 
have, the more probably there exists a link between them.

Node similarity has different measurements, and network topology-based meas-
urements are most popular. For instance, the node similarity is measured via the rela-
tionship of their neighborhood in the network in a number of works. In  [5], the node 
similarity of two nodes is measured via their common neighbors. It assumes that if two 
nodes have more common neighbors, they are more likely to have a link. AA [2], PA [6, 
7], RA [6, 8] are the extension of [5], which calculate the similarity between nodes based 
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on first-order or second-order neighbors between two nodes. They perform well in prac-
tice and are more interpretable [1].

However, a significant limitation of traditional methods is that they fail to make full 
use of the network topology information. And they are also lack of generalization abil-
ity. For example, the idea of common neighbors performs well in social networks but 
bad in power grids and biological networks [5]. To overcome the shortcomings of tra-
ditional methods, Zhang and Chen [9] recently proposed the Weisfeiler–Lehman Neu-
ral Machine (WLNM), which learns topological features through enclosing subgraphs 
of links. By extracting subgraph patterns for each target link, this method learns the 
subgraph pattern that promotes the formation of a link and codes the subgraph as an 
adjacency matrix. WLNM trains neural networks on these adjacency matrices to learn 
the link prediction model. In WLNM, subgraph coding is an important step. Because 
the machine learning model reads data sequentially, stable ordering based on the role 
of the node structure is essential in order to lean the meaningful models [10]. Subgraph 
coding establishes a mapping from graph representation to matrix representation, 
which ensures the nodes with similar structural characteristics to be mapped to simi-
lar positions in adjacency matrix. Enclosing subgraph of the target link is coded by the 
Weisfeiler–Lehman (WL) algorithm  [11], which determines vertex ordering based on 
network topology information.

Existing methods use node proximity to predict the link between nodes  [1, 5, 12]. 
WLNM is different, and it learns the subgraph pattern that promotes the link by extract-
ing the enclosing subgraph of the target link. Compared to the traditional link prediction 
algorithms, WLNM has better generalization ability and prediction performance in social 
networks, power grids, and biological networks. However, WLNM still has a limitation in 
link analysis in subgraphs. After extracting the enclosing subgraph of the target link, if the 
subgraph is directly mapped to the adjacency matrix, the obtained adjacency matrix can-
not reflect the relationship between the links in the subgraph and the target link. Much 
topology information that affects the performance of link prediction will be missed. The 
links in the enclosing subgraph have different relationships to the target link. An example 
is shown in Fig. 1. It is the enclosing subgraph of the target link (a, b). It can be observed 
that although the links (b, c) and (b, g) are directly adjacent to the target link, the node c is 
directly connected to the two end nodes of the target link and forms a triangle. The node g 
is not directly connected to them and farther away from node a. This indicates that the link 

Fig. 1  An enclosing subgraph of the target link (a, b)
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(b, c) has a closer relationship to the target link than (b, g). Adding weights to the links in the 
enclosing subgraph to reflect their relationship to the target link should be considered. For 
example, in Fig. 1, wbc and wbg are the weights of links (b, c) and (b, g), respectively, and wbc 
is greater than wbg.

In order to solve the problem in the existing works, an improved link prediction method 
is proposed: weighted enclosing subgraph-based link prediction (WESLP). It adds weights 
to links in the enclosing subgraph according to their relationship to the target link. WESLP 
extracts the enclosing subgraph of each target link in the network and encodes the nodes of 
the extracted enclosing subgraph with the optimized WL algorithm. To reflect the relation-
ship between the link in the enclosing subgraph and the target link, WESLP assigns weights 
to the links in the subgraph. We assume that the closer the relation between the links of 
the enclosing subgraph and the target link, the higher the weights of links and vice versa. 
WESLP uses the Katz index [13] between nodes to define the relationship between links. 
Then, WESLP adds weights to the non-target links in the subgraph based on their relation-
ship with the target link. Finally, the weighted subgraph is mapped to a weight adjacency 
matrix as training data for the learning machine. Compared with the adjacency matrix of 
WLNM, the weight adjacency matrix generated by WESLP can better reflect the local char-
acteristics around the target link.

The main contributions of this paper are: (1) WESLP uses Katz index between nodes to 
define weights to the links in the extracted enclosing subgraphs to reflect their relation-
ship with the target link. (2) We optimize the WL algorithm and apply the optimized WL 
algorithm to our proposed method. (3) WESLP improves the link prediction performance, 
which has been verified through conducting extensive experiments on different datasets.

The rest of this paper is organized as follows: Sect. 2 introduces the related works; Sect. 3 
presents the proposed link prediction method in details; Sect.  4 gives the experimental 
results of the proposed method; and Sect. 5 concludes this paper and points out the future 
directions.

2 � Methods/experimental
In this paper, we study the link prediction problem based on enclosing weighted subgraphs 
of links. Specially, we extract the enclosing subgraph for the target link and use the graph 
coding algorithm to obtain the coding for the subgraph node and add weights according to 
the relationship between each link and the target link in the subgraph. The algorithms we 
use include improved graph coding algorithm and weighting methods that exploit the Katz 
index between nodes.

Our experimental environment is 64 bit Windows 7 system with Intel (R) Core i7-8700k 
CPU @ 3.70 GHz and the RAM of 32G. The programming language is Python on PyCharm. 
We execute experiments comparing several popular methods on several commonly used 
datasets. A large number of experiments have shown that our method can achieve better 
results in predicting links.

3 � Related works
A network can be represented as a graph G = (V ,E) , where V = {v1, . . . , vn} is the set 
of vertices and E ⊆ V × V  is the set of links. eij represents the link between node vi and 
vj , eij ∈ E . An adjacency matrix A is used to represent G. If G is an unweighted network, 
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aij = 1 if there is a link connecting vi and vj , otherwise aij = 0. vi and vj are called to be 
adjacent if aij = 1. If G is a weighted network, aij = wij if there is a link connecting vi and 
vj with a weight wij , otherwise aij = 0. Nd(vi) represents a set of vertices whose distance 
to vi is no longer than d, in which d is an integer. For example, N1(vi) is the set of vertices 
within 1-hop away from vi in G. d(vi, vj) represents the shortest path between vi and vj.

Link prediction is a basic task of network mining. For a target link eij , the link pre-
diction task predicts aij for eij . Link prediction methods predict links via the similarity 
of the two end nodes of the target link [1, 5]. The higher similarities two nodes share, 
the more probably there exists a link connecting these two nodes. Some classical node 
similarity measurements used in link prediction models include Preferential Attachment 
(PA), Common neighbors (CN), Adamic–Adar (AA), and Resource Allocation (RA). 
PA [6, 7] measures the existence of a link by the product of its node pairs’ degrees. If two 
end nodes of a link have higher degree product, i.e., these two nodes connect to more 
nodes in the network, it is more likely that there exists a link between these two nodes. 
PA is defined as:

where N1(vi) and N1(vj) are the neighbors of vi and vj , respectively, and | · | is the number 
of · . CN [5] measures the existence of a link by the number of its node pairs’ common 
neighbors. If two end nodes of a link share more common neighbors, they are regarded 
to have more topology similarity in the network, and it is more likely that there exists a 
link between these two nodes. CN is defined as:

Unlike CN, if two end nodes of a link share more common neighbor, AA  [2] regards; 
there is less likely to exist a link between these two nodes:

where D(z) is degree of the selected common neighbor. RA [6, 8] is similar as AA, while 
changes the degree on how the number of two end nodes’ common neighbors influences 
the existence of the link:

These link prediction methods based on first-order or second-order neighbors similar-
ity between two nodes tend to lose a large amount of network topology information, 
resulting in poor prediction performance and poor scalability. A new approach to pre-
dicting links has been opened up with recent research on enclosing subgraphs of links. 
Specifically, the enclosing subgraph of the target link is first extracted, and then, the 
extracted enclosing subgraph is encoded. Encoding each enclosing subgraph is a key 
issue. The graph coding algorithm enables the machine learning model to read the data 
orderly [10]. A stable order based on the structural characteristics of the node is essen-
tial to the machine learning model.

(1)PA(vi, vj) = |N1(vi)| · N1(vj) ,

(2)CN (vi, vj) =
∣

∣N1(vi) ∩ N1(vj)
∣

∣.

(3)AA(vi, vj) =
∑

z∈N1(vi)∩N1(vj)

1

logD(z)
,

(4)RA(vi, vj) =
∑

z∈N1(vi)∩N1(vj)

1

D(z)
.
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A graph coding algorithm is a mapping f: V → C from vertices V to an ordered set C. 
C is usually a set of integer coding starting from 1. If f is injective, C can determine the 
vertex order in an adjacency matrix. The Weisfeiler–Lehman (WL) algorithm [11] is a 
newly proposed graph coding algorithm which has been verified to be effective in the 
real applications. The key idea of WL is to iteratively augment the vertex coding using 
their neighbor’s coding and compress the augmented coding into new coding before 
convergence [11]. Algorithm 1 illustrates the details of WL.

Specifically, each vertex constitutes the signature string by connecting its own coding 
and its neighbor’s sorted coding. Then, the vertices are sorted in an ascending order of 
the signature string, and assigned new coding 1, 2, 3, · · · . Vertices with the same sig-
nature string get the same coding. Figure  2 gives an example of two iterations of the 
WL algorithm. The vertices in Fig. 2: (1) are initially coded 1. In each iteration, Step 1: 
Each vertex constitutes a signature string by connecting its own coding and its neigh-
bor’s sorted coding; Step 2: The coding of the vertex is updated according to the string 
order ascending in lexicographic order. Take the two vertices vi and vj as an example, 
vertex vi has coding 1 and its neighbors have coding {1, 1}, respectively. Simultaneously, 
vj has coding 1 and its neighbors have coding {1, 1, 1}. The signature strings for vi and vj 
are  1, 11  and  1, 111,  respectively, because  1, 11  is smaller than  1, 111  lexicographically. 
vj is assigned a smaller coding than vi in the next iteration. We repeat Step1, 2 until the 
coding of the nodes converges, i.e., their coding stops changing.

One key structure-coding property of the WL algorithm is that vertices with the simi-
lar coding share the similar structural role across different graphs [11]. For example, if 
vertex v in G and vertex v′ in G′ have similar structural roles in their respective graphs, 
they will have similar relative positions in their respective rankings. Another graph is 
shown in Fig. 3 after executing Algorithm 1. Comparing Figs. 2 and 3, it shows that if 
vertices have similar structural roles in their respective graphs, they will have similar 
relative positions in their respective rankings. The structure-coding property of WL is 

Fig. 2  The executive process of WL with two iterations
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essential for its success in graph kernel design  [11], which measures graph similarity 
by counting matching WL codings. According to the similarity between the subgraphs 
extracted by the known links in the network, the learning machine learns the subgraph 
pattern that constitutes the links through the matrices that subgraphs map and then 
constructs the link prediction model. The stable order based on structural role of node is 
critical to the machine learning model [10].

4 � The proposed model
The proposed method assigns weights to the links (except target link) in the k-enclosed 
subgraph of the extracted target links to reflect their relationship to the target links. 
Specifically, a k-enclosing subgraph is firstly extracted for each target link. The nodes of 
the k-enclosing subgraph are then encoded by the proposed optimized WL algorithm. 
Each link of the k-enclosing subgraph is assigned a weight reflecting its relationship with 
the target link. This weight is assigned according to the Katz index between nodes. The 
weighted k-enclosing subgraphs are then used to measure the similarity of target links 
for the link prediction task. The framework of the proposed method is given in Fig. 4, in 
which the rectangles represent the functional modules and parallelograms represent the 
data [14]. The input of the proposed model is adjacency matrix of the network and target 
links, and the outputs are the predicted ratings. The proposed method has four phases: 
Enclosing Subgraph Generation phase, which generates a k-enclosing subgraph for each 
target link; Enclosing Subgraph Coding phase, which codes each generated enclosing 
subgraph with the WL algorithm; Enclosing Subgraph Weighting phase, which assigns 
weights to links of each coded enclosing subgraph; and Link Classification phase, which 

Fig. 3  The executive process of the WL algorithm for another similar graph
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classifies links with the weighted enclosing subgraph the each link. The details of the 
proposed method are given as follows.

4.1 � k‑enclosing subgraph generation

A k-enclosing subgraph is firstly generated for each target link in the proposed method. 
The k-enclosing subgraph of a link is a subgraph composed by the neighbor nodes of 
this link, and the size of the neighbor nodes is k. The enclosing subgraph describes the 
topology information surrounding the target link. It discovers the local patterns induc-
ing the existence of links between nodes. For a link eij , its enclosing subgraph is repre-
sented as SG(eij) is generated by adding the neighborhood nodes iteratively, as shown in 
Algorithm 2: vi and vj are firstly added to SG(eij) ; the d-order neighbor nodes of vi and vj , 
which are represented by Nd(vi) and Nd(vj) , d ∈ N  , are then added to SG(eij) according 
to the ascending order of d until 

∣

∣SG(eij)
∣

∣ ≥ k . When 
∣

∣SG(eij)
∣

∣ > k , nodes lastly added to 
SG(eij) are removed until 

∣

∣SG(eij)
∣

∣ = k . The k-enclosing subgraph of eij is represented as 
SG(ekij).

4.2 � k‑enclosing subgraph coding

This phase codes the nodes of SG(ekij) by an optimized WL algorithm to a node sequence. 
This allows machine learning models to read vertices of k-enclosing subgraphs orderly in 
a stable order and makes each target link always in the a1,2 in the adjacency matrix SA of 
its k-enclosing subgraph.

The node sequence generated directly by the existing WL algorithm cannot differenti-
ate the two end nodes of the target link. The WL algorithm is an iterative graph coding 

Fig. 4  The framework of the proposed method
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algorithm. It is coding-order preserving: Given any two vertices vi and vj of a network, if 
the coding of vi is smaller than the coding of vj in one iteration, then the coding of vi is 
still smaller than the coding of vj in the next iteration. Since the WL algorithm initializes 
nodes with the same value, the coding of the two end nodes of the target link cannot 
be differentiated. This will result in the target link being in training, making the trained 
machine learning model meaningless.

The proposed method optimizes the existing WL algorithm by differentiating the 
initial coding of nodes. The initial codes of nodes are generated based on the ascend-
ing order of their distance to the target link. The WL algorithm is then used to update 
the node coding. In this case, the two end nodes of each target link are distinctively 
identified.

Three rules are formulated for nodes initialization: (1) The coding of the two end nodes 
vi and vj of the target link is set to be 1, i.e., c(vi) = c(vj) = 1 ; (2) the coding of a node vx 
of the subgraph is the sum of its distance to vi and vj , i.e., c(vx) = d(vx, vi)+ d(vx, vj) , 
where d(·, ·) is the distance between two involved nodes; and (3) two nodes have the 
same coding if they have the same distance to the two end nodes of the target link, 
respectively, i.e., if d(vx, vi) = d(vy, vi) and d(vx, vi) = d(vy, vi) , then c(vx) = c(vy) . Based 
on the above rules given, initialize the codings of the two end nodes vi and vj to 1; if a 
node vx with (d(vx, vi), d(vx, vj)) = (1, 1) , set coding c(vx) = 2; nodes with (1, 2) or (2, 1) 
get coding 3; nodes with (1, 3) or (3, 1) get coding 4; nodes with (2, 2) or (2, 2) get coding 
5, so and so forth. The following hash function can be constructed to be used to calculate 
the coding fitting the above three rules:

where d is sum of d(vx, vi) and d(vx, vj) , and IQ(·, ·) and R(·, ·) are the integer quotient 
and remainder of the involved two numbers, respectively.

Figure 5 gives an example of how a 7-enclosing subgraph is coded by the optimized WL 
algorithm. The target link consists of two red nodes. The nodes in (1) are initialized with 
Equation 5. Step 1 and step 2 are the same as the original WL algorithm. In each iteration, 
Step1 contains the operation that each vertex constitutes a signature string by connecting 
its own coding and its neighbor’s sorted coding. And Step 2 represents the operation that 
the coding of the vertex is updated according to the string order ascending in lexicographic 

(5)c(vx) = 1+min(d(vx, vi), d(vx, vj))+ IQ(d, 2)[IQ(d, 2)+ R(d, 2)− 1],
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order. We iteratively perform Steps 1 and 2 until the node’s coding is converged, i.e., the 
node’s coding stops changing. The proposed optimized WL algorithm guarantees that the 
two end nodes of the target link always have the smallest coding. The farther away from the 
target link, the higher the rank of a node; the closer to the target link, the lower the rank of 
a node. The target link is coded as a1,2 in the adjacency matrix of the enclosing subgraph. 
This makes it easy for the machine learning model to ignore the label of the target link when 
reading the adjacency matrix. Otherwise, the trained model is meaningless.

4.3 � Enclosing subgraph weighting

A weight is assigned to each link of the enclosing subgraphs to represent the relationship 
between this link and the target link. Let exy be a link of a k-hop enclosing subgraph SG(ekij) , 
and eij is the target link, exy  = eij . The weight of exy is assigned based on its distance to eij:

where dis(·, ·) is the distance of involved two links, and Sxi , Sxj , Syi , Syj are the Katz index 
of (vx, vi) , (vx, vj) , (vy, vi) , (vy, vj), respectively. The Katz index reflects the integrated 
weight of all paths between two nodes. The Katz index of two nodes (va, vb) is calculated 
as:

where A is the adjacency matrix of the network, 
∣

∣paths<p>(va, vb)
∣

∣ counts the number 
of length p paths between va and vb , α is the decay parameter which determines the path 
weight’s decay ratio with the growth of the path length, and (Ap)ab is the number of paths 
having a path length p between va and vb . By integrating different paths between va and 

(6)wxy = dis(exy, eij) = Sxi + Sxj + Syi + Syj ,

(7)
Sab = Katz(va, vb) =

∞
∑

p=1

αp
∣

∣paths<p>(va, vb)
∣

∣

= αAab + α2(A2)ab + α3(A3)ab + · · · ,

Fig. 5  Node coding with the optimized WL algorithm on an enclosing subgraph
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vb , the Katz index assigns a higher weight to a shorter path. When formula (7) converges, 
the value of the variable parameter α is less than the reciprocal of the largest eigenvalue 
of the adjacency matrix [15], and the Katz index can be expressed as:

where I is a unit matrix. By assigning a weight to each link of SG(ekij) , a weighted enclos-
ing subgraph with k nodes is generated for eij . We name this weighted enclosing sub-
graph with k nodes as SGw(ekij) . A weighted adjacency matrix SAw(ekij) is then generated 
to represent SGw(ekij) for link prediction. Since the symmetric matrix is constructed for 
the undirected graph, we only use the upper triangular matrix.

4.4 � Classifier training

Let f be a classifier and use a training set D = {(SAw(ek1), y1), (SA
w(ek2), y2), · · · , 

(SAw(ekn), yn)} to train f to get a prediction model of the WESLP, in which SAw(eki ) is the 
weighted adjacency matrix of the weighted enclosing subgraph SGw(eki ) , i = 1, 2, · · · , n , 
ei represent the ith link of the training set D, and yi is the label of ei in D. yi ∈ {0, 1} , in 
which 1 means ei exists in the network, while 0 means ei does not exist in the network. 
For a target link eij , its label is predicted as:

where y(eij) ∈ {0, 1} , and f is the link classifier trained by D (Fig. 6).

5 � Results and Discussion
Experiments are held on several real-world networks to measure the performances of 
the proposed method. These real-world networks include: (1) Air traffic network  [16] 
(ATN): nodes represent airports or service centers, and links represent routes between 
airports or service centers; (2) Power network [17] (PWN): nodes represent generators, 
transformators, or substations of the power grid, and links represent power supply lines 
between nodes; (3) C.ele network [17] (CEN): nodes are metabolites (e.g., proteins) of 
the roundworm caenorhabditis elegans, and links are interactions between nodes; (4) 
Router network [18] (RTN): nodes represent routers of the Internet connected autono-
mous system, and links represent the communications between routers; (5) Political blog 
network [19] (PBN): nodes represent US political blogs, and links represent hyperlinks 
between blogs; and (6) Network science paper network  [20] (NSN): nodes represent 
researchers who publish papers on network science, and links represent collaborations 
between these researchers. The detailed information of these experimental networks is 
given in Table 1.

The performances of the proposed WLNM model are compared with some of the 
most popular link prediction methods that have been introduced in Sect.  2. These 
methods measure the neighborhoods of links for link prediction. The neighborhood 
measured in these methods is the subset of the subgraph used in the proposed meth-
ods. These methods include Preferential Attachment (PA), Common neighbors (CN), 
Adamic–Adar (AA), and Resource Allocation (RA). The classifiers used for link pre-
diction are the same for all the above-mentioned methods, and the key differences are 

(8)S = (I − αA)−1 − A,

(9)y(eij) = f (SAw(ekij)),
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how they measure the proximity between nodes. F1-score is used to evaluate the link 
prediction performances of these methods.

To compare the performances of the proposed method and the baseline methods, 
three of the most popular classifiers, including logistic regression (LR), support vec-
tor machines (SVM), and neural network (NN), are used to classify links according 
to their characteristics measured by subgraphs or neighbors. The WLNM algorithm 
is limited to the neural network, that is, the link prediction performance on the NN 
performs better, while the performance on the LR does not perform well. In order to 
highlight the robustness of our proposed method, in addition to use NN as classifiers, 
we also add SVM and LR in the experiments. In the experiments, LR is implemented 

Table 1  The detailed information of the experimental networks

ATN PWN CEN RTN PBN NSN

Number of nodes 1226 4941 297 5022 1222 379

Number of edges 2408 6594 2148 6258 16714 914

Fig. 6  Link prediction performances with logistic regression (LR), support vector machines (SVM), and neural 
network (NN) on the experimental datasets
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by LibLinear and L1-regularization, and SVM uses linear kernel and optimal parame-
ters. NN uses three fully connected hidden layers with 50, 50, and 16 hidden neurons, 
respectively, and uses a softmax layer as the output layer. Logistic is adopted as the 
activation function for all hidden layers of NN. Adam is used to update the optimiza-
tion rules with a learning rate of 0.001. The size of the mini-batch is set to be 128. The 
number of training epochs is set to be 100.

First, the performances of the proposed method are measured with the variety of test 
sample ratio. The size of the subgraph is set to be 10, i.e., k = 10 , and the decay ratio α of 
the Katz index calculation is set to be the value that achieves the optimal solution. The 
experimental results are given in Fig. 7. It is shown that the proposed method has bet-
ter link prediction performances on all experimental datasets with LR, SVM, and NN, 
respectively. Varying the test sample ratio in different experimental datasets, the pro-
posed method still has better link prediction performances compared with the related 
works. Specifically, subgraph preserving link prediction models, including the proposed 
method and WLNM, have better link prediction performances compared with the pop-
ular neighborhood preserving link prediction models including PA, CN, AA, and RA. 
By measuring the weights of links in the subgraph, the proposed method has better link 
performances than WLNM, which predicts links with subgraphs without weights of 
links.

Second, the parameter sensitivity is further analyzed for the proposed model. Specifi-
cally, it is verified how the decay parameter α affects the link prediction performances. 
For the converge of the Katz index, α is set to be less than the reciprocal of the adjacency 
matrix. We take the value of α as m ( m = 0.9, 0.7, 0.5, 0.3, 0.1) times the reciprocal of 
the adjacency matrix. The experimental results on the experimental datasets with LR are 
given in Fig. 7. It is shown that the link prediction performances of the proposed method 
tend to be best with a small value of m: The link prediction performances are the best 
with m equal to 0.1 on the PBN dataset; the link prediction performances are the best 
with m equal to 0.3 on the ATN dataset; the link prediction performances are the best 
with m equal to 0.1 or 0.3 on the PWN dataset; the link prediction performances are the 
best with m equal to 0.3 or 0.5 on the RTN dataset; and the link prediction performances 
are the best with m equal to 0.5 on the CEN and NSN datasets.

From Fig. 7, we can observe the following conclusions. WESLP generally performs 
much better than other baselines in terms of F1-score. The proposed method can 

Fig. 7  Link prediction performances with LR on the experimental datasets with different m value
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obtain good prediction results on different datasets under different classifiers and 
shows the robustness of the method. It is worth noting that many of the baselines 
often have poor performance, but our method has also achieved good results in the 
case of two sparse datasets PTN and RTN. The result show that our method can learn 
topology information that other baselines cannot express. Through the experimental 
analysis of the parameter decay ratio α in the method, the results show that different 
datasets have different alpha values, which makes WESLP achieve the best link pre-
diction performance.

6 � Conclusions and future works
In this paper, we proposed a weighted enclosing subgraph-based link prediction 
(WESLP) method, which utilizes topological features in the network by extracting 
links’ k-enclosing subgraphs, encodes the extracted subgraph by the optimized WL 
algorithm, and adds weights to links in the enclosing subgraphs of the target link. We 
use the Katz index between nodes to make the link closer to target link, the greater the 
weight. WESLP makes full use of topology information around the target link. To assess 
the performance of our proposed method, we performed extensive experiments of link 
prediction on six real-world networks through three different classifiers. Comparisons 
between our method and four conventional methods suggest that our method performs 
better than AA, CN, RA, and PA on all tested network by different classifiers. Compari-
sons our method and WLNM validate that, in most real-world networks, our method 
has overall better F1-score than WLNM by different classifiers. The experimental results 
show that compared with the five baselines, our method is very robust; that is, the per-
formance of different classifiers on different networks is better. In the future work, we 
will further evaluate our proposed method on larger datasets and do more work on the 
representation of the extracted subgraph.
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